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ABSTRACT While there have been extensive studies of denial of service (DoS) attacks and DDoS attack

mitigation, such attacks remain challenging to mitigate. For example, Low-Rate DDoS (LR-DDoS) attacks

are known to be difficult to detect, particularly in a software-defined network (SDN). Hence, in this paper

we present a flexible modular architecture that allows the identification and mitigation of LR-DDoS attacks

in SDN settings. Specifically, we train the intrusion detection system (IDS) in our architecture using six

machine learning (ML) models (i.e., J48, Random Tree, REP Tree, Random Forest, Multi-Layer Perceptron

(MLP), and Support VectorMachines (SVM)) and evaluate their performance using the Canadian Institute of

Cybersecurity (CIC) DoS dataset. The findings from the evaluation demonstrate that our approach achieves

a detection rate of 95%, despite the difficulty in detecting LR-DoS attacks. We also remark that in our

deployment, we use the open network operating system (ONOS) controller running on Mininet virtual

machine in order for our simulated environment to be as close to real-world production networks as possible.

In our testing topology, the intrusion prevention detection system mitigates all attacks previously detected

by the IDS system. This demonstrates the utility of our architecture in identifying and mitigating LR-DDoS

attacks.

INDEX TERMS DDoS attack mitigation, low-rate DDoS (LR-DDoS) attacks, machine learning, software-

defined network (SDN).

I. INTRODUCTION

Low-rate denial of service (LR-DDoS) attacks is one of the

more challenging denial of service (DoS) attack types to

detect, and these attacks are designed to exhaust comput-

ing resources on servers. Unlike high-rate distributed DoS

(DDoS) attacks, an LR-DDoS attack does not flood the net-

work with high traffic loads. Instead, it carefully triggers

specific protocol mechanisms such as TCP’s timeout retrans-

mission [1], [2], congestion control [3] mechanisms, and

The associate editor coordinating the review of this manuscript and

approving it for publication was Li Zhang .

HTTP’s keep alive mechanism [4], to deplete the target’s

computing resources.

DDoS attack detection approaches can be broadly cate-

gorized into signature-based and anomaly-based approaches

[5], [6]. The former uses the identified patterns or strings from

protocol header fields as signatures to match incoming traffic

and determine if the flow is malicious (or not). In anomaly-

based approaches, a model of normal network traffic is devel-

oped and compared with incoming traffic. This allows the

classification of normal and malicious (or anomalous) traffic.

No system or approach is foolproof. For example, an attacker

can fool detection systems to gradually accept malicious traf-

fic as normal [7]. We also observe that most anomaly-based
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approaches for LR-DDoS detection are based on thresholds

[8], and one challenge associated with such an approach is

the computation of an optimal value for such parameters.

It is also challenging to deploy effective LR-DDoS attack

mitigation solutions, in practice [8]. For example, existing

solutions may require updating of the router’s firmware,

which may not be practical in a number of situations. Given

the increasing popularity of software-defined network (SDN)

[9], there have been reported LR-DDoS attacks targeting such

networks [10], [11]. SDN is a relatively new networking

paradigm, designed to facilitate the decoupling of control

and forwarding planes from network devices (e.g., routers

and switches) and provide a logically centralized control

and management entity. However, SDN can also be lever-

aged to facilitate the detection and mitigation of LR-DDoS

attacks. For example, SDN provides a programmable feature,

in which network operators can develop and deploy network

applications that run on top of the controller to provide net-

work functionality. Such features can potentially be used to

facilitate the deployment of detection and mitigation mech-

anisms for LR-DDoS attacks. Moreover, the controller pro-

vides an environment in which a vast number of programming

libraries can be used to develop networking applications.

In other words, one can utilize state-of-the-art technologies

such as machine and deep learning algorithms to enhance the

detection and mitigation of LR-DDoS attacks.

In this paper, we introduce a new versatile architecture for

LR-DDoS attack detection and mitigation in SDN environ-

ments using machine learning techniques. Specifically, this

architecture comprises an intrusion prevention system (IPS),

which will forward the flows to the intrusion detection system

(IDS) API. This will allow us to determine whether the flow

is malicious (or not). The IDSAPI will identify the flow using

one of several previously trained machine learning (ML)

models. This API is programming language and framework

independent, and hence we can use different programming

languages and frameworks to implement and train the AI

models. Once the IDS API returns the result, the IPS module

running on the controller will process the flow accordingly

to the mitigation strategy of the architecture if the flow is

determined to be an attack. In summary, in this paper:

• We present a flexible security SDN-based architecture

aimed at LR-DDoS attack detection and mitigation

through the use of multiple machine learning and deep

learning techniques.

• We implement and demonstrate the potential of the

proposed approach in detecting and mitigating several

LR-DDoS attacks, namely: DDoSSim [12], GoldenEye

[13], H.U.L.K. [14], R.U.D.Y., Slow Body, Slow Head-

ers, Slowloris, and Slow Read.

