
Research Article

A Flexible Online Camera Calibration Using Line Segments

Yueqiang Zhang,1,2 Langming Zhou,1,2 Haibo Liu,1,2 and Yang Shang1,2

1College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China
2Hunan Provincial Key Laboratory of Image Measurement and Vision Navigation, Changsha, Hunan 410073, China

Correspondence should be addressed to Haibo Liu; liuhaibo@nudt.edu.cn

Received 1 June 2015; Revised 23 September 2015; Accepted 27 September 2015

Academic Editor: Eugenio Martinelli

Copyright © 2016 Yueqiang Zhang et al.	is is an open access article distributed under theCreativeCommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to make the general user take vision tasks more 
exibly and easily, this paper proposes a new solution for the problem
of camera calibration from correspondences between model lines and their noisy image lines in multiple images. In the proposed
method the common planar items in hand with the standard size and structure are utilized as the calibration objects.	e proposed
method consists of a closed-form solution based on homography optimization, followed by a nonlinear re�nement based on
the maximum likelihood approach. To automatically recover the camera parameters linearly, we present a robust homography
optimization method based on the edge model by redesigning the classic 3D tracking approach. In the nonlinear re�nement
procedure, the uncertainty of the image line segment is encoded in the error model, taking the �nite nature of the observations into
account. By developing the new error model between themodel line and image line segment, the problem of the camera calibration
is expressed in the probabilistic formulation. Simulation data is used to compare this method with the widely used planar pattern
based method. Actual image sequences are also utilized to demonstrate the e�ectiveness and 
exibility of the proposed method.

1. Introduction

Camera calibration has always been an important issue in
the �eld of computer vision, since it is a necessary step to
extract metric information from 2D images. 	e goal of the
camera calibration is to recover the mapping between the 3D
space and the image plane, which can be separated into two
sets of transformations. 	e �rst transformation is mapping
of the 3D points in the scene to the 3D coordinates in the
camera frame, which is described by the extrinsic parameters
of the camera model. 	e second one involves mapping of
the 3D points in the camera frame to the 2D coordinates in
the image plane. 	is mapping is described by the intrinsic
parameters which models the geometry and optical features
of the camera. In general case, these two transformations can
be expressed by the ideal pin-hole camera model.

Up to now, much work for camera calibration has
been done to accommodate various applications. 	ose
approaches can be roughly grouped into two categories
according to whether requiring a calibration object. 	is
�rst type of camera calibration methods is named as met-
ric calibration, which resolves the camera model with the
help of metric information of a reference object. Camera

calibration is performed by observing a calibration object
whose geometry dimension is known with very high preci-
sion. 	e calibration object can be 3D object with several
planes orthogonal to each other [1, 2]. Sometimes a 2D
plane undergoing a precisely known translation [3] or free
movement [4] is utilized. Recently, a 1D temple [5–8] is used
with three or more markers for camera calibration. In [6], it
was proved that the 1D object undergoing a planar motion
was essentially equivalent to the 2D planar object. For such
type of methods, calibration can be done very e�ciently
and accurately. However, a calibration pattern also needs
to be prepared, though in [4] the setup is very easy and
only a planar object attached with the chessboard is utilized.
Another type of camera calibration methods is called self-
calibration which does not use any metric information from
the scene or any calibration object. Such methods are also
considered as 0D approach for only image feature correspon-
dences are required. Since two constraints on the intrinsic
parameter of the camera can be provided by using image
information alone [9], three images are su�cient to recover
the camera parameters including the internal and external
parameters and reconstruct the 3D structure of the scene up
to similarity [10, 11]. 	e problem of such methods is that a
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large number of parameters need to be estimated, resulting in
very unstable solution. If the camera rotation is known, more
stable and accurate results can be obtained [12, 13]. However,
it is not always easy to get the camera rotation with very high
accuracy. In general, metric calibration methods can provide
better results than self-calibration methods [14]. Our current
research is focused on smartphone vision system since the
potential for using such system is large. Smartphones are
now becoming ubiquitous and popular in our daily life. To
make the general public who are not experts in computer
vision do vision tasks easily, the setup of camera calibrate
should be 
exible enough. 	e method developed in [4] is
considered as the most 
exible technique; however, when
the orientation of the model plane with respect to image
plane is increasing, foreshortening will make the corner
detection less precise and even fail. Moreover, the planer
pattern should be prepared, which is still inconvenient for
general user of smartphone. 	erefore, it would be best
to utilize the handy item as the calibration object. 	e
camera calibration technique described in this paper was
designed with these considerations in mind. Compared with
the classical techniques, the proposed technique does not
need to prepare the planer pattern and is considerably more

exible. 	e calibration objects employed by the proposed
method are common and handy in our daily life such as an
A4 paper or even a standard IC card.

