
Journal of Mobile Multimedia, Vol. 11, No. 3&4 (2015) 263–280
c⃝ Rinton Press

A FLEXIBLE READ-WRITE ABORTION PROTOCOL TO

PREVENT ILLEGAL INFORMATION FLOW AMONG OBJECTS

SHIGENARI NAKAMURA DILAWAER DUOLIKUN MAKOTO TAKIZAWA

Department of Advanced Sciences, Hosei University
3-7-2, Kajino-cho, Koganei-shi, Tokyo, 184-8584, Japan

nakamura.shigenari@gmail.com dilewerdolkun@gmail.com makoto.takizawa@computer.org

TOMOYA ENOKIDO

Faculty of Business Administration, Rissho University
4-2-16, Osaki, Shinagawa, Tokyo, 141-8602, Japan

eno@ris.ac.jp

In information systems, types of objects like multimedia objects are manipulated in var-

ious applications like mobile systems. Here, information in objects may flow to another
object. Suppose a transaction reads data in an object o1 and then writes data to another
object o2. If a transaction reads the data in the object o2, the transaction can read data
in the object o1 even if the transaction is not granted a read access right on the object

o1. Here, the transaction illegally reads data in the object o2. Here, information in the
object o1 might illegally flow to the object o2. A transaction illegally writes data to an
object after illegally reading data in some object. In addition, we consider a suspicious
object whose data is not allowed to flow to another object. A transaction suspiciously

reads data in a suspicious object. A transaction impossibly writes data to an object after
reading the data in a suspicious object. Write-abortion (WA) and read-write-abortion
(RWA) protocols to prevent illegal information flow are already proposed in our pre-
vious studies. In the WA protocol, a transaction is aborted once issuing an illegal or

impossible write operation to an object. Read operations are meaninglessly performed
since the read operations are undone due to the abortion of the transaction. In the RWA
protocol, a transaction is aborted once issuing an illegal read or impossible write opera-

tion to an object. Here, read operations to be performed after an illegal read operations
are lost since a transaction is aborted just on issuing an illegal read operation. In this
paper, we newly propose a flexible read-write abortion (FRWA) protocol to reduce the
number of meaningless and lost read operations. Here, a transaction is aborted with

some probability if the transaction illegally reads data in an object. We evaluate the
FRWA protocols compared with the WA and RWA protocols. We show the execution
time of each transaction in the FRWA protocols is shorter than the WA protocols and
more number of read operations can be performed in the RWA protocols.

Keywords: Illegal write; Suspicious read; Impossible write; Meaningless read; Lost read;

Information flow control; Flexible read-write-abortion (FRWA) protocols;

1 Introduction

In information systems, types of objects, e.g. multimedia objects are manipulated by various

types of applications like mobile systems. Data like traffic data obtained through sensors in

mobile devices are written to databases. Thus, types of information flow from an object to

another object. In the basic access control model [6], a subject s like a user is first granted

an access right ⟨o, op⟩ and then is allowed to manipulate an object o in an operation op. In

263

264 A Flexible Read-Write Abortion Protocol to Prevent Illegal Information Flow among Objects

secure systems, only an authorized subject s can manipulate an object o in an authorized

operation op. In the RBAC model [7, 16, 18], a role is a set of access rights. In the role-based

access control (RBAC) model, a role is a set of roles. A subject is granted roles. Suppose

a subject a is allowed to read data in a file object f and write data to a file object g, and

another subject b is not allowed to read data in the file object g while allowed to read the file

object f . Here, the subject a reads data x in the file f and then writes the data x in the file

g. The subject b can get the data x from the file g even if the subject b is not allowed to read

data in the file f . If the subject b writes data to another file object h. We have to prevent

illegal information flow among objects. Here, the data x illegally flow from the file f to the

object h. The legal information flow relation (ri ⇒ rj) from a role ri to a role rj is defined in

papers [5, 11, 13]. This means, no illegal information flow occur even if any transaction with

the role rj manipulates objects after a transaction with the role ri.

In order to make a system secure, information flow among objects has to be controlled

[1, 2, 6, 8, 10, 18, 20]. Suppose a transaction T1 with a role r1 reads an object o1 and writes

an object o2. Here, some data in the object o1 might be written in the object o2. Then,

a transaction T2 with a role r2 reads the object o2. By reading data in the object o2, the

transaction T2 might get some data in the object o1. If the transaction T2 is not allowed

to read data in the object o1, the transaction T2 illegally reads data in the object o2. In

addition, we consider a suspicious object. Here, data in a suspicious object is not allowed to

flow to another object [12, 14]. A transaction suspiciously reads data in a suspicious object.

A transaction impossibly writes data to an object if the transaction writes data to the object

after reading data in a suspicious object.

Write-abortion (WA) [12, 14] and read-write-abortion (RWA) [15] protocols to prevent

illegal information flow are discussed. In the WA protocols, a transaction is aborted only if

the transaction illegally or impossibly writes an object. Read operations performed after the

illegal read are meaningless since the transaction is aborted once a write is performed. In the

RWA protocols, a transaction is aborted only if the transaction illegally reads or impossibly

writes data in an object. No read operation is performed after an illegal read operation is

performed even if no write operation is performed in a transaction. The read operations which

cannot be performed after an illegal read operation are lost. In order to reduce meaningless

and lost read operations, we newly propose a flexible read-write-abortion (FRWA) type of

protocol in this paper. Here, a transaction is aborted if the transaction issues an illegal or

impossible write operation to an object as well as the WA and RWA protocols. In addition,

a transaction is aborted with some probability ap once issuing an illegal read operation. We

evaluate the FRWA protocols compared with the WA and RWA protocols in terms of the

number of transactions aborted and numbers of meaningless and lost read operations. In the

FRWA protocols, more and fewer numbers of transactions are aborted than the WA protocols

and RWA protocols, respectively. However, the FRWA protocols imply smaller numbers of

meaningless read and lost read operations than the WA and RWA protocols, respectively.