• We evaluate the performance of six machine and deep

learning techniques for LR-DDoS attacks (i.e., J48, Ran-

dom Trees, REP Tree, Random Forest, Multi-Layer Per-

ceptron (MLP), and Support Vector Machines (SVM))

in LR-DDoS attack detection and mitigation.

Our modular architecture will allow system implementers

to easily replace or enhance a module, API, or ML model

without affecting the rest of the architecture. In addition,

computationally demanding modules such as the IDS can

be located outside the controller. Moreover, the IDS com-

municates with the controller through an Identification API,

which is platform-independent. In other words, system imple-

menters can use any programming language and libraries

as needed. Another feature is that our IDS is capable of

distinguishing between anomalous and normal traffic flows

and determining the type of LR-DDoS attack being carried

out.

The rest of the paper is organized as follows. Sections II

and III respectively describe LR-DDoS attacks and sum-

marize current LR-DDoS attack detection and mitigation

approaches. Section IV describes our proposed architecture.

Section V and VI describe the evaluation setup and findings.

Specifically, we evaluate the effectiveness of our proposed

approach in detecting and mitigating the following LR-DDoS

attacks: DDoSSim, GoldenEye, H.U.L.K., R.U.D.Y., Slow

Body, Slow Headers, Slowloris, and Slow Read; using six

ML techniques (i.e., J48, Random Trees, REP Tree, Random

Forest, Multi-Layer Perceptron (MLP), and Support Vector

Machines (SVM)). Finally, the last section concludes this

paper.

II. PRELIMINARIES

This section briefly describes LR-DDoS attacks, prior to

introducing LR-DDoS detection and mitigation techniques in

the next section.

A. LOW-RATE DoS ATTACKS

Kuzmanovic and Knightly [1], [15] introduced shrew attacks,

which are a low-rate attacks targeting TCP’s retransmission

time-out mechanism in order to deny bandwidth to legitimate

TCP flows. Shrew attacks consist of carefully chosen short

malicious bursts that repeat at a fixed slow-timescale fre-

quency. The authors explained that the effectiveness of low-

rate attacks depends on the ability to create correlated packet

losses, forcing TCP to enter into retransmission timeouts.

While LR-DDoS attacks are still an ongoing concern to

highly centralized services such as cloud computing and big

data service platforms, they are less studied and reported in

comparison to DDoS attacks. This is, perhaps, as explained

by Wu, et al. [16]:

• An attacker must achieve accurate traffic synchroniza-

tion in their implementations. This complicates the

implementation of LR-DDoS attacks, in practice.

• LR-DDoS attacks are ‘integrated’ with legitimate traffic.

Thus, network operators may attribute low performance

to system equipment or line failures. In other words,

LR-DDoS attacks are not detected and hence, under-

reported.

• It is difficult to extract and analyze characteristics of

LR-DDoS attacks. To avoid panic among users, network
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operators are not reporting such attacks since there is

insufficient evidence to classify performance issues as

attacks.

LR-DDoS attacks are hard to detect since they have the

same characteristics as legitimate traffic and are hidden in

background traffic. Attacks are launched through a single

attack source and its average rate is low enough, so the num-

ber of packets sent is very small and challenging to detect.

Thus, common DDoS attack detection mechanisms are not

effective in detecting LR-DDoS attacks.

A number of researchers have also demonstrated how

the effectiveness of LR-DDoS attacks can be improved.

Li, et al. [17], for example, proposed amultiplexing technique

to fill the idle time between requests in order to enhance

LR-DDoS attacks and degrade the target system’s perfor-

mance. Zhang, et al. [18] introduced a LR-DDoS attack

aimed at border routers, specifically exploiting the transport

layer vulnerabilities of BGP. Thus, it is important to address

and provide extensible solutions to the detection and mitiga-

tion of LR-DDoS attacks in real-world networks.

A LR-DDoS can be broadly characterized by four param-

eters [19], [20], namely: Ta is the attack period (frequency

for sending malicious packets), Tb is the burst width (time

duration of the attacking pulse), Rb is the attack burst rate

(amount of traffic), and s is the starting time of the attack. This

also implies that such an attack can be identified using the

source IP and port, destination IP and port, and the protocol

used in the attack. Figure 1 shows a LR-DDoS attack with a

single source.

FIGURE 1. LR-DDoS attack model. Burst traffic (Tb) is sent to the target
every Ta seconds at a Rb B/s rate, starting at s seconds.