Our approach exploits the line/edge features of the handy
objects to calibrate both the internal and external parameters
of the camera, since they provide a large degree of stabil-
ity to illumination and viewpoint changes and o�er some
resilience to hash imaging conditions such as noise and blur.
A �rst challenge of the solution proposed in this paper is
to automatically estimate the homography and establish the
correspondences between model and image features. In this
sense, we redesigned the model based tracking method [15–
18] to robustly estimate homography for the common planar
object in the clutter scene. An advantage of such methods
is handling the occlusion, large illumination, and viewpoint
change. With a series of homography from the planar object
to the image plane, the initial camera parameters can be
solved linearly. A second challenge is to optimize the camera
parameters by developing e�ective object function and by
making full use of the �nite nature of the observation
extracted in the images. In this paper, the error function for
the model and image line, which encodes the length of the
image line segment and the information of the midpoint, is
derived from the noisy image edge points in the least square
approach.

	e remainder of the paper is organized as follows.
Section 2 gives the procedure of the proposed camera cal-
ibration algorithm. Section 3 presents an overview of the
redesigned homography tracking method based on edge
model. Section 4 derives the error model between image
and model lines and expresses the problem of the camera
calibration in the probabilistic formulation by the maximum
likelihood approach. Section 5 details how to solve the prob-
lem of camera calibration by the nonlinear technique. Some
experiment results are given in Section 6.
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Figure 1: 1D search from the model line to the image line.

2. Algorithm

	e proposed algorithm is summarized in this section.

Step 1. Optimize the homography between the model plane
and image plane according to our model based homography
tracking approach.

Step 2. Fit the image line segment from the image edge points
obtained by 1D search along the normal direction of the
corresponding model line.

Step 3. Calculate the initial camera parameters linearly with
a series of homography matrices (more than three orienta-
tions).

Step 4. Estimate the camera parameters by minimizing the
sum of the distance between the �nite image line seg-
ments and the model lines in the maximum likelihood
approach.

3. Model Based Homography Tracking

As can be seen in Figure 1, the 2D model edge is projected
to the image plane using the prior homography of the planar
object. Instead of tackling the line segment itself, we sample
the projected line segment (black solid line in Figure 1) with a
series of points (brown points in Figure 1). 	en the visibility
test for each of the sample points is performed, since some
of these sample points may be out of the camera’s view �eld.
For each of the visible sample points, 1D search along the
normal direction of the projected model line is employed
to �nd the edge point with the strongest gradient or closest
location as its correspondence. Finally, the sum of the errors
between the sample points and their corresponding image
points is minimized to solve for the homography between
frames subsequently.
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3.1. Probabilistic Formulation for Homography Tracking. 	e
relationship between a model point P and its image point p
can be given as

p = Ψ (P,H) = [(HP)�(HP)� (HP)�(HP)� ]� ,
P = (�� �� 1)� ,
p = (�� �� 1)� ,

(1)

where H is the homography between themodel plane and the
image plane.

Supposep1, p2, . . . , p� is the set of projected sample points
and p̃1, p̃2, . . . , p̃� is their corresponding image points with
the presence of the observation noise along the normal
direction. 	en we can de�ne a function to measure the
normal distance between a projected sample point p� and its
noisy observation p̃�: 
� = n�

� (p� − p̃�) , (2)

where n� is the unit normal vector of the projected sample
point p�.

Assuming a Gaussian distribution for 
�, then we have� (p̃� | p�) = � (
�; 0, 
2) . (3)

	e conditional density of p� given p̃� can be given by� (p� | p̃�) = � (p̃� | p�) � (p�)� (p̃�) = � (p̃� | p�) . (4)

	erefore, with the assumption that the observation
errors for di�erent sample points are statistically indepen-
dent, a maximum likelihood estimation of the homography
is

Ĥ = arg min
H

(− log ∏
�∈[1,�]

� (Ψ (P�,H) | p̃�))
= arg min

H

�∑
�=1

(
�)2 , (5)

where � is the number of 3D mode points.
It is clear that proposed approach can obtain the maxi-

mum likelihood estimation of the homography by minimiz-
ing the sum of the square of normal distances.

3.2. Interaction Matrix-Distance between Points. 	e deriva-
tion of the interaction matrix for the proposed approach is
based on the distance between the projection of sample point
p� and its projected image point p̃�.	emotion velocity of the
object is then related to the velocity of these distances in the
image.