This means, the execution time of each transaction is shorter in the FRWA protocols than

the WA protocols. In addition, a more number of read operations can be performed in the

FRWA protocols than the RWA protocols.

In section 2, we overview related studies. In section 3, we discuss information flow relations.

In section 4, we discuss the FRWA protocols to prevent illegal information flow. In section 5,

S. Nakamura, D. Duolikun, T. Enokido, and M. Takizawa 265

we evaluate the FRWA protocols.

2 Related Studies

Subjects like users and transactions issue operations to objects like files and databases. Let S

and O be sets of subjects and objects in a system, respectively. Let OP be a set of operations

on objects. Each object o supports read (rd) and write (wr) operations. A subject issues a

transaction T which is a sequence of read and write operations on objects.

An access rule ⟨s, o, op⟩ means that a subject s is allowed to manipulate an object o in

an operation op in the basic access control (BAC) model [6]. A pair ⟨o, op⟩ is an access right

or permission. A subject s is allowed to manipulate an object o in an operation op only if the

subject s is granted an access right ⟨o, op⟩. Otherwise, the subject s cannot manipulate the

object o.

In the role-based access control (RBAC) model [7, 16, 18], each role r is modeled to be

a set of access rights. A subject is granted a role r. Each person plays a role r in a society,

e.g. a president role in a company and professor role in a university. Each role r shows what

a subject who plays the role r can do in a society. Let R be a set of roles in a system, R ⊆
O × OP . A subject s issues a transaction T [9] to manipulate objects. The subject s assigns

the transaction a subset of roles granted to the transaction T . The subset is referred to as

purpose [4, 19] of the transaction T .

In order to prevent illegal information flow, the lattice-based access control (LBAC) model

[17] is proposed. Here, every entity, i.e. subject or object belongs to a security class. Let

SC be a set of security classes. An information flow relation from a security class sc1 to a

security class sc2 (sc1 → sc2) is defined, → ⊆ SC × SC. This means, information of a class

sc1 is allowed to flow to an entity of a class sc2. Based on the information flow relation, access

rules are defined. Suppose a subject s and an object o belong to security classes sc1 are sc2,

respectively. The subject s can read data in the object o if sc2 → sc1 and can write data to

the object o if sc1 → sc2.

In the papers [3, 4, 5], the role-based locking (RBL) protocols and schedulers are discussed

to prevent illegal information flow to occur by performing transactions in the RBAC model.

The scheduler of transactions is also discussed where transactions issued by subjects with

roles are ordered so that illegal information flow do not occur [3].

3 Information Flow Relations

3.1 Information flow on objects

There are two types of write operations, full write and partial write operations. In a full

write operation, every attribute of an object o is updated. On the other hand, only some

attributes of an object o are updated in a partial write. A state of an object is changed if

a transaction writes data to the objects. A system state is a collection of states of objects.

Thus, a system state is changed if a transaction is performed. By performing a transaction T

which reads data in an object o1 and writes data to another object o2, data in the object o1
might be copied in the object o2. That is, information flow occur from objects to objects by

performing transactions. We consider a suspicious type of secure object [12, 14]. An object

oi is suspicious iff any data in the object oi cannot be copied in any other object [12, 14].

266 A Flexible Read-Write Abortion Protocol to Prevent Illegal Information Flow among Objects

[Definition] An object oi flows to an object oj (oi → oj) in a system state if and only if (iff)

one of the following conditions is satisfied:

1. A transaction writes data to an object oj after reading data in an object oi.

2. For some object ok, oi → ok and ok → oj .

A cone C(oi) of an object oi is defined to be a subset {oj | oj → oi} of objects. Data of

an object oj in a cone C(oi) might flow to an object oi. A cone C(oi) of each object oi is

changed each time a transaction writes data to an object oi. If some transaction fully writes

data to an object oj in a cone C(oi), the object oj is not included in the cone C(oi) of every

object oi, i.e. oj → oi does not hold. Even if a transaction partially writes data to an object

oj , the cone C(oi) of every object oi where oj → oi includes the object oj .

3.2 Information flow relations on roles

Let R be a set of roles in a system. Let In(ri) and Out(ri) be sets of objects in which data

are allowed to be read and written, respectively, by a subject granted a role ri, i.e. In(ri) =

{o | ⟨o, rd⟩ ∈ ri} and Out(ri) = {o | ⟨o, wr⟩ ∈ ri}. A pair of roles ri and rj are equivalent

(ri ≡ rj) iff In(ri) = In(rj) and Out(ri) = Out(rj). A role ri flows to a role rj (ri → rj) iff

Out(ri) ∩ In(rj) ̸= ϕ. A role ri is compatible with a role rj (ri ⇀ rj) iff ri ̸→ rj .

[Definition]

1. A role ri legally flows to a role rj (ri ⇒ rj) iff one of the following conditions holds:

(a) In(ri) ̸= ϕ, ri → rj , and In(ri) ⊆ In(rj).

(b) For some role rk, ri ⇒ rk and rk ⇒ rj .