Generally, LR-DDoS are facilitated usingmultiple sources,

say F1,F2, · · · ,Fn for each flow. If Ta, Tb, and Rb are equal

for each flow Fi, the attack is defined as a group flow (a set

of attacks with the same target and characteristics). Combi-

nation of group flows (different parameters for each attack)

enables more disruptive attacks. Zhang, et al. [19] provided a

classification for LR-DDoS attacks:

• Attack Frequency Intensification (AFI). The distributed

attack has the same parameters but different starting

times (s). Thus, the attack has a higher frequency.

• Attack burst Width Intensification (AWI). An attack

burst is immediately followed by another attack burst.

Therefore, the total attack burst is intensified n times.

• Attack burst Rate Intensification (ARI). If two or more

flows start at the same time, the burst rate (Rb) for each

flow is aggregated.

• Mixed Intensification (MI). Complex combinations of

previous attack type categories.

B. SOFTWARE-DEFINED NETWORKING

SDN is a relatively new networking paradigm, which can help

mitigate the limitations of current switching networking by

decoupling control and data planes, formerly implemented

inside switches and routers, and enabling more flexible and

manageable environments [21]. In SDN, the control plane

is located in a logically centralized controller, which simpli-

fies policy enforcement and network configuration evolution

[22]. There are several benefits of using SDN, such as:

1) network policies are defined using high-level lan-

guages in applications instead of low-level, vendor-

specific commands;

2) application development is straightforward since the

controller provides useful network abstractions, such as

global network views, and consequently one achieves

more efficient and sophisticated control; and

3) switching devices become multi-purpose devices

because they follow flow rules provided by the control

layer.

Figure II-B provides an architectural view of SDN.

FIGURE 2. SDN architectural view.

The fundamental principles of the SDN architecture are as

follows:

1) the decoupling of physical and logical layer in network-

ing devices, allowing each layer to evolve indepen-

dently, enables innovation, acceleration of new features

and services, manageability, among others;

2) devices and users should not be able to differentiate

between conventional networks and SDN; and

3) automation and runtime deployment by logically

centralizing the control plane and introducing pro-

grammable entities.

The above fundamental principles can be achieved in the

three-layer architecture presented by the Open Networking

Foundation (ONF), which is also described below:
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1) The application plane includes a variety of services

and applications such as Deep Packet Inspector (DPI),

Intrusion Detection Systems (IDS), Intrusion Preven-

tion Systems (IPS), and monitoring. They can inform

decision-making in a range of applications such as

traffic engineering, quality of service (QoS) differen-

tiation, monitoring, and routing.

2) The control plane is responsible for the management of

the underlying forwarding devices by using global net-

work knowledge and information for decision making.

It also interacts with the application plane to provide

useful information for applications.

3) The data plane includes a variety of forwarding devices

such as routers and switches. They forward packets

based on flow tables populated by the control plane.

It is also responsible for collecting network information

and statistics to be later shared with the controller.

In our work, we use a SDN-based architecture, where a

solution can be developed through an application that can

be installed in the controller for the detection and mitigation

of LR-DDoS attacks. This, in turn, makes use of the pro-

grammable nature of the network by using new technologies

such as machine and deep learning techniques to provide

robust mechanisms for detecting and mitigating LR-DDoS

attacks.

III. RELATED WORK

Xiang et al. [7] proposed a detection mechanism based on

Shannon’s entropy of information theory as well as a trace-

back mechanism to detect attackers in a local area network.

A generalized entropymetric is used as amechanism to detect

anomalous traffic. The authors assumed that malicious traffic

follows a Poisson distribution and normal traffic follows a

Gaussian normal distribution, as they argued that the entropy

value on Gaussian distributions is higher than that of the

Poisson distribution. This entropy value, an indicator of the

randomness of a variable, is then used to classify malicious

traffic from normal traffic. Also, the probabilities for the

computation of the entropy have to be defined beforehand.

Experimental results showed that the generalized entropy

metric achieves better performance than Shannon’s entropy.

However, such mechanisms for low-rate attack detection are

difficult to implement since several values have to be com-

puted beforehand and, since each network dynamics and

topology are different, such values have to be tuned for

optimal performance.

Baskar et al. [23] argued that entropy is only one of the

few feasible parameters to detect low-rate DoS attacks due

to its low computing requirements and effectiveness on the

study of flow randomness. They then proposed a framework

an adaptive IP traceback mechanism for detecting low-rate

attacks. In their architecture, an AADS device is placed

on each LAN and is responsible for detecting the attacks.

When an AADS detects a change in entropy, it communicates

with the routers to obtain information about the attacker.

The architecture was evaluated through simulation exper-

iments. However, there are several limitations in this

approach. For example, AADS network devices need to be

placed inside several networks and network traffic models

must be known beforehand to properly calculate entropy

values.