Assume that we have a current estimation of the homog-
raphy H	. 	e posterior homography H	+1 can be computed
from the prior homography H	 given the incremental motionΔH:

H	+1 = ΔHH	. (6)

ΔH can be represented as follows:

ΔH = I3×3 +(ℎ0 ℎ1 ℎ2ℎ3 ℎ4 ℎ5ℎ6 ℎ7 ℎ8). (7)

	e motion in the image is related to the twist in model
space by computing the partial derivative of the normal
distance with respect to �th generating motion at current
homography:��
 = �
��ℎ
 = n

�
�

��ℎ
 (Ψ (P�, ΔHH	))
= n
�
� {�p��q�

}
2×3

{�q��ℎ
}3×1 = n
�
� J
�
� J̃�
, (8)

where p� = q�/ ��, q� = [ ��,  ��,  ��]� = ΔHH	P�.
	en the corresponding Jacobian matrices can be

obtained by

J
�
� = ( 1 �� 0 − ��( ��)20 1 �� − ��( ��)2),
J̃�
 = (P��,	 0� 0�

0� P��,	 0�

0� 0� P��,	

) g
,
(9)

where g
 is a 9× 1 unit vector with the �th item equal to 1 and
P�,	 = H	P�.

3.3. Robust Minimization. 	e error vector d is obtained by
stacking all of the normal distances of each sample point as
follows:

d = (
1 
2 
3 ⋅ ⋅ ⋅ 
� ⋅ ⋅ ⋅ 
�)� . (10)

	e optimization problem for (5) can be solved according
to the following equation:

WJh = e = Wd, (11)

where h is the motion vector, J is Jacobian matrix which links
d to h, and W = diag(&1, &2, . . . , &�, . . . , &�) is the weight
matrix (refer to [17]).

	en, the solution of (11) can be given by

ĥ = (WJ)+Wd, (WJ)+ = ((WJ)� (WJ))−1 (WJ)� . (12)

Finally, the new homography can be computed according
to (7) as follows:

Ĥ	+1 = ΔĤH	, ΔĤ = (1 + ℎ̂0 ℎ̂1 ℎ̂2ℎ̂3 1 + ℎ̂4 ℎ̂5ℎ̂6 ℎ̂7 1 + ℎ̂8). (13)
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With a series of homography matrices (more than three
orientations), the camera parameters can be solved linearly
by method [4].

4. Maximum Likelihood Estimation of
the Camera Parameters

In this paper, the camera calibration problem can be formu-
lated in terms of a conditional density function that measures
the probability of the image observations predicted from the
camera parameters given the actual image observations. 	is
section describes how to construct this conditional density
function.

4.1. Probabilistic Formulation for the Camera Calibration.
Consider the case where there are � images of a static

scene containing * straight line segments. Let {(L
� , l̃


� )}��=1

be the matched set of 3D model and 2D image lines in the
image �, which can be established automatically according to
homography optimization in this paper.With the assumption
that the observation errors for di�erent line segments are
statistically independent, the conditional density function P

of the camera parameters can now be de�ned as follows:

P = ∏

∈[1,�]

∏
�∈[1,�]

� (Γ (L


� , �,�
) | l̃



� ) , (14)

where Γ(⋅) is the projection function which takes the cam-
era parameters and the 3D line segment and returns the
corresponding edge in the image. �, �
 are the intrinsic

and extrinsic parameters of the camera in the image �,
respectively. �(⋅) denotes the conditional density.

	en, the maximum likelihood estimation of the camera
parameters �, �
 is maximizing the conditional density

function P, which is given by(�̂, {�̂
}�
=1) = arg max
�,{��}��=1

P. (15)

By taking the negative logarithm, the problem of maxi-
mize a product is converted into a minimization of a sum,
which is given as follows:(�̂, {�̂
}�
=1)= arg min

�,{��}��=1
∑

∈[1,�]

∑
�∈[1,�]

− ln (� (Γ (L


� , �,�
) | l̃



� )) . (16)

	e intrinsic parameters of the camera � are represented
as [6�, 6�, 7�, 7�, 8]�, where 6� and 6� are the equivalent focal
length, (7�, 7�) is the principal point of the camera, and 8 is the
radial distortion coe�cient. 	e extrinsic parameters of the
camera �
 in the image � are presented in the usual manner

by a translation vector T
 ∈ R
3 and a rotation matrix R
 ∈�<(3). In the remainder of this section, the elements of (16)

are discussed in more detail.
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Figure 2: Perspective projection of 3D line and point.