2. A role ri illegally flows to a role rj (ri 7→ rj) iff ri → rj but ri ̸⇒ rj .

A pair of roles ri and rj are legally equivalent with each other (ri ⇔ rj) iff ri ⇒ rj and rj
⇒ ri. Suppose a pair of subjects si and sj are granted roles ri and rj , respectively, and ri 7→
rj . If the subject sj reads data in an object oi after the subject si writes data to the object

oi, the subject sj might obtain data in the object oi in which the subject sj is not allowed to

read data.

The least upper bound (lub) ri ∪ rj of a pair of roles ri and rj is a role rk such that ri
⇒ rk and rj ⇒ rk and there is no role rh such that ri ⇒ rh ⇒ rk and rj ⇒ rh ⇒ rk. The

greatest lower bound (glb) ri ∩ rj is a role rk such that rk ⇒ ri and rk ⇒ rj and there is no

role rh such that rk ⇒ rh ⇒ ri and rk ⇒ rh ⇒ rj . For a subset Ri of the role set R, the

least upper bound ∪ Ri is ∪ri∈Ri ri. The greatest lower bound ∩ Ri is ∩ri∈Ri ri. A role ri
is maximal iff there is no role r in a role subset Ri such that ri ⇒ r and r ̸⇒ ri. A role ri is

minimal iff there is no role r in Ri such that r ⇒ ri and ri ̸⇒ r. Here, max(Ri) and min(Ri)

are subsets of maximal and minimal roles in Ri, respectively.

[Definition] [11, 13] Let Ri and Rj be subsets of the role set R (Ri ⊆ R, Rj ⊆ R).

1. Ri legally flows into Rj (Ri ⇒ Rj) iff for every role ri in Ri and every role rj in Rj , ri
⇒ rj or ri ⇀ rj .

2. Ri illegally flows to Rj (Ri 7→ Rj) iff Ri ̸⇒ Rj .

It is noted Ri ⇒ Rj iff max(Ri) ⇒ min(Rj).

S. Nakamura, D. Duolikun, T. Enokido, and M. Takizawa 267

3.3 Illegal, suspicious, and impossible operations

We define types of read and write operations based on the information flow relations.

[Definition]

1. A transaction T illegally reads data in an object oi iff there is some object oj in the

cone C(oi) whose access right ⟨oj , rd⟩ is not granted to the transaction T .

2. A transaction T suspiciously reads data in an object oi iff oi is suspicious or there is

some suspicious object oj in the cone C(oi).

3. A transaction T illegally writes data to an object oi iff the transaction T writes data to

the object oi after illegally reading data in some object.

4. A transaction T impossibly writes data to an object oi iff the transaction T writes data

to the object oi after suspiciously reading data in some object.

We consider a transaction T writes data to an object oj after reading data in another

object oi. Suppose the object oi is suspicious. Here, the transaction T impossibly writes data

to the object oj since the transaction T suspiciously reads data in the object oi. Next, the

transaction T is not granted a read access right ⟨ok, rd⟩ on some object ok. Suppose some

transaction writes data to an object oi after reading data in an object ok. Here, the object

ok is included in a cone C(oi). Here, the transaction T illegally reads data in the object oi
and then illegally writes data to the object oj .

Fig. 1. Information flow on objects.

A transaction T is a sequence of read and write operations on objects. An operation op1
precedes another operation op2 (op1 →T op2) iff op1 is performed before op2 in a transaction

T . The precedent relation →T shows an execution sequence of operations in a transaction T .

[Definition]

1. A read operation rd is meaningless in a transaction T iff ir →T rd for some illegal or

suspicious read operation ir and there is some write operation wr such that rd →T wr.

268 A Flexible Read-Write Abortion Protocol to Prevent Illegal Information Flow among Objects

2. A read operation rd is performed after an illegal or suspicious read operation ir and

some write operation wr is performed after the read operation rd.

3. A read operation rd is performed after an illegal or suspicious read operation ir and no

write operation is performed after the read operation rd.

4. A read operation rd is lost in a transaction T iff ir →T rd for some illegal or suspicious

read operation ir and there are no write operation wr1 and wr2 such that ir →T wr1
→T rd and rd →T wr2.

A read operation rd is safe iff there is no write operation wr such that rd →T wr in a

transaction T .

Suppose there are nine objects o1, . . ., o9 and a pair of transactions T1 and T2 as shown

in Figure 1. Here, the cone C(o2) of an object o2 is assumed to include an object o5. We

also assume the transaction T1 is not allowed to read data in the object o5. We assume an

object o7 is suspicious. The transaction T1 first reads data in the object o1 and then reads

data in the object o2. Here, the transaction T1 illegally reads data in the object o2 since the

transaction T1 is not allowed to read data in the object o5 in the cone C(o2). After that, the

transaction T1 reads data in an object o3. Then, the transaction T1 illegally writes data to an

object o4 since the transaction T1 has illegally read data in the object o2. The read operation

on the object o3 is meaningless.

Next, the transaction T2 writes data to the object o6 and suspiciously reads data in the

object o7. Then, the transaction T2 reads data in the objects o8 and o9, and commits. The

read operations on the objects o8 and o9 are lost. Every read operation is safe since no write

operation is performed after the read operation.

4 Synchronization Protocols

4.1 Types of synchronization protocols

In order to prevent illegal information flow among objects, types of synchronization protocols

are proposed, the write abortion (WA) [12, 14] and read-write abortion (RWA) [15] synchro-

nization protocols. In the WA protocol, a transaction is aborted once issuing an illegal write

operation to an object.

[WA protocol]

Read: A transaction T reads data in an object oi.