Kumawat and Meena [24] proposed a framework for

the detection and mitigation of low-rate DoS attacks based

on information entropy analysis. The framework has three

phases, namely: (1) the characterization phase calculates the

entropy of each flow and compares them with a set of prede-

fined thresholds; (2) the detection phase classifies the flow as

high-rate DoS attack if its entropy is higher than the thresh-

old for that flow, and as low-rate DoS attack if it is lower

than the threshold; and (3) the mitigation phase stops the

attack near the source. The framework was evaluated using

NS-2 (a network simulator), and achieved good results in the

mitigation phase. However, there are several drawbacks with

this approach. First, there is no clear way to determine the

thresholds for each flow as it requires an statistical study of

each flow.Moreover, the behavior in entropy of each flow can

be determined by the type of generated traffic, the communi-

cation protocol used, the communication technology, among

others. In addition, normal flows can be classified as low-rate

attacks because not all traffic is constant for the reasons stated

earlier.

Bhuyan et al. [25] provided a comparative evaluation of

several information metrics for low-rate DoS attack detection

approaches. The authors compared Hartley entropy, Shannon

entropy, Renyi’s entropy, and Generalized entropy in terms

of their ability in detecting low-rate attacks. Two datasets

were used to evaluate such metrics, namely: the MIT Lin-

coln Laboratory for normal traffic and the CAIDA DDoS

2007 for attack traffic datasets. Results showed that for low-

rate attacks, increasing the order of generalized entropy pro-

vides better results by adjusting the value of order for α in

Hα(x) =
1

1−α
log2

(
∑n

i=1 p
α
i

)

. However, entropy-based solu-

tions require large amounts of data before they can provide

good decisions.

Bhuyam et al. [26] proposed a mechanism based on cor-

relation coefficients to detect low-rate and high-rate DDoS

attacks. Correlation is important in finding linear relationship

between two variables. Specifically, partial rank correlation

is used to detect low-rate attacks. The detection mechanism

is based on the idea that malicious instances (attackers) have

correlation coefficients close to one. The mechanism uses a

correction based on two thresholds to justify whether packets

are malicious or not. Results showed that correlation between

two malicious traffic instances is strong. It is, however, not

clear if the proposed solution works when just one mali-

cious traffic instance is attacking the network. This limits its

potential.

Hoque et al. [27] introduced a statistical measure for multi-

variate data analysis to classify DDoS attack traffic from nor-

mal traffic. Three features are selected, namely: the entropy

of source IPs, their variation, and the packet size of malicious
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traffic flows. Normal traffic is used to determine the traffic’s

normal profile. The captured traffic is then compared against

the profiled traffic to classify traffic as eithermalicious or nor-

mal. However, it is not clear how the proposed metric is used

to detect low-rate attacks.

Zhang et al. [28] proposed the Congestion Participation

Rate (CPR) metric to detect and filter low-rate DoS attacks.

CPR identifies attacking flows since low-rat attacks actively

induce network congestion. CPR is designed to distinguish

between normal TCP flows and low-rate attack flows, and

it is based on the ratio of incoming packets in congestion

to the total incoming packets from certain flow. CPR can

be implemented on the front of the Random Early Detection

(RED) [29] queue management mechanism of routers. Kieu

et al. [30] extended the CPR approach based on the argument

that CPR sets a fixed threshold for low-rate attack detection,

resulting in unfair treatment of new TCP flows that still are to

achieve high throughput. The authors also proposed a method

to adapt this threshold according to whether the network is

under attack or not.

The authors in [31] used the Generalized Total Variation

metric for detecting low-rate DDoS attacks. This approach

separates legitimate traffic based on sampling values of arriv-

ing packets, where wider spacing values indicate low-rate

attacks. A value of the generalized total variation metric

between two consecutive samples, will trigger an alarm if the

value exceeds a threshold δ. Given two systems, if the first

system sends more than 500 packets in an interval of more

than one second, and the second system sends less than 5, 000

packets in less than 2 seconds, then the system is deemed

to be experiencing a multi-scale low-rate DDoS attack.

Experiments were carried using the MIT Lincoln Laboratory

(attack-free) dataset and the CAIDA DDoS 2007 dataset for

attack traffic. Results showed that this approach has a 98.57%

attack detection. However, a careful selection of the threshold

δ is essential to achieving good performance.

SDN architecture has a programmable feature, in which

network operators can develop and deploy applications that

run on top of the controller to provide network function-

ality. This makes the detection and mitigation of several

DDoS attacks easier to implement and evaluate on real net-

work deployments. Hong et al. [32] introduced the Slow

HTTP DDoS Defense Application (SHDA) that runs on top

of an SDN controller. On the detection of an incomplete

HTTP transaction and the number of open connections on

the web server exceeding a certain threshold, the SHDA

processes the packets coming from the attacker and deter-

mines based on timeouts if the particular traffic is mali-

cious or not. The SHDA installs a new flow rule that blocks

the attacker’s flow at the switch. This approach provides a

basic scheme for SDN-based mitigation techniques for low-

rate DoS attacks. However, attackers may dynamically vary

the sampling period of HTTP requests, making it difficult to

mitigate low-rate attacks based solely on timeouts.