4.2. Perspective Projection of 3D Model Line Segment.
	roughout this paper, the perspective projection model is
utilized.	e relationship between a 3DworldP and 2D image
point p can be given as

p = [@ V 1]� = Γ (P, �,�) ,@ = 6� (P
)�(P
)� + 7� = �� + 7�,
V = 6� (P
)�(P
)� + 7� = �� + 7�,

(17)

where P
 = RP +T is the coordinate in the camera frame for
P and (⋅)� is the B-coordinate. 6� and 6� are the equivalent
focal length. 7� and 7� are the principal point. C� and C� are the
radial distortion, which is modeled as one-order polynomial
model: C� = 6��� (�2� + �2�) 8,C� = 6��� (�2� + �2�) 8,�� = (@ − 7�)6� ,

�� = (V − 7�)6� ,
(18)

where p = (��, ��)� is corresponding to the projection ray

from the focal point to the image point p.
As shown in Figure 2, the line segment M and its projec-

tion m in the image plane are represented by their endpoints(P1,P2) and (p1, p2). 	e line segments M and m lie on the
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in�nite lines L and l, respectively. 	e perspective projection
of 3D line segment can be given by the projection of its two
endpoints:

m = Γ (M, �,�) = (Γ (P1, �,�) , Γ (P2, �,�)) . (19)

When noise is present in themeasuring data, we denote p̃
as the noisy observation of the projection of the 3D points P

and l̃ as the noisy observation of the projection of 3D model
line L.

4.3. Error Model for the Observation of the Line Segment. Let
p̃1 = (D1, E1), p̃2 = (D2, E2), . . . , p̃� = (D�, E�) be a series of
image edge points with the presence of the observation noise
perpendicular to the line. For convenience, we assume that
the true position of the line is parallel to the horizontal axis.
	en we haveE� = FD� + G + H�, I = 1, 2, . . . , K, (20)

where H1, H2, . . . , H�, . . . , H� are Gaussian random variables
with LH� = 0,MH� = 
2 and they are mutually independent.

Let the noises for the endpoints along the vertical direc-

tion be N1, N2, respectively, and s = (N1, N2)�. It can be easily
derived that M(N1) = 1KO�� 
2 �∑�=1 (D� − D1) (D� − D1) ,

M (N2) = 1KO�� 
2 �∑�=1 (D� − D�) (D� − D�) ,
Cov (N1, N2) = 1KO�� 
2 �∑�=1 (D� − D1) (D� − D�) ,

(21)

where D = (1/K)∑��=1 D�, O�� = ∑��=1(D� − D)2 = ∑��=1(D�)2 −KD2.
It is clear that these two noises are negatively correlative.

Since the observation noises conform to Gaussian random
variables, the joint density for the random variables N1 andN2 is a Gaussian PDF, which can be given by� (s) = 12Q |V|1/2 exp (−s

�
V
−1

s) . (22)

Supposing that the length of the line segment is R and the
intervals of the edge points are all R0, then we have D1 = R0,D2 = 2R0, . . . , D� = KR0. 	erefore, we obtainM(N1) = M (N2) = 2R0
2 ∗ (2R + R0)(R + R0) (R + 2R0) ,

Cov (N1, N2) = − 2R0
2 ∗ (R − R0)(R + R0) (R + 2R0) . (23)

When the number K is large enough, that is, R0 ≪ R, it is
easy to obtain

V
−1 = 43
2� ( 1 0.50.5 1 ) = R3R0
2 ( 1 0.50.5 1 ) . (24)
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Figure 3: Relation between projection of the 3D line segment and
its noisy observation.

Substituting (24) into (22) yields� (s | l) = 12Q |V|1/2⋅ exp(− 1R0
2 ( R3 ((N1)2 + N1N2 + (N2)2))) . (25)

From (25), it can be seen that the error model allows us
to encode the measurement error for image edge point (
)
explicitly and obtain the intuitive impact of image line length.
Moreover, long line segments producemore accurate location
than shorter ones and small 
 produces higher con�dence
about the line location.

4.4. Maximum Likelihood (ML) Estimation. 	e measure-
ment noise for the localization of the 2D line segments can
be decomposed into two components: noise perpendicular
to the line and noise along the length of the line. 	e �rst
noise is modelled as a Gaussian random variable related to
orientation error and the noise model has been derived in
the last section, whilst the second one is assumed to conform
to any distribution (not necessarily Gaussian) related to line
fragmentation.

As can be seen in Figure 3, both the projection of the 3D

line segment m and its noisy observation l̃ are represented by
their endpoints, (p1, p2) and (p̃1, p̃2), receptively. 	e noise
vector s perpendicular to the line and the noise vector h along
the line are expressed as follows:

s = [N1 N2]� ,
h = [ℎ1 ℎ2]� , (26)

where the components of s are the distances between the

endpoints of l̃ and m along the direction perpendicular to m.
	e components of h are the distances between the endpoints
of the two line segments along the direction of m.