Write: If a transaction T issues an illegal or impossible write operation to an object oi, the

transaction T is aborted. Otherwise, the transaction T writes data to the object oi

Figure 2 shows a state transition diagram of the WA protocols. Here, rd, wr, ir, and sr

show events that read, write illegal read, and suspicious read operations are issued, respec-

tively. In the WA protocols, a transaction is not aborted even if the transaction issues an

illegal read operation to an object. A transaction is aborted if the transaction issues an illegal

or impossible write operation to an object.

In the RWA protocols, a transaction is aborted only if the transaction issues an illegal

read or impossible write operation to an object.

[RWA protocol]

S. Nakamura, D. Duolikun, T. Enokido, and M. Takizawa 269

Fig. 2. State transition diagram of the WA protocols.

Read: If a transaction T issues an illegal read operation to an object oi, the transaction T is

aborted. Otherwise, the transaction T reads data in the object oi.

Write: If a transaction T issues an impossible write operation to an object oi, the transaction

T is aborted. Otherwise, the transaction T writes data to the object oi.

Fig. 3. State transition diagram of the RWA protocols.

Figure 3 shows a state transition diagram of the RWA protocols. A transaction is aborted

once issuing an illegal read operation to an object. A transaction is aborted once issuing an

write operation to an object after suspiciously reading data in a suspicious object.

In Figure 4, a pair of transactions T1 and T2 are performed in the WA and RWA protocols,

respectively. Suppose the read operation rd2 is illegal in the WA and RWA protocols. In the

270 A Flexible Read-Write Abortion Protocol to Prevent Illegal Information Flow among Objects

Fig. 4. Meaningless and lost read operations.

WA protocols, the read operations rd3 and rd4 are meaningless since the transaction is aborted

when the transaction T1 issues the illegal write operation wr5. In the RWA protocols, the

transaction T2 is aborted on issuing the illegal read operation rd2. Here, the read operations

rd3, rd4, and rd5 are lost. Since the transaction T2 issues no write operation, no illegal

information flow occur even if the read operations rd2, rd3, rd4, and rd5 are performed.

As shown in this example, meaningless read operations are performed in the WA protocols

and lost read operations are not performed in the RWA protocols. In the WA protocols,

read-oriented operations are efficiently performed since read transactions are not aborted.

However, meaningless read operations are performed. In the RWA protocols, write-oriented

operations are efficiently performed since write transactions are not aborted. However, read

operations are lost, i.e. not performed.

We newly propose a flexible read-write-abortion (FRWA) type of protocol in order to reduce

the number of meaningless and lost read operations in this paper.

[FRWA protocol]

Read: If a transaction T issues an illegal read operation to an object oi, the transaction T is

aborted with probability ap. Otherwise, the transaction T reads data in the object oi.

Write: If a transaction T issues an illegal or impossible write operation to an object oi, the

transaction T is aborted. Otherwise, the transaction T writes data to the object oi.

Figure 5 shows a state transition diagram of the FRWA protocols, where ap shows the

abortion probability. In the FRWA protocols, a transaction is aborted with abortion prob-

ability ap if the transaction issues an illegal read operation to an object. In addition, a

transaction is aborted if the transaction issues an illegal or impossible write operation to an

object. If ap = 0, the FRWA protocol is the same as the WA protocol. If ap = 1, the FRWA

protocol is the same as the RWA protocol.

Table 1 summarizes the properties of WA, RWA, and FRWA protocols.

S. Nakamura, D. Duolikun, T. Enokido, and M. Takizawa 271

Fig. 5. State transition diagram of the FRWA protocols.

Table 1. Summary of the WA, RWA, and FRWA protocols.

illegal read suspicious read illegal write impossible write
WA ◦ ◦ × ×
RWA × ◦ − ×
FRWA △ ◦ × ×

× : abort, ◦ : non-abort, △ : abort or non-abort, − : not occur.

272 A Flexible Read-Write Abortion Protocol to Prevent Illegal Information Flow among Objects

There are two types of synchronization protocols, RBS (role-based synchronization) and

OBS (object-based synchronization) on how to check if a read operation is illegal.

In the RBS protocol, a transaction T and an object oi hold sets T.R and oi.R of roles,

respectively [11, 13]. The role sets T.R and oi.R are manipulated as follows:

1. Initially, oi.R = ϕ for every object oi; Initially, T.R = T.P for every transaction T ;

2. If a transaction T writes data to an object oi, oi.R = oi.R ∪ T.R;

3. If a transaction T reads data in an object oi, T.R = T.R ∪ oi.R;

A transaction T is referred to as hold a role r if r ∈ T.R. An object oi holds a role r if r

∈ oi.R.

Suppose a transaction T issues a read operation to an object oi. It is checked if the read

operation is illegal by using the role sets oi.R and T.R. If oi.R 7→ T.R, the transaction T

illegally reads data in the object oi as discussed.

In the OBS protocol, a transaction T and an object oi hold sets T.O, T.C, and oi.C of

objects, respectively [12, 14]. The object sets T.O, T.C, and oi.C are manipulated as follows:

1. Initially, oi.C = ϕ for every object oi; Initially, T.O = T.C = ϕ for every transaction T ;

2. If a transaction T fully writes data to an object oi, oi.C = T.C ∪ T.O;

3. If a transaction T partially writes data to an object oi, oi.C = oi.C ∪ T.C ∪ T.O;

4. If a transaction T reads data in an object oi, T.C = T.C ∪ oi.C and T.O = T.O ∪ {oi};

A transaction T is referred to as hold an object oj if oj ∈ T.C. An object oi holds an

object oj if oj ∈ oj .C.