Wu et al. [33] stated that low-rate DoS attacks cannot

pose a threat in SDN environments since the controller is a

powerful machine. However, SDN devices (e.g, OpenFlow

switches) have limited capabilities and can become a target

for such attacks. In fact, some researchers have already car-

ried out successful attacks against the limited TCAM fea-

ture of switches [34]. The TCAM is responsible for storing

flow rules dictated by applications running on top of the

controller in an SDN. Thus, the authors [33] studied four

features, namely: the amount of time a flow rule is present

in a switch, the total number of packets matched by a flow

rule, the relative dispersion of bytes between normal and

attacking flows, and the relative dispersion of packet intervals

of arrival. A Factorization Machine algorithm was used to

obtain a lineal model of the system based on the input fea-

tures described earlier. Performance was evaluated using the

NSL-KDD, DARPA98, and CAIDA datasets in a simulated

environment.

Container-based cloud services are rapidly growing due

to its ease of deployment and complete control for cus-

tomers. In traditional cloud environments, a web application

is expected to run as an independent instance on a virtual

machine. If a component of the application experiences a

DDoS attack, the entire instance is at risk. Container-based

cloud environments used alongside with microservice archi-

tectures are more effective and agile in resources usage,

providing straightforward techniques to scale. As discussed

previously, SDN allows the deployment of networks based

on software. All implementations of algorithms and proto-

cols are available as software entities instead of firmware

entities in closed-source devices. Thus, SDN and container-

based environments can be used in conjunction as virtual-

ized networking functions (NFVs), in order to provide more

robust and flexible ways of controlling resources for services.

Li et al. [35] provided a model and mitigation technique to

detect and block low-rate attacks on container-based cloud

services. They proposed the isolation into two parts of

instances, where one part controls requests from a whitelist

(legitimate traffic) and the other serves unknown requests

(both malicious and benign requests). The mitigation mecha-

nism computes the minimum resources and optimum num-

ber of containers for each trusted connection (users with

access rights). Then, resources are isolated into containers

to avoid resource competition. However, unknown requests

are a combination of malicious and normal traffic. The sys-

tem then guarantees resources for normal traffic in unknown

requests while givingminimum resources tomalicious traffic.

However, instantiating containers according to the amount of

traffic required by users affects directly in processing power

and memory consumption of the overall system.

Zhang et al. [36] provided a low-rate attack detection using

Power Spectral Density (PSD) entropy and Support Vector

Machines (SVM). They argued that PSD-entropy has low-

computation cost and improves detection and efficiency of

the system. To classify traffic, two thresholds are calculated

by computing the mean of normal traffic and the mean of

attacking traffic. If the calculated entropy is lower than the

lowest entropy, it is classified as attacking traffic. SVM is
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FIGURE 3. Our proposed framework.

used to learn traffic patterns and to select appropriate features

for the detection algorithm.

Liu et al. [8] explained that traffic volume analysis cannot

detect current stealthy low-rate DoS attacks. They then pro-

posed a deep convolution neural network (DCNN) to extract

available features automatically, and a Q-Network method

(a reinforcement learning algorithm) to detect edge low-rate

DoS attacks. Results showed that this approach can maintain

acceptable network performance in simulated environments.

Meti et al. [37] proposed using SVM and Neural Networks

(NN) as classifiers for intrusion detection and DDoS attacks

in SDN. The approach showed promising results in detecting

regular DDoS attacks for NN with 80% accuracy and 100%

precision. Similarly, Virupakshar et al. [38] evaluated the

performance of Decision Trees, K-nearest neighbor (KNN),

Naive Bayes, and Deep Neural Network (DNN) in flooding

attack detection on an OpenStack-based private cloud. Their

findings showed that KNN, Naive Bayes and DNN achieve

high accuracy, specially for DNN.

IV. ARCHITECTURAL DESIGN

We will now present our proposed framework designed

to mitigate Low-rate DDoS attacks in SDN. Specifically,

the framework decouples the detection and mitigation pro-

cesses from the network application, thus reducing pro-

cessing requirements from the controller, while being

programming language independent and technology-agnostic.

Therefore, any programming language and machine / deep

learning framework can be used to implement and train

different techniques and models to identify different types

of Low-rate DDOS attacks. Moreover, our approach allows

machine / deep learning techniques to fully utilize GPU for

faster training and classification, since such applications are

standalone processes.

As shown in Figure 3, the framework comprises two inde-

pendent systems, namely: an Intrusion Prevention System

(IPS) and an Intrusion Detection System (IDS).