It is assumed that the two random vectors s and h are
statistically independent. And then we can approximate the

conditional density of l̃ given m as� (̃l | m) = � (s | m) � (h | m) . (27)

In the literature [19], it is proved that the conditional
density of the projection of the 3D model line l given its



6 Journal of Sensors

observed noisy image line segment l̃ is only dependent on the
noise perpendicular to line l:� (l | l̃) = � (s | l) . (28)

	erefore, with the assumption that the observation
errors for di�erent line segments are statistically indepen-
dent, (16) can be converted into the following formation:(�̂, {�̂
}�
=1) = arg min

�,{��}��=1
<,

< = ∑

∈[1,�]

∑
�∈[1,�]

(s


� )� (V



� )−1 s


� , (29)

where < is the objective function that measures the disparity
between the actual image observations and their correspond-
ing predicted ones by the current camera parameters. s
corresponds to the distances from the endpoints of the image
line segment to the projected model line.

If the image line segment is �tted by LST and the intervals
of the edge points are �xed for all of the image line segments,
then we have<

= ∑

∈[1,�]

∑
�∈[1,�]

( 1R0
2 (R
�3 ((N
1�)2 + N
1�N
2� + (N
2�)2)))
≃ ∑

∈[1,�]

∑
�∈[1,�]

R
�6 ((N
1�)2 + 4 ∗ (N
0�)2 + (N
2�)2) ,
(30)

where N
1�, N
2�, and N
0� correspond to the distances from the

two endpoints and midpoint of the image line segment l̃


� to

the projected model line l


� . It is clear that the error function

between 3D model line and 2D image line is weighted by the
length of the image line segment.

5. Nonlinear Technique for
the Optimization of Camera Parameters

In this section, we will describe how to employ the nonlinear
technique to solve the problem of camera calibration de�ned
in the previous section. In the initial case, the camera
parameters can be provided by the method which is similar
to [4] except that the homography matrices are calculated by
themethoddiscussed in Section 2, rather than the chessboard
corners. At each iteration, the linearized error function
is minimized to obtain the interframe motion vector for
the intrinsic and extrinsic parameters. 	en the camera
parameters are updated until the objective function converges
to a minimum.

	e distance from the point of the image line segment to
the projection of the model line is given byN = 1_p ⋅ ((RP1 + T) × (RP2 + T)) , (31)

where _ = √(a�/6�)2 + (a�/6�)2 (refer to [20]).

Assume that we have a current estimation of the rotation
R	 at the time of b. 	e posterior rotation R	+1 can be
computed from the prior rotation R	 given the incremental
rotation exp(�̂):

R	+1 = exp (�̂)R	, (32)

where �̂ is the corresponding skew-symmetric matrix of
vector �:

�̂ = [[[[
0 −&� &�&� 0 −&�−&� &� 0 ]]]] . (33)

	e transformation from the reference frame to the
camera frame can be rewritten as

P
 = R (P − T
�) , (34)

where T� = −R�Τ denotes the location of the origin of the
camera frame in the world frame.

Let � ∈ R
3 represent the motion velocities corresponding

to translation in the D, E, and B directions between the prior
translations T�	 and the posterior translation T�	+1. Equation
(31) can be rewritten asN
�,� = 1_
�,	 (R

�
	+1p


�,�)

⋅ ((P


�,1 − T

�
	 − �) × (P



�,2 − T

�
	 − �)) . (35)

	en, the partial derivative of the error function N
�,�(r)
with respect to the Kth motion velocities can be computed as�N
�,��&
� = − 1_
�,	 ((R



	)� ĝ�p



�,�)

⋅ ((P


�,1 − T


,�
	 ) × (P



�,2 − T


,�
	 )) ,�N
�,��k
� = 1_
�,	 ((R



	)� p


�,�) ⋅ (ĝ� (P



�,1 − P



�,2)) ,

(36)

where g1 = (1, 0, 0)�, g2 = (0, 1, 0)�, and g3 = (0, 0, 1)�.
	e partial derivative of the error function N
�,�(r) with

respect to � can be given by�N
�,��� = 1_
�,	 ((R


	)� �q



�,��� )

⋅ ((P


�,1 − T


,�
	 ) × (P



�,2 − T


,�
	 )) , (37)

where q = p + �, � = (��(�2� + �2�)8, ��(�2� + �2�)8, 0)�.
	e error vectord is obtained by stacking all of the normal

distances of each image point as follows:

d = ((s
1
1)� , (s

1
2)� , . . . , (s

1
�)� , . . . , (s



� )� , . . . , (s

�
�)�)� , (38)
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where s�� = (N�0 N�1 N�2) is the distance vector from midpoint

and endpoints of the image line segment to the projected
model line.

	e optimization problem for (30) can be solved accord-
ing to the following equation:

WJΦ = e = Wd, (39)

where Φ = (��1 ,��2 , . . . ,���, Δ6�, Δ6�, Δ7�, Δ7�, Δ8)� is the
motion vector and � = (��, ��)�. J is Jacobian matrix which
links s toΦ andW = diag(l1, l2, . . . , l�, . . . , l3∗�∗�) is the
weight matrix (refer to [17]).

