
54 - 1

A Flexible Prototyping Tool for 3D Real-
Time User-Interaction

Roland Blach, Jürgen Landauer, Angela Rösch, Andreas Simon

Competence-Centre Virtual Reality
Fraunhofer Institute for Industrial Engineering (IAO)

Nobelstr. 12, D-70569 Stuttgart, Germany
phone: +49-711-970-2153, fax: +49-711-970-2213

Roland.Blach@iao.fhg.de
http://vr.iao.fhg.de

Abstract

High interactivity in real-time environments requires new system design concepts for
virtual reality environments. We will define our understanding of a modern system and
describe the prototypical system Lightning, which addresses some of these new fea-
tures.

Keywords: Virtual reality, Virtual environments, Virtual reality development system,
Immersive environments, Interactive real-time systems

1.0 Introduction

Virtual Reality (VR) in our understanding, is multimodal interaction with dynamic and
responsive computer generated or so-called virtual environments. The main focus is on
interaction, which combines adequate presentation of the environment with its manip-
ulation. Multimodality defines the more hardware oriented interface definition as the
combination and cooperation of various input and output channels like speech, gesture,
sound, position, video, etc. A highly interactive system has to deal with time in general
and specifically with variable time frames and their synchronization. Responsive vir-
tual environments should operate in real-time, that is, the response time and update
rate of the system is high enough that it generates an experience of continuity. Conti-
nuity is a major precondition for the impression of an imperceptible boundary between
user and virtual environment, the so-called interface. We consider this property to be
one of the major differences between VR-systems and other 3d-systems such as CAD
systems.

These techniques serve one main purpose: the enhancement of human computer inter-
action. Especially in problem domains of high complexity the use of immersive virtual
environments promises a better insight. Immersion in our opinion is a product of the
used techniques and surrounds the user with the computer generated world, which
seems to be a different experience compared to classical interfaces. Obvious examples

54 - 2

are complex evaluation or planning tasks like architecture or design, medical training,
fluid dynamics in engineering or assembly planning, etc..

2.0 Basic Considerations

The user interface of a virtual reality system (VR-system) can be considered as a
closed loop system where the user is an integral part of the system (‘human in the
loop’). The generalization of the user concept to other external systems including also
more users seems obvious and useful.

Fig 1. General VR-System Structure

A VR-system can be divided in internal and external subsystems. As external we con-
sider all subsystems where only the interface is known but there is no complete control
in the sense of parameterization or restructuring during run-time. Obvious examples
are human users, external simulation programs, hardware devices, etc.

The internal simulation system contains adequate abstractions of entities and their
communication system to define the application and input/output modules. Basically it
samples the outside world via sensors or other communication mechanisms. The next
time-step will be computed according the inbuilt dynamics, behavior or interaction
rules. The display modules sample the internal state of the simulation and generate the
adequate output.

vr-system

user 1

remote
system

user 2

external
simulator

device
driver

closed loop

54 - 3

We see some similarities between complex artificial machines/organisms like robots
and VR-systems. A minor difference is actually the embedding factor of reality and
virtuality. In classical virtual reality systems the user is surrounded by computer gener-
ated environments. The VR-system has to capture ‘only’ the user, but has to generate
the impression of a complete and convincing environment. A robot has to capture its
physical environment and to compute ‘only’ the adequate output for its effectors. A
major difference is the existence of a goal of the system. A virtual reality system has
no defined end state or goal, it is a kind of open system.

Some researcher have defined performance goals like frame rate and used control the-
ory methodologies [13] to obtain these goals. Basic approaches are realized in visual
rendering as for example frame-rate based level of detail (LOD) switching to achieve a
constant frame rate, which is only a small part of the overall performance. Another
approach are prediction schemes for motion tracking [14] where for example Kalman
filtering was proposed.

This more general understanding of a virtual reality system leads us to the assumption
that some of the problems might have been solved already in other research areas as
for example in robotics, control and system theory or artificial life. Especially strate-
gies to overcome the lack of information in case of sensors are needed. General syn-
chronization schemes might be derived with these strategies.

One of the challenges for system design is a flexible and extensible methodology of
achieving consistency between known and unknown input and output modules and the
internal simulation. We have concentrated in our concepts basically on space and time
consistency which leads to the problems of synchronization and exact overlay of phys-
ical and virtual space. General consistency should consider basically all state informa-
tion, as for example colour space matching is an important issue for augmented reality.