The IPS consists of three sub-modules:

1) theFlowManagementmodule is responsible for detect-

ing HTTP flows for further processing;

2) the Suspicious Attackers Management manages a

blacklist of potential attackers; and

3) the Mitigation Management module generates flow

rules for malicious flow mitigation.

The IDS also consists of three sub-modules, which are

described below:

1) the Identification API provides an interface for the

interaction between the IPS and IDS systems;

2) theMLModel Selection consists of a set of trained ML

models used for flow identification, and

3) the Identification performs malicious flow classifica-

tion.

We remark that the IPS is executed on top of the ONOS

controller and the IDS is executed on a separate host (for

demonstration, we used Windows 10 in our experimental

setup). In practice, the IDS can be deployed at any remote host
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with any operating system and system libraries. However, for

optimal performance its deployment should be close to the

IPS (that runs on the top of the controller) to avoid latency

due to bandwidth limitations.

Figure 3 shows the steps of a typical scenario in which a

potential threat is mitigated:

1) The IPS is a network application running on top of the

ONOS Controller. In this stage, the Flow Management

module is responsible for installing flow rules inside

the SDN Device for HTTP header detection. The SDN

Device requires a flow rule installed in order to detect

HTTP flows and to forward them to the controller and

subsequently to the Flow Management module.

2) A flow incoming from a physical Port at the SDN

Device is matched against the flow table entry installed

by the Flow Management module, seeking for HTTP

headers. If a match exists, the SDN Device forwards

through a Secure Channel the flow to the SDN Con-

troller and later to the Flow Management module.

3) The Flow Management module creates a JSON object

with the headers from the flow to be later forwarded to

the Identification API for further inspection indicating

which ML model should be use.

4) The Identification API selects the proper model from

theML Model Selection module and forwards the flow

headers to the Identification module for classification

as an attack or normal flow. The IDS sends a proper

JSON response to the IPS on the controller.

5) The Suspicious Attackers Managementmodule keeps a

blacklist of the attackers previously identified by the

IDS. Further explanation of this module is provided

in Section IV-B. The Mitigation Management is con-

stantly looking for high values of probabilities(100%)

in the Suspicious Attackers list, in order to create the

proper flow rules for attack mitigation.

6) Finally, the previously created rules are installed inside

the SDN Device through the ONOS Controller and the

Secure Channel to mitigate a host (ab)used to carry out

the attack.

The Identification API allows researchers and operators to

implement a wide range of machine / deep learning algo-

rithms since different techniques are best suited for different

scenarios. The logical separation of the IDS from the con-

troller allows one to use different hardware architectures for

faster machine / deep learning model training and processing.

Moreover, the framework provides a reference model for

future machine / deep learning-based techniques not only for

security, but also for other network operations such as optimal

path finding in large-scale networks.

Currently, the proposed framework employs an anomaly-

based IDS, where we use a defined model of normal network

behavior (trained machine / deep learning models) in order to

detect deviations from such a model [39]. We can, however,

employ a hybrid IDS based on both anomaly and signature

approaches in order to provide a more robust identification

system. In such a scenario, the header information received

by the Identification API is extracted as signatures and is

then compared against patterns or rules and complex regular

expressions (RegEx). If no matches are found, the header

information is then processed by the anomaly-based IDS that

involves machine / deep learning techniques. The informa-

tion flows as a daisy chain process passing first through the

signature-based IDS approach and, if does not match, through

the anomaly-based IDS. Such hybrid IDS remains a topic

of ongoing research interest [40]–[43] and can further be

enhanced and tested by implementing modular architectures

such as our proposed framework.

A. IDS AND IDENTIFICATION API

The Identification API provides an interface for flow process-

ing using trained machine / deep learning models. The inter-

face defines a Classify object that performs the identification

of a Flow attribute using a Classifier. The classifier

is a string that represents the different trained ML models

available in the IDS. The flow complex object gathers flow

statistics from SDNDevices for classification as an attack or a

legitimate flow. The attributes on this flow complex object

are based on flowtbag.1 Algorithm 1 shows the process per-

formed for the classification of flows inside the IDS module.

Algorithm 1: IDS Classification Process

input : JSON request with traffic flow parameters

output: JSON response with flow classification

1 Receives a set of flow parameter inputs;

2 Selects the ML model specified in the JSON request;

3 Classifies the input parameters with the selected model;

4 if flow is classified as anomalous then

5 Detects the type of attack;

6 Creates a JSON response with the attack type as

data;

7 Sends the JSON response to the IPS;

8 else

9 Creates a JSON response with attack type as 0;

10 Sends the JSON response to the IPS;

11 end

As stated before, the framework allows the implementation

of different ML models. We were able to implement the

following algorithms to evaluate their accuracy in detecting

LR-DDoS attacks:

• J48 provided by Weka, an open source, machine learn-

ing librarywritten in Java. J48 implements C4.5 decision

trees [44] for classification;

• Random Tree provided by Weka. It considers K ran-

domly chosen attributes at each node for classification;

1https://github.com/DanielArndt/flowtbag/wiki/

features
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• REPTree provided by Weka. It builds a deci-

sion/regression tree using information gain/variance

with reduced-error pruning;

• Random Forests. Tree predictors for classification [45].