If the incremental motion vector has been calculated, the
new camera parameters can be computed as follows:

R


	+1 = (I + �̂
)R



	 ,

T


	+1 = −R



	+1 (T


,�
	 + �
) ,6�,	+1 = 6�,	 + Δ6�,6�,	+1 = 6�,	 + Δ6�,7�,	+1 = 7�,	 + Δ7�,7�,	+1 = 7�,	 + Δ7�,8	+1 = 8	 + Δ8.

(40)

6. Experimental Results

	e proposed algorithm has been tested on simulated data
generated by the computer and real image data captured
from our smartphone. 	e closed-form solution is yielded
by the approach [4] except that the homography matrices are
estimated by the proposedmethod.	e nonlinear re�nement
within the IRLS algorithm takes 5 to 8 iterations to converge.

6.1. Computer Simulations. 	e simulated perspective cam-
era is supposed to be 2m from the plane object. 	e
resolution of the virtual camera is 640 × 640. 	e simulated
camera has the following property: 6� = 6� = 1814.8,7� = 7� = 300. 	e model plane is a checker pattern
printed on the A4 paper (210mm × 297mm) with 11 × 14
corners. 	e images are taken from di�erent orientations
in front of the virtual camera. 	e normal vector of the
plane is parallel to the rotation axis represented by a 3D
vector r, whose magnitude is equal to the rotation angle. 	e
position of the plane is represented by a 3D vector t (unit
in millimetres). In the experiment, the proposed method is
compared with the widely used chessboard corners based
method [4] (referred to as corners based method and the
implementation is according to the related camera calibration
function of OpenCV [21]). For the corners basedmethod, 154
corners are utilized. In ourmethod, we use 25 lines �tted from
the noisy corners by the LST.	e reprojection error indicated
by RMS is expressed by the root of mean squared distances in
pixels, between the detected image corners and the projected
ones. When only four edges of the plane pattern are utilized,
the proposed method is referred to as 4-line based method.

6.1.1. Performance with respect to the Noise Level. In this

experiment, three planes with r1 = [20, 0, 0]�, t1 = [−105,−149, 2000]�, t2 = [−105, −149, 2100]�, r3 = [−14, −14, −7]�,
and t3 = [−105, −149, 2250]� are used (the three orientations
are chosen according to [4]). Zero mean Gaussian noise is
added to the projected image points with the standard devia-
tion
 ranging from0.1 pixels to 2.0 pixels in steps of 0.1 pixels.
At each noise level, 100 independent trials are generated. 	e
estimated camera parameters are then compared with the
ground truth andRMS errors aremeasured.Moreover, for 154
points with real projections and the recovered projections,
the RMS reprojection error is also calculated. Figures 4(a)
and 4(b) display the relative errors of the intrinsic parameters
which are measured with respect to 6�, while Figure 4(c)
shows the reprojection errors of the two methods.

From Figure 4, we can see that both the relative errors of
the intrinsic parameters and the reprojection errors increase
almost linearly with the noise level. 	e proposed method
can produce the equivalent performance with the corners
based methods since the image lines are �tted from the noisy
image corners.When 4 lines (the smallest set for homography
estimation) are utilized, the errors of the proposed method
are larger than the corners based method. For 
 < 0.5, there
is little di�erence between the 4-line based method and the
corners based method.

In addition, we vary the number of sample points that are
utilized to �t the line segment to validate the performance
of the 4-line based method with 
 = 0.5. From the results
in Figure 5, we can see that the errors decrease signi�cantly
when more sample points are utilized. When the number
is above 40 where more than 160 are utilized to �t 4 line
segments, the performance of the 4-line based method is
almost similar to that of the 154-corner based method.