A virtual reality system distributes output, for example visual rendering and input
tasks for example collecting position tracking data to independent process to be able to
control request times. The application consists often of an event propagation module
and sometimes if higher computing load is expected, independent simulation proc-
esses, for example a dynamic simulation of moving objects. But even today many sys-
tems do have an inflexible structure concerning the distribution of the application load
in regard to heavy interactive user involvement. Main focus was the real-time capabil-
ity of the display output, or mostly the visual rendering, although some researchers are
concentrating also on other features like 3D acoustics [1] or force-feedback output
[2][7]. Input processes run usually as an external process, as fast as the hardware
device is able to deliver the data. In our understanding it is not just necessary to collect
input-data in real-time, it has to be evaluated in real-time. Output should sample the
internal real-time simulation at a physiological suitable and necessary rate. That
implies a shift to a real-time input loop compared to today's systems where the focus is
more on real-time output. Two main points have to be addressed:

54 - 4

• Real-time capability of the system behavior, that is evaluation and event propaga-
tion of the input data completely independent from output.

• Internal storage of sampled input data to produce continuous output at a later time.

This real-time capability is particularly interesting in case of dynamic behavior of
objects in combination with user interaction.

In the following we will describe how our prototype Lightning addresses these consid-
erations.

3.0 Lightning

The Lightning virtual reality system was first presented in 1996 [6] as a rapid prototyp-
ing tool for VR applications, particularly in the architectural and presentation domain.
Since then it has evolved to a mature tool for interactive engineering environments,
where prototyping of 3D user interfaces becomes an important issue.

3.1 Software architecture overview

The design of the system is inspired by a common event propagating paradigm similar
to for instance VRML 2.0 [11] or Open Inventor [12], as it can be seen in the following
section. Fig. 2. gives an overview of its system architecture.

Fig 2. Lightning overview

"QQMJDBUJPO $POUSPM .PEVMF
� FWFOU QSPQBHBUJPO

� DPNNVOJDBUJPO

� PCKFDU QPPM

7JT7JTVVBBMMJ[FSJ[FS

� 1FSGPSNFS

� 0QFO(-

"CTUSBDU %FWJDFMBZFS $�� "1*

"QQMJDBUJPO C
"QQMJDBUJPO B

"QQMJDBUJPO D
5DM 3VO�UJNF *OUFSGBDF

$�� "1*

""VEVEJJPPSFSFOEFOEFSSFFSS
� "VEJP8PSLT

���

''PPSDFSDF��''FFFFECECBDLBDL
� .PUJPO CBTF

� 1IBOUPN

%J%JBBMT �MT � #V#VUUUUPOPOTT
� $FSBM#PY�'MZ#PY

� $ZCFSHMPWFT

� ���

5S5SBBDLJDLJOHOH

� 1PMIFNVT

� "TDFOTJPO

� #00.

54 - 5

Its core component is a database called object pool. Application developers define the
environment merely by creating or deleting objects within this database. The interac-
tivity and the behavior can be introduced with function objects and communication
channels, so-called routes. These communication channels define application specific
event propagation and therefore the interactivity.

A basic object type is provided with several properties:

• Unified Interface slots so-called fields provide a standardized interface for the
event propagation module.

• A uniform update function, which changes the internal state according to the data
at the input fields and the internal state of the object.

• Execution of this update function, only if the input data has changed or the object
has been handed to a special administration module, which always calls the update
function. This is a generalized implementation of the so called sensor type in
VRML2.0 [11].

Objects have a certain internal linkage, which connects them to the Abstract Device
Layer. System or application developers can extend the system simply by providing a
new object with the described field interface.

Generic render devices exist for visual and audio renderer. The specific implementa-
tion will be filled in via inheritance, which in case of the visual renderer provides the
actual implementation is based on the IRIS Performer [10] graphical render library.
The specific Performer renderer links the visual scene graph to Lightning objects and
reports changes of the geometry of a visual object to the underlying library and, as a
result, to the graphics device hardware.

3.2 Event propagation

Objects within the pool and their links form a directed graph (link graph) which is
evaluated at each simulation step. Starting with output from sensor objects, informa-
tion is propagated along links. The behavior description code of a behavior object node
is re-executed as soon as all nodes prior to this node (along the path of links) produced
new output or at least had a chance to do so. Finally, if all graphs are evaluated, the
procedure repeats. Output is defined by objects like for example cameras, which are
part of the object pool, but are sampled asynchronously by the various renderer.

54 - 6

Fig 3. Example of event propagation

3.3 Multilanguage/multiparadigm programming

Lightning does not rely on a specific language but supports a heterogeneous, mixed-
language approach. That is, behavior objects written in, for instance, C++ can be freely
replaced by objects written in an interpreted language and vice versa, even at runtime.
So far, we have used the Tcl programming language [8] as it is easy to integrate into
other systems and as a free software package many resources and extensions. With its
self evaluating property, the "eval" command it also has an expressive power similar to
the "lambda" of Lisp or other AI languages. This enables a compact description of
high-level behavior.