• Multi-Layer Perceptron (MLP) provided by TensorFlow

2.0 and Scikit-Learn 0.23. MLP has been proven to

provide good accuracy in detecting DDoS attacks [46];

and

• Support Vector Machines (SVM) provided by Scikit-

Learn 0.23. SVM has proven to be an effective

classification technique for DoS attacks in SDN

environments [47].

From our literature review, we observe that MLP is widely

used in several works [48]–[54] as a promising detection tech-

nique for traditional DDoS attack detection. Also, as far as we

knowMLP algorithm is ideal for tabular datasets or presented

data like those coming from our dataset. Studies like Kim and

Gofman [55] show that MLP yields better performance com-

pared to other Deep Neural Networks. Therefore, we chose

MLP for the evaluation and validation of the proposed frame-

work considering some other deep learning algorithms as

future work.

The above algorithms implemented in our architecture

were adapted to effectively identify malicious flows in

LR-DDoS attacks. As mentioned in Section I, the included

attacks in the Dataset which are later identified are listed

below:

• DDoSSim a layer 7 DDoS simulator

• GoldenEye

• H.U.L.K the HTTP Unbreakable Load King

• R.U.D.Y, R U Dead yet DoS tool

• SlowBody2

• Slow Headers

• Slowloris

• Slowread

We used the CIC DoS Dataset (2017) [56] to train the

algorithms. The Identification API returns a JSONobject with

0 if the flow is classified as legitimate, and numbers [1 − 8]

for each of the attack types listed earlier.

B. IPS AND MITIGATION STRATEGY

As we have already explained, an IDS API was initially

developed to request flows regularly and analyze them by

invoking a previously AI trained model. The flows are sent

by the Flow Management module, which also received the

reply of the IDS API. In this first version of the IPS of our

architecture, we decided to implement an efficient and not

overwhelming method that makes it easier for scalability.

Algorithm 2 shows the process of extracting features from

incoming flows.

The IDS API will return a 0 if it is a normal flow, otherwise

it will return a number that correspond to the one specific

LR-DDoS attack that was detected. Once the IDS returns an

attackmatch for a tested flow indicating that the source of this

flow could potentially be an attacker, the Flow Management

Algorithm 2: IPS Flow Management

input : Traffic flows

output: JSON request with traffic flow parameters

1 Extracts flow and header features from incoming traffic;

2 Creates a JSON request with flow and header features;

3 Sends the JSON request to the Identification API;

module forwards the information of the potential attacker to

Suspicious Attacker Management module where the source

IP address is blacklisted in a blacklist (flow drop probability

table) of potential attackers and would be added with a flow

drop probability in the control plane of 10%. If the IP address

is already in the blacklist when it is received by the Suspicious

Attacker Managementmodule then the source IP address will

increase its flow drop probability in 5% and so on. It means

that the IPSwill increment the flow drop probability in 5% for

every flow that match with an attack by the IDS. Algorithm 3

illustrates the process of mitigating an attacker.

Algorithm 3: IPS Mitigation Management

input : JSON response with flow classification

output: Flow rule

1 Extracts classification data from JSON data;

2 if flow classification is anomalous then

3 The source IP address is appended to a blacklist;

4 end

5 if source IP address already on list then

6 if source IP address probability ≥ 100 then

7 The controller issues a drop rule with the

accumulated probability of dropping the flow;

8 else

9 Increases in 5% the probability on a Flow drop

table;

10 end

11 end

Before an attacker’s IP reaches the threshold of 30% in the

flow drop probability table, the flows of that IP will be for-

warded properly preventing the blocking of legitimate hosts

that could have been identified mistakenly as an attacker.

After passing the 30% threshold, the flows of the possible

attacker will be forwarded throughout a dropping function

that will drop approximately a number of flows according

to the percentage that this IP has in the drop probability

table. It implies that this function for example will drop

approximately 6 of every 10 flows for an IP which has a flow

drop probability of 60%.

If a 100% flow drop probability is reached by a host,

the Suspicious Attacker Management module will forward

its information to theMitigation Management module where

a blocking port flow rule will be immediately created and

sent to the proper switch, dropping all flows matching that
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FIGURE 4. Experimental virtualized network topology.

IP address, and its Destination TCP/UDP port. After seven

days with manual intervention by the administrator, the rule

will expire and the host’s flow drop probability will be reset to

0%, and finally, the traffic of this host will be analyzed again.