Suppose a transaction T issues a read to an object oi. It is checked if the read operation

is illegal by using the object and role sets oi.C. and T.P . If oi.C 7→ In(T.P), the transaction

T illegally reads data in the object oi as discussed.

4.2 Implementation

We discuss how to implement the WA, RWA, and FRWA protocols. In the protocols, the

following variables are manipulated for each transaction T and each object oi:

1. T.P = purpose of the transaction T , i.e. collection of roles assigned to the transaction

T .

2. T.R = set of roles, initially ϕ.

3. T.O = set of objects in which the transaction T reads data.

4. T.C = ∪oj∈T.OC(oj), set of objects in cones of objects which the transaction T reads.

5. oi.R = set of roles, initially ϕ.

6. oi.C = cone C(oi) of the object oi which is a set of objects, initially ϕ.

S. Nakamura, D. Duolikun, T. Enokido, and M. Takizawa 273

Each variable is implemented in a bitmap. In the variables T.O, T.C, and oi.C, the ith

bit shows an object oi (i = 1, . . . , n). If an object oi is included in the variable, the ith bit

is 1 else 0. In the variables T.P , T.R, and oi.R, the jth bit shows a role rj (j = 1, . . ., rn).

If a role rj is in the variable, the jth bit is 1 else 0. For a pair of bitmaps B1 and B2, B1 ∪
B2 shows a disjunction of B1 and B2.

First, we would like to present how a transaction T reads and writes data in an object oi.

We consider how to implement a write operation. As presented before, there are a pair of full

write (fwrite) and partial write (pwrite) operations. write (oi) shows a basic write operation

on an object oi.

[RBS fwrite (T , oi)] oi.R = T.R; write (oi);

[RBS pwrite (T , oi)] oi.R = oi.R ∪ T.P ; write (oi);

[OBS fwrite (T , oi)] oi.C = T.C; write (oi);

[OBS pwrite (T , oi)] oi.C = oi.C ∪ T.C; write (oi);

In the RBS type of protocol, if a transaction T writes data to an object oi, the roles of the

transaction T are recorded in the variable R of the object oi. In the OBS type of protocol,

objects in which the transaction T reads data are recorded in the variables T.C and T.O of

the transaction T . In addition, the cones of the objects are recorded in the variable T.C. If

the object oi is fully written, the variables oi.R and oi.C are replaced with the variables T.R

and T.C, respectively. If the object oi is partially written, roles and objects recorded in the

variables oi.R and oi.C are added to the variables T.R and T.C, respectively.

Next, we consider a read operation on an object oi. Here, read (oi) shows a basic read

operation on an object oi.

[RBS read (T , oi)] T.R = T.R ∪ oi.R; read (oi.);

[OBS read (T , oi)] T.O = T.O ∪ {oi}; T.C = T.C ∪ {oi} ∪ oi.C; read (oi);

In the RBS type of protocol, roles oi.R recorded in the object oi are recorded in the

variable T.R of the transaction T . In the OBS type of protocol, objects oi.C recorded in the

object oi, i.e. the cone C(oi) are recorded in the variable T.C of the transaction T .

A transaction T checks if a read operation is illegal and a write operation is impossible as

follows:

[RBS ilread (T , oi)] If oi.R 7→ T.R, true;

[OBS ilread (T , oi)] If oi ̸∈ In(T.P) for some object oi in oi.C, true.

In an RBS type of protocol, the information flow relation on the roles in the variables oi.R

and T.P are checked. If information flow from the object oi to the transaction T is illegal, i.e.

oi.R 7→ T.R, the read operation is illegal. By analyzing every role, an illegal flow relation ri
7→ rj is found for some pair of roles ri and rj . The illegal flow relation is realized in a matrix

LIF where LIF[i, j] = 1 if ri ̸→ rj , else 0.

In an OBS type of protocol, every object in the cone C(oi) of the object oi is checked. If

a transaction is not allowed to read data in some object in the cone C(oi), the read operation

on the object oi is illegal.

A transaction T checks if a write operation on an object oi is impossible or suspicious by

the following functions:

[impwrite (T , oi)] If an object oj in T.C is suspicious, true;

[spread (T , oi)] If an object oi is suspicious, a transaction T is marked suspicious.

The WA and RWA protocols are implemented as follows;

274 A Flexible Read-Write Abortion Protocol to Prevent Illegal Information Flow among Objects

[WA-RBS protocol]

Read: if RBS ilread (T , oi), mark (T);

RBS read (T , oi);

Write: if T is marked illegal or impwrite (T , oi), abort (T);

RBS write (T , oi);

[WA-OBS protocol]

Read: if OBS ilread (T , oi), mark (T); else OBS read (T , oi);

Write: if T is marked illegal or impwrite (T , oi), abort (T);

OBS write (T , oi);

[RWA-RBS protocol]

Read: if RBS ilread (T , oi), abort (T); else RBS read (T , oi);

Write: if impwrite (T , oi), abort (T); else RBS write (T , oi);

[RWA-OBS protocol]

Read: if OBS ilread (T , oi), abort (T); else OBS read (T , oi);

Write: if impwrite (T , oi), abort (T); else OBS write (T , oi);

The procedure AP (T) randomly takes true or false with abortion probability ap for a

transaction T . The FRWA-RBS and FRWA-OBS protocols are implemented as follows;

[FRWA-RBS protocol]

Read: if RBS ilread (T , oi),

{if AP (T) is satisfied, abort (T) else mark(T);}
else if RBS spread (T , oi), mark (T);