3.4 Multiprocessing

Multiprocessing is provided on the device level. All devices, which have significant
differences in the update-rate are scheduled in another process. This holds basically for
all input devices. Conceptually all render modules have their own processes. The IRIS
Performer render library provides its own extended multiprocess scheme. The Appli-
cation Control Module can distribute independent subgraphs to different processes.
Often a link graph can be divided into two or more subgraphs, which are not connected
through links.

3.5 Superimposing virtual space and user space

One basic approach to designing a projection model is to achieve an exact match of
virtual and physical space. That is, the apparent size of an object should be independ-
ent of the projection system. If this is the case, the handle of a teapot would have
exactly the same size if seen on a CRT screen as if seen on a wall projection. Conse-
quently, the user can interact naturally with the teapot without the need for scaling the

UJNF

TFOTPS
UJNF

NPWF

GVODUJPO
UJNF

WJTVBM PCKFDU

QPTJUJPO

PSJFOUBUJPO

QPTJUJPO

PSJFOUBUJPO

BMXBZT HFOFSBUFT

UJNF UJDLT

JG UJNFS JOQVU IBT DIBOHFE

OFX MPDBUJPO JT

DPNQVUFE

BOE PVUQVU GJFMET BSF TFU

JG QPTJUJPO PS PSJFOUBUJPO

IBWF DIBOHFE

TFU OFX PCKFDU MPDBUJPO

54 - 7

geometry model. In Lightning the projection system is specified simply by providing a
geometric model (with exact physical dimensions) of the projection device. With this
data, the projection relations are automatically configured by the system.

Fig 4. Projection system independence of object size

Location measurement calibrations are actually also an important factor for exact spa-
tial matching. In Lightning this feature is provided on device module level.

3.6 Synchronicity

Modern virtual reality environments often consist of various modules, each operating
with different update rates. That is, they have different virtual time bases with different
granularity. It is necessary to synchronize these modules to obtain consistent or causal
system behavior. The internal use of virtual time by different parts of the system is
completely transparent. An obvious case is the synchronization of rendering: The
sound of a ping pong ball should be delivered by the acoustic renderer exactly in that
moment when the user perceives the visual sensation of the ball hitting the paddle. The
Lightning system is designed to use a mechanism to transform discrete states into a
continuous representation that is capable of serving an object state at a definite virtual
time either via interpolation or extrapolation. This mechanism links different simula-
tion modules to allow translation of different virtual time bases. The internal structure
of the interpolation/extrapolation is considered as a basic system service and therefore
it remains hidden for the application developer.

3.7 Extensibility

An important key feature of Lightning is its extensibility. All application objects are
accessible via the Tcl interface. Behavior scripts can be developed to define the func-
tionality of applications. New applications can be built completely on this layer.

54 - 8

On the core system layer we use a combination of object oriented techniques and oper-
ating system features for uncoupling the modules. Application objects inherit the inter-
face and communication properties from a base class. The communication process
operates only on base class features. The configuration and initialization communica-
tion is strictly string based to enable run time coupling.

All Lightning system libraries are so-called shared objects, which are linked at runt-
ime. This feature is used primarily for ease of maintenance. Application objects are by
default shared objects and can be accessed immediately by the Tcl interface without
coding or recompiling. This is a major advantage for the extensibility of the system.
Application objects can easily be developed; only common system interfaces have to
be included. The extension on C++ level is also independent of static linking with the
system.

4.0 Related Work

This section reviews related work on VR system architecture. There have been a lot of
proposals for augmenting visual output in VR with other media, especially for spatial
audio output. But, often caused by hardware performance limitations, very few of
them provide a common framework which uniformly integrates all media currently
available.
In VPL's Body Electric [2], users specify relations between virtual world entities and I/
O devices in a dataflow diagram editor. This dataflow approach can also be found in a

variety of similar systems such as SGI's Open Inventor(TM) [12]and VRML 2.0 [11]. A
pure dataflow approach, however, came out to insufficiently support program modu-
larity. Hence, VRML allows for defining complex object behavior within so-called
script nodes, often written in the Java programming language. As mentioned earlier,
the VRML model is very similar to our behavioral semantics system, particularly the
object pool. But the specification of VRML is not without ambiguity, so behavior
tends to depend on the actual implementation. Aimed mostly at internet applications,
existing VRML browser, by contrast, do not provide ways for flexibly accessing mod-
ern output systems such as force feedback or wall projection with tracked shutter
glasses.