6.1.2. Performance with respect to the Number of Planes.
In this experiment, we investigate the performance of the
proposed method with respect to the number of the images
of the model planes. In the �rst three images, we use the
same orientation and position of the model plane as those
used in the last subsection. For the following images, the
rotation axes are randomly chosen in a uniform sphere
with the rotation angle �xed to 30∘ and the positions are
randomly selected around [−105, −145, 2000].	e number of
the model plane images ranges from 3 to 17. At each number
of the images, 100 independent trials of independent plane
orientations are generated with the noise level for the image
points �xed to 0.5 pixels. 	e errors including the relative
errors in camera intrinsic parameters and the reprojection
errors for the two methods are shown in Figure 6. 	e errors
decrease when more images are used. From 3 to 7, the errors
decrease signi�cantly. Moreover, the reprojection errors of
the proposedmethod are around 0.7, when the number of the
images is varying.

6.1.3. Performance with respect to the Number of Lines.
	is experiment examines the performance of the proposed
method with respect to the number of the lines utilized to
recover the camera parameters. For our method, more than
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Figure 4: Errors versus the noise level of the image points.

4 lines should be employed. We vary the number of lines
from 4 to 25. 	ree images of the model plane are also used
with the same orientation and position as last subsection. 100
independent trials are conducted with the noise level �xed to
0.5 pixels for each number of the lines. 	e results are shown
in Figure 7.Whenmore lines are used, the errors decrease. In
particular, from 4 to 15, the errors decrease signi�cantly.

6.1.4. Performance with respect to the Orientation of the
Model Plane. 	is subsection investigates the in
uence of
the orientation of the model plane with respect to the image
plane. In the experiment, three images are used with two of
them similar to the last two planes in Section 6.1.1. 	e initial
rotation axis of the third plane is parallel to the image plane,
and the orientation of the planes is randomly chosen from
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Figure 5: Errors versus the number of sample points for 4-line based method.

a uniform sphere with the rotation varying from 5∘ to 75∘.
	e noise level is �xed to 0.5 pixels. 	e results are displayed
in Figure 8. Best performance seems to be achieved with the
angle around 40∘.

6.2. Real Images. For the experiment with real data, the
proposed algorithm is tested on several image sequences
captured from the camera of the smartphone.

6.2.1. Homography Tracking Performance. In the experiment,
three image sequences are captured from the smartphone
with a resolution of 720 × 480. In the �rst image sequence,
a chessboard containing 10×13 interior corners is printed on
anA4 paper and put on the desk. About 1500 frames are taken
at di�erent orientation. For each image, the homography
from the model plane to the image plane is optimized by
the proposed method using the four edges of the A4 paper.
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Figure 6: Errors versus the number of the images.

	e interior corners are extracted by the function of cvFind-
ChessboardCorners in OpenCV and re�ned by the function
of cvFindCornerSubPix. Figure 9 shows some sampled results
from the image sequence.

In the last two image sequences, the covers of two books
are chosen as the model planes, respectively. To validate the
performance of the proposed homography tracking method,
the books are put in the clutter environment with the smart-
phone undergoing large rotation and translation. Both of the
last two sequences contain around 2000 images. Figure 10
exhibits some sampled results.

6.2.2. Camera Calibration Performance. In this subsection,
we applied our calibration technique and the corners based
method to the four images sampled from the video captured
by our smartphone (shown in Figure 11). 	e image resolu-
tion is 960 × 540. In the experiment, the chessboard plane
contains 10 × 13 interior corners and 23 lines. 	e results
are shown in Table 1. We can see that there is little di�erence
between the proposedmethod and the corners basedmethod.
When only four edges of the plane pattern are utilized, the
proposed method can provide the very consistent results
with the corners based method and the o�set of the camera
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Figure 7: Errors versus the number of the lines.

parameters is very small about 5 pixels with respect to the
corners based method. 	e last column of Table 1 shows the
reprojection RMS of the three methods. When all of the 23
lines are utilized, the proposed method provides the almost
same reprojection error as the corners based method. 	e
4-line based method returns the slightly larger reprojection
error, since only the minimum of model lines are utilized.

In order to further investigate the stability of the proposed
method, we vary the number of lines from 4 to 23.	e results
are shown in Figure 12. 7� and 7� recovered by the proposed

method are around the values estimated by the corners based
method only with a small deviation. 	e reprojection errors
for the projected method decrease signi�cantly from 4 to 17.
When the number is above 17, the reprojection error is very
close to that of the corners based method.