RBS read (T , oi);

Write: if T is marked, abort (T);

else RBS write (T , oi);

[FRWA-OBS protocol]

Read: if OBS spread (T , oi),

{if AP (T) is satisfied, abort (T) else mark(T);}
else if OBS spread (T , oi), mark (T);

OBS read (T , oi);

Write: if T is marked, abort (T);

else OBS write (T , oi);

S. Nakamura, D. Duolikun, T. Enokido, and M. Takizawa 275

5 Evaluation

5.1 Environment

As discussed in this paper, there occur no illegal information flow in the WA, RWA, and FRWA

protocols while some transactions are aborted, meaningless read operations are performed,

and lost read operations are not performed. We evaluate the FRWA-RBS and FRWA-OBS

protocols in terms of number of transactions aborted compared with the WA, RWA, and

NBS protocols on an object set O and a role set R. The NBS protocol means a protocol

where no information flow control is implemented. Here, each transaction just reads data in

and writes data to objects and no transaction is aborted. In the WA protocols, meaningless

read operations which are not necessarily to be performed are performed. The more number

of meaningless read operations, the longer it takes to perform transactions. In the RWA

protocols, lost read operations which can be performed but can not be performed once an

illegal read operation is issued.

In the evaluation, there are n objects o1 . . . on, O = {o1, . . ., on}. Each object oi supports

read (rd) and write (wr) operations. Let µ be a ratio of the number of suspicious objects

out of n objects (0 ≤ µ ≤ 1). There is no suspicious object if the suspicious ratio µ is 0.

A number rn (≥ 1) of roles r1, . . ., rrn are defined by randomly selecting access rights on

n objects o1, . . ., on. R = {r1, . . ., rrn}. Here, mran (≤ 2n) shows the maximum number

of access rights to be included in each role ri. Each role ri is composed of ani (1 ≤ ani ≤
mran) access rights. In the evaluation, the number ani for each role ri is randomly selected

out of numbers 1, 2, . . ., mran. Then, the number ani of access rights are randomly selected

in 2n access rights ⟨o1, rd⟩, ⟨o1, wr⟩, . . ., ⟨on, rd⟩, ⟨on, wr⟩ so that no duplicate access right

is included in each role ri (i = 1, . . ., rn).

There are tn (≥ 1) transactions T1, . . ., Ttn. Each transaction Tk is a sequence of read and

write operations on objects in the object set O. Here, mtan (≥ 1) is the maximum number

of operations in each transaction Tk. Each transaction Tk is composed of tank (1 ≤ tank ≤
mtan) operations. The number tank for each transaction Tk is randomly selected out of 1, 2,

. . ., mtan. Each transaction Tk is granted one role pk which is randomly selected in the role

set R. Each operation op on an object oi is randomly selected in the role pk of the role set

R, i.e. ⟨oi, op⟩ ∈ pk so that duplicate operations may be included. Here, an operation type

op is randomly selected in rd and wr. Let ρ be a ratio of the number of read operations to

the total number of operations. In addition, for each write op, full and partial write types are

randomly selected, i.e. the ratios of full write operations and partial write operations are (1

- ρ) / 2.

A sequence T of the transactions T1, . . ., Ttn are serially performed on the object set O

given the role set R in the WA, RWA, FRWA, and NBS protocols. In the NBS protocol, if a

transaction reads data in an object, there might occur illegal information flow as discussed.

Let nir be the number of illegal read operations and npw be the number of impossible write

operations. npw shows how much illegal information flow occurs from suspicious objects. Let

t rabort and t oabort be numbers of transactions aborted in the RBS type and OBS type of

protocols, respectively, where t shows a type of synchronization, t ∈ {WA, RWA, FRWA}.
In the evaluation, first, a collection R of roles r1, . . ., rrn are generated by randomly

selecting access rights on the objects o1, . . ., on, R = {r1, . . ., rrn} for given numbers n of

276 A Flexible Read-Write Abortion Protocol to Prevent Illegal Information Flow among Objects

objects and rn of roles. Then, a sequence T of the tn transactions T1, . . ., Ttn are generated by

randomly selecting operations and objects on the object set O with the role set R for a given

number mtan of transactions. Here, 10 ≤ mtan ≤ 200. The sequence T of the transactions

are serially performed on the object set O in the protocols.

We randomly create a role set R and a transaction sequence T on the object set O three

hundreds times for each mran. For a given role set R and each of the WA, RWA, FRWA,

and NBS protocols, the transaction sequence T is performed five hundreds times. Then, we

calculate the average values of t-rabort, t-oabort, nif, and npw for the RBS, OBS, and NBS

protocols, respectively, where t stands for WA, RWA or FRWA protocols.

5.2 Evaluation results

First, the abortion probability ap of each transaction T is 1 / 2 in the FRWA protocols. Once

issuing an illegal or suspicious read operation to an object, a transaction is aborted with

probability 1 / 2. The WA, RWA, FRWA, and NBS protocols are evaluated on a role set R

and a transaction sequence T .

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 50 100 150 200

R
a
ti

o
 o

f
tr

a
n

s
a
c
ti

o
n
s
 a

b
o

rt
e
d

Number tn of transactions

RWA-RBS

FRWA-RBS

RWA-OBS

FRWA-OBS

WA-RBS

WA-OBS

Fig. 6. Number of transactions aborted for µ = 0.1 and ρ = 0.5.