Many commercially available products such as Sense 8's WorldToolKit (WTK) or
Division's dVS system provide good support for most visual and acoustic output con-
figurations, but do not include force output. They usually provide programming inter-
faces for C++ and often specifically designed interpreted languages. Other researchers
provide additional languages such as Python [9] OML [5], or, for high-level interac-
tion, Scheme [3]. Aimed at a broad range of application domains, Lightning could not
rely on a single language but had to provide means to support many existing para-
digms. The Alice system [9] also automatically separates simulation and rendering

54 - 9

into different processes. Lightning has adopted this approach, but provides a finer
granularity as both simulation and rendering processes are automatically divided into
subprocesses if more processors are available. The Avocado system of GMD [3] fol-
lows an approach similar to our system. It is based on a concept called ‘Performer with
fields’ but is closer dedicated to the IRIS performer graphics library as Lightning.

5.0 Conclusion and future work

In this paper we have shown how recent requirements affect the architecture of VR
systems. They need to take into account various i/o media and to provide ways for
defining interactions and behavior and synchronize all these modules. The VR system
Lightning has been implemented with these design issues in mind. It integrates audio
and video output and is open for other media. Its multi-language behavior specification
allows for more flexible and faster behavior prototyping. Lightning has shown its use-
fulness at various occasions in real-world applications ranging from engineering to
entertainment.

Having implemented some of the design considerations the next step is to evaluate the
performance. Next steps include research of the physiological and cognitive aspects of
the perception of time, to be able to adapt system behavior better to the user. Further-
more the system should behave dynamically such that objects have weight and elastic-
ity because it seems to be considerable useful to help user to interact more intuitively.

6.0 References

[1] Astheimer, P., Dai, F., Göbel, M., Kruse, R., Müller, S., Realism in Virtual Real-
ity, Artificial Life and Virtual Reality, ed. by N. Magenat-Thalman and D. Thal-
man, 1994.

[2] Adachi, Y., Kumano, T., Ogino, K., Intermediate Representation for Stiff Virtual
Ob-jects, Proc. IEEE VRAIS, Research Triangle Park, N. Carolina 1995.

[3] Hasenbrink F., Avocado system, Unpublished White Paper, GMD Department
Visualisation and Media Systems Design, (Bonn St. Augustin 1997), (see http://
viswiz.gmd.de/?hase/Avocado.html)

[4] Blanchard, C., Burgess, S., Harvill, Y., Lanier, J., Lasko, A., Obermann, M., Tei-
tel, M., Reality built for two: A virtual reality tool, Proc. 1990, Symp. on Interac-
tive 3D Graphics, Snow Bird, (Utah 1990).

[5] Green, M., and Halliday, S., A Geometric Modeling and Animation System for
Vitual Reality, Communications of the ACM, Vol. 39, No. 5, (May 1996).

[6] Landauer J., Blach R., Bues M., Rösch A., Simon A.: Towards Next Generation
Virtual Reality Systems, Proc. IEEE Conf. Mulitmedia Computing & System,
(Ottawa 1997)

54 - 10

[7] Mark, W. R., Randolph, S. C., Finch, M., Van Verth, J. M., and Taylor, R. M.,
Adding Force Feedback to Graphics Systems: Issues and Solutions, Proc. ACM
SIGGRAPH 96, (New Orleans 1996).

[8] Ousterhout, J., Tcl and the Tk Toolkit (Addison-Wesley, Reading, Massachusetts
1993).

[9] Pausch, R et al., A Brief Architectural Overview of Alice, a Rapid Prototyping
System for Virtual Reality, IEEE Computer Graphics and Applications, (May
1995).

[10] Rohlfs, J., Helman, J., IRIS Performer: A High Performance Multiprocessing
Toolkit for Real-Time 3D Graphics, Proc. ACM SIGGRAPH, (Orlando 1994).

[11] The Virtual Reality Modeling Language (VRML) Specification Version 2.0, ISO/
IEC CD 14772, (see http://vrml.sgi.com/moving-worlds/spec/ index.html)

[12] The Open Inventor C++ Reference Manual, (Addison-Wesley, Reading MA
1995)

[13] Schraft et al.: A Fuzzy Controlled Rendering System for Virtual Reality Systems
Optimized by Genetic Algorithms, Proc. 2nd Eurographics Workshop on Virtual
Environments, (Springer, Wien, 1995)

[14] Azuma R, Bishop G.: A Frequency-Domain Analysis of Head-Motion Prediction,
Proc. ACM SIGGRAPH 95, (Los Angeles 1995).