6.2.3. Application to Image-Based Modelling. In this sub-
section, we applied the proposed method on two image
sequences. In the �rst image sequence, the card with the
size of 54.0mm × 85.6mm is utilized as the model object.
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Figure 8: Errors versus the orientations of the plane.

	e A4 paper with the size of 210mm × 297mm is chosen
as the model object for the second image sequence. In the
experiment, a series of images are sampled from the videos
to calibrate the camera intrinsic parameters and then the
camera pose is optimized for each image frame. A�er that,
the structure from motion developed by the methods [22–
24] was run on the image sequences to build the complete
models of the toys including Lu�y and Hulk. In Figure 13,
Figures (A), (B), (C), and (D) are some sampled images
from the image sequences. 	e recovered camera poses by

the proposed method are shown in Figure (E). 	e le� one
of Figure (E) shows the camera poses for the whole image
sequence, while the right one corresponds to the sampled
views for the following reconstruction. By recovering the
whole motion trajectory of the camera, we can easily choose
a subset of the frames which are suitable and adequate for
modeling. Two rendered views of the reconstructed objects
are shown in Figure (F). From Figure 13, we can see that
the complete model of the objects has been reconstructed by
moving the camera around the objects. For the size of the
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(a) Frame 220 (b) Frame 480 (c) Frame 640 (d) Frame 973 (e) Frame 1073

(f) Frame 1113 (g) Frame 1153 (h) Frame 1213 (i) Frame 1433 (j) Frame 1533

Figure 9: Homography tracking for the chessboard plane. Projected model lines using the homography of the proposed method are drawn
in blue.	e interior corners extracted in the images are drawn as color circles with the color lines between them denoting the order.	e �rst
row shows that the corners can be extracted successfully when the angle between the model plane and the image plane is small. However,
when the angle is increasing, the corner detection will be less precise and even fail, as can be seen in the second row. For the whole sequence,
the proposed method can provide good match with the image edges.

(A) Frame 300 (B) Frame 700 (C) Frame 1100 (D) Frame 1500 (E) Frame 1900

(a) Planar object 1

(A) Frame 300 (B) Frame 700 (C) Frame 1100 (D) Frame 1500 (E) Frame 1900

(b) Planar object 2

Figure 10: Homography tracking for the book covers in clutter environment.

Table 1: Calibration results with real data of 4 images.

Methods/pixels 6� 6� 7� 7� Reprojection
error

Corners based
method

1147.23 1146.68 475.39 258.04 0.41

Lines based
method

1150.76 1151.49 474.61 262.60 0.42

4-line based
method

1141.14 1139.99 480.25 253.07 0.67

handy items is known, the objects can be reconstructed with
the metric information.

6.2.4. Discussion. In practice, the corners detection o�en
su�ers from a failure, when the angle between the model
and image plane is large or when some of the corners are
invisible or corrupted by the image noise and blur. However,

the edge detection is more stable in such case. Moreover, in
the simulated experiments, since the line segment is �tted
by the corners lying on it, the proposed method provides
almost the same performancewith the corners basedmethod.
In our homography tracking framework, much more image
edge points corresponding to the sample model points are
utilized, and therefore the line segment can be �tted with
higher accuracy. In addition, the proposed method is more

exible and suitable for the general user of the smartphone
who wants to take the vision task, since it only uses the
common and handy planar object rather than the prepared
planar pattern.

7. Conclusions

In this paper, we have investigated the possibility of cam-
era calibration using common and handy planar objects
undertaking general motion for the smartphone vision tasks.
A linear algorithm supported by the edge model based
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Figure 11: Four images of model plane for camera calibration.
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Figure 12: Results versus the number of the model lines.
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(A) Frame 20 (B) Frame 40 (C) Frame 60 (D) Frame 80

(E) Recovered camera poses (F) Two views of the reconstructed object

(a) Reconstruction results of Lu�y

(A) Frame 20 (B) Frame 40 (C) Frame 60 (D) Frame 80

(E) Recovered camera poses (F) Two views of the reconstructed object

(b) Reconstruction results of Hulk

Figure 13: Results of image-based modelling. 	e green lines are the projections of the four edges of the calibration items by using the
recovered camera parameters.	e green crosses are the projections of the model points. We can see that the proposed method provides good
matches of the projections of the model lines with the observed positions in the images.

homography tracking is proposed, followed by a nonlinear
technique to re�ne the results. Both the computer simu-
lated and real images have been utilized to validate the
proposed algorithm. 	e experimental results exhibited that
the proposed algorithm is valid and robust and providesmore

exible performance than the widely used planar pattern
based method.

In addition, for the general user who will do vision task,
the prepared planar calibration may be not always in hand.
However, the common items in our daily life almost have
the standard size and planar structure. By exploiting the edge
information, we proposed an easier and practical camera
calibration method. Moreover, in the proposed method, the
uncertainty of the image line segment was encoded in the

error model, which takes the �nite nature of the observations
into account. 	e problem of camera calibration using lines
was formalized in the probabilistic framework and solved by
the maximum likelihood approach.
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