Figure 6 shows the ratios of the number of transactions aborted to the total number tn

of transactions where suspicious ratio µ = 0.1 and read ratio ρ = 0.5 in the WA, RWA, and

FRWA protocols. The number of transactions aborted in the FRWA protocols is fewer than

the RWA protocols but more than the WA protocols. For example, about 20% and 32% of

the transactions are aborted in the WA-OBS and RWA-OBS protocols, while about 26% of

the transactions are aborted in the FRWA-OBS protocol for one hundred transactions (tn =

100).

In the WA protocols, meaningless read operations are performed since transactions are not

aborted even if the transactions issue illegal read operations. Figure 7 shows the ratios of the

number of meaningless read operations in the WA and FRWA protocols for suspicious ratio µ

= 0.1 and read ratio ρ = 0.5. In the WA and FRWA protocols, the number of meaningless read

operations increases as the number tn of transactions increases. The number of meaningless

read operations in the FRWA protocols is fewer than the WA protocols. For example, about

S. Nakamura, D. Duolikun, T. Enokido, and M. Takizawa 277

 0

 0.05

 0.1

 0.15

 0.2

 0 50 100 150 200

R
at

io
 o

f
m

ea
n
in

g
le

ss
 r

ea
d
s

Number tn of transactions

WA-RBS

WA-OBS

FRWA-RBS

FRWA-OBS

Fig. 7. Number of meaningless read operations for µ = 0.1 and ρ = 0.5.

11% and 14% of read operations are meaningless in the WA-OBS and WA-RBS protocols,

while about 8% in the FRWA-RBS protocol for one hundred transactions tn = 100. In the

FRWA-OBS protocol, the ratio of meaningless read operations is the smallest in the protocols.

The number of meaningless read operations in the FRWA-OBS protocol is about 43% and

55% of the WA-RBS and WA-OBS protocols, respectively. This means, transactions are more

efficiently performed in the FRWA protocols than the WA protocols since a fewer number of

read operations, i.e. meaningless read operations are performed in the FRWA protocols than

the WA protocols.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200

R
a
ti

o
 o

f
lo

s
t

re
a
d
s

Number tn of transactions

RWA-RBS

RWA-OBS

FRWA-RBS

FRWA-OBS

Fig. 8. Number of lost read operations for µ = 0.1 and ρ = 0.5.

In the FRWA protocols, some read operations which can be performed without illegal

information flow are not performed, i.e. lost read operations since transactions are aborted

once issuing illegal read operations. Figure 8 shows the ratios of the number of lost read

operations in the RWA and FRWA protocols for suspicious ratio µ = 0.1 and read ratio ρ

278 A Flexible Read-Write Abortion Protocol to Prevent Illegal Information Flow among Objects

= 0.5. In the RWA protocols, the number of lost read operations increases as the number

of transactions increases. In the FRWA-RBS protocol, the number of lost read operations

decreases as the number tn of transactions increases. In the FRWA-OBS protocol, the number

of lost read operations does not change even if the number tn of transactions increases. There

are fewer number of lost read operations in the FRWA protocols than the RWA protocols. For

example, about 22% and 29% of read operations are lost in the RWA-OBS and RWA-RBS

protocols, while about 5% are lost in the FRWA-RBS protocol for one hundred transactions

(tn = 100). In the FRWA-OBS protocol, the number of lost read operations is the smallest.

In the RWA protocols, there are more number of lost read operations which can be performed

but are not performed due to transaction abortion than the FRWA protocols.

In the Table 2, the abortion ratio of transactions and numbers of meaningless read opera-

tions and lost read operations are summarized. The more number of transactions are aborted

in the FRWA protocols than the WA protocols. However, the execution time of each transac-

tion is shorter in the FRWA protocols than the WA protocols since there are a fewer number

of meaningless read operations. The number of lost read operations which can be performed

but is not performed in the FRWA protocols are fewer than the RWA protocols. This means,

more number of read operations can be performed in the FRWA protocols than the RWA

protocols.

Table 2. Meaningless and lost read operations.

protocols abortion ratio meaningless read lost read
WA △ ◦ −
RWA ⋄ − ◦
FRWA ◦ △ △

− : not exist, △ is smaller than ◦ (△ < ◦), ◦ < ⋄.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.2 0.4 0.6 0.8 1

R
at

io
 o

f
m

ea
n
in

g
le

ss
 a

n
d
 l

o
st

 r
ea

d
s

Abortion probability ap

RBS-0.75

RBS-0.5

OBS-0.75

OBS-0.5

RBS-0.25

OBS-0.25

Fig. 9. Number of meaningless and lost read operations for tn = 100 and µ = 0.1.

We measure the total number of meaningless and lost read operations in the FRWA proto-

cols. The smaller number of meaningless and lost read operations, the better in terms of the

S. Nakamura, D. Duolikun, T. Enokido, and M. Takizawa 279

performance. We discuss how the number of meaningless and lost read operations changes

as the abortion probability ap changes. Figure 9 shows the ratios of the number of meaning-

less and lost read operations to the total number of read operations in the FRWA-RBS and

FRWA-OBS protocols for read ratio ρ = 0.25, 0.5, 0.75 with the number of transactions tn =

100 and suspicious ratio µ = 0.1. The number of meaningless and lost read operations is the

smallest where the abortion probability is about 0.3 to 0.5 for any read ratios ρ. For example,

the ratio of meaningless and lost read operations is minimum with abortion probability ap =

0.41 in the FRWA-OBS protocol for read ratio ρ = 0.5. In the FRWA protocols, we can take

the abortion probability ap is 0.3 to 0.5 for any read ratio ρ.

6 Concluding Remarks

In this paper, we discussed how to prevent illegal information flow on the role-based access

control (RBAC) model. In our previous studies [12, 14, 15], the WA-RBS, WA-OBS, RWA-

RBS, and RWA-OBS protocols are proposed where illegal information flow is prevented by

aborting transactions. In the WA protocols, a transaction is aborted once issuing an illegal

or impossible write operation. A transaction is not aborted even if the transaction issues an

illegal read operation to an object. In the RWA protocols, a transaction is aborted only if the

transaction issues an illegal read operation or impossible write operation to an object. In this

paper, we newly proposed the FRWA-RBS and FRWA-OBS protocols where a transaction is

aborted with some probability if the transaction issues an illegal read operation to an object.

In the evaluation, the number of transactions aborted in each type of the FRWA protocols is

fewer than the RWA protocols but larger than each type of the WA protocols. A fewer number

of meaningless read operations are issued in the FRWA protocols than the WA protocols.

This means, the execution time of each transaction is shorter in the FRWA protocols than

the WA protocols. In addition, a fewer number of lost read operations are issued in the

FRWA protocols than the RWA protocols. That is, a more number of read operations can

be performed than the RWA protocols in the FRWA protocols. We also showed the abortion

probability ap can be taken 0.3 − 0.5.

Acknowledgements

This work was supported by JSPS KAKENHI grant number 15H0295.

References

1. J. Bacon, D. Eyers, T. F. J. -M. Pasquier, J. Singh, I. Papagiannis, and P. Pietzuch (2014),
Information Flow Control for Secure Cloud Computing, IEEE Transactions on Network and Service
Management, Vol.11, No.1, pp.1-14.

2. D. E. R. Denning (1982), Cryptography and Data Security, Addison Wesley, 400 pages.
3. T. Enokido and M. Takizawa (2009), A Legal Information Flow (LIF) Scheduler Based on Role-

based Access Control Model, International Journal of Computer Standard and Interfaces, Vol.31,
No.5, pp.906-912.

4. T. Enokido and M. Takizawa (2010), A Purpose-based Synchronization Protocol for Secure In-
formation Flow Control, International Journal of Computer Systems Science and Engineering,
Vol.25, No.2, pp.25-32.

5. T. Enokido and M. Takizawa (2011), Purpose-based Information Flow Control for Cyber Engi-
neering, IEEE Transactions on Industrial Electronics, Vol.58, No.6, pp.2216-2225.

280 A Flexible Read-Write Abortion Protocol to Prevent Illegal Information Flow among Objects

6. E. B. Fernadez, R. C. Summers, and C. Wood (1980), Database Security and Integrity, Addison
Wesley, 319 pages.

7. D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli (2007), Role-based Access Control (2nd ed.),
Artech, 381 pages.

8. K.-S. Fisher-Hellmann (2012), Information Flow Based Security Control Beyond RBAC, Springer
Vieweg, 159 pages.

9. J. Gray and A. Reuter (1993), Transaction Processing: Concepts and Techniques, Morgan Kauf-
mann, 1070 pages.

10. C. Hammer and G. Snelting (2009), Flow-sensitive, Context-sensitive, and Object-sensitive Infor-
mation Flow Control Based on Program Dependence Graphs, International Journal of Information
Security, Vol.8, No.6, pp.399-422.

11. S. Nakamura, D. Duolikun, and M. Takizawa (2015), Read-abortion (RA) Based Synchronization
Protocols to Prevent Illegal Information Flow, Journal of Computer and System Science, Vol.81,
No.8, pp1441-1451.

12. S. Nakamura, D. Duolikun, T. Enokido, and M. Takizawa (2015), A write abortion-based protocol
in role-based access control systems, International Journal of Adaptive and Innovative Systems,
Vol.2, No.2, pp.142-160.

13. S. Nakamura, D. Duolikun, A. Aikebaier, T. Enokido, and M. Takizawa (2014), Role-based In-
formation Flow Control Models, Proc. of IEEE the 28th International Conference on Advanced
Information Networking and Applications (AINA-2014), pp.1140-1147.

14. S. Nakamura, D. Duolikun, A. Aikebaier, T. Enokido, and M. Takizawa (2014), Synchronization
Protocols to Prevent Illegal Information Flow in Role-based Access Control Systems, Proc. of In-
ternational Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2014),
pp.279-286.

15. S. Nakamura, D. Duolikun, A. Aikebaier, T. Enokido, and M. Takizawa (2014), Read-Write Abor-
tion (RWA) Based Synchronization Protocols to Prevent Illegal Information Flow, Proc. of Inter-
national Conference on Network-Based Information Systems (NBiS-2014), pp.120-127.

16. S. Osborn, R. S. Sandhu, and Q. Munawer (2000), Configuring Role-Based Access Control to
Enforce Mandatory and Discretionary Access Control Policies, ACM Transactions on Information
and System Security, Vol.3, No.2, pp.85-106.

17. R. S. Sandhu (1993), Lattice-based Access Control Models, IEEE Computers, Vol.26, No.11, pp.9-
19.

18. R. S. Sandhu (1996), Role-based Access Control Models, IEEE Computers, Vol.29, No.2, pp.28-47.
19. M. Yasuda, T. Tachikawa, and M. Takizawa (1998), A Purpose-Oriented Access Control Model

for Information Flow Management, Proc. of the 14th IFIP International Information Security
Conference (IFIP/SEC’98), pp.230–239.

20. N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres (2008), Securing Distributed Systems with Infor-
mation Flow Control, Proc. of the 5th USENIX Symposium on Networked Systems Design and
Implementation, pp.293-308.