Due to its modular design, our framework allows to locate

the IDS outside the controller in a separate hardware compo-

nent. This design decision follows the idea that the controller

should not perform complex tasks such as flow classification.

Thus, the controller only needs to focus on processing incom-

ing flows and makes decisions about those flows according

to flow rules. For this reason, in our testbed the controller

stays stable without any significant changes while running

simultaneously the IPS and IDS compared to running only

the IDS. Also, it is important to mention that the IPS does not

demand a lot of resources since the algorithm is very efficient

as shown in Algorithm 3.

V. EXPERIMENTAL SETUP

In order to evaluate the viability and the functionality of

our framework, we developed a diverse portfolio of machine

and deep learning classifiers. In this section we describe

the experimental setup and technologies used to evaluate the

performance of different ML techniques and the viability of

the framework.

A. VIRTUAL ENVIRONMENT SETUP

The SDN environment is emulated using Mininet, a helpful

tool that enables the creation of virtual network topologies.

Virtualized hosts were configured as legitimate hosts and

Web servers, where LR-DDoS attacks were launched from

other virtualized hosts. The SDNDevices (network switches)

are controlled by an ONOS Controller. Figure 5 shows a

screenshot of the initial implementation of the architecture

on the virtualized ONOS environment. We chose to use Vir-

tualBox for virtualization because the ONOS Project con-

veniently provides a dockerized ONOS environment that is

straightforward to use and ready to start the development

and deployment of projects such as the one described in

this manuscript. In this initial testbed, we can see how the

IDS API is identifying the Slow Headers attack which is

performed by two attacking clients while two other legitimate

clients are sending normal traffic flows in the same network.

The main goal of this first approach was to test the IDS

and the basic functionality. The testbed implementation was

further improved, enabling the use of different administrative

domains (different networks) as depicted in Figure 4. This

figure shows a based topology used to implement several tests

including more hosts and devices. Moreover, implementing

the proposed architecture using virtualized environments and

ONOS as the controller, allows for straightforward deploy-

ment into real network architectures, since ONOS has been

used in production environments.

As shown in Figure 3, the IPS runs on top of the ONOS

Controller whilst the IDS runs on a separate host inside the

network. The controller and the IDS communicate through

the Identification API as explained in Section IV. The

SlowHTTPTest tool is used to launch LR-DDoS attacks from

the attackers to the virtualized Web server. The IPS then

detects such flows and passes the information to the IDS

for further processing. Figure 4 depicts the network topology

employed for experimental purposes.

From Figure 4 we observe that the hosts on each of the

switches belong to different networks. The Web Server on

Switch 3 is the target of Attacking Host 1 and Attacking Host

2 belonging to Switch 1 and Switch 2 respectively. We assume

that the attacking hosts are compromised and they could

even be part of a botnet [57], where each attacking host

can generate malicious traffic using the SlowHTTPTest tool.

Legitimate Host 1 and Legitimate Host 2 generate normal

flows with a pseudo random function using curl targeting

the Web Server. All switches in the topology are being

controlled by the ONOS Controller (management address).

It is worth noting that, we opted to target Web servers for

our experimental evaluation since they are one of the most

used and vulnerable services on the Internet. Moreover, some

of the LR-DDoS attack detection mechanisms target HTTP

specifically and web servers normally have less resources

than the controller, so if the architecture is able to protect

the web servers it will be able to protect the controller

as well.
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FIGURE 5. Initial experimental implementation. The controller is detecting the SlowHeaders attack (highlighted in red) from attacking clients.

Once the topology is setup, the Legitimate Host 1 and

Legitimate Host 2 start to send normal traffic. At the same

time, the Attacking Host 1 starts sending LR-DDoS attacks

while the Attacking Host 2 starts by sending legitimate traffic

and after a while it becomes an attacker and starts attacking

as well with the Attacking Host 1 to create a LR-DDoS attack.

During the attack we used different kind of attacks provided

by SlowHTTPTest utiliy (such as Slowloris, Slow headers,

R.U.D.Y., etc.). Reactive Forwarding is enabled on the ONOS

Controller for packet forwarding between network switches.

Furthermore we tested some other testbed settings by increas-

ing the number of hosts and devices in the architecture, where

the framework shows an stable and acceptable performance.

B. DATASET

Traditional DoS/DDoS attacks are characterized by a high

volume of application-layer requests. On the other hand,

low-volume or LR-DDoS attacks employ minimal traffic

transmitted strategically. While there are a small number of

publicly available datasets, namely the NSL-KDD, CAIDA,

and CIC DoS 2019 datasets, only the 2017 CIC DoS dataset

[56] captures LR-DDoS attacks. The NSL-KDD dataset

focuses mainly on remote to local, user to root and general

DDoS attacks, while CIC DoS 2019 dataset includes reflec-

tion and exploitation DoS attacks.

TABLE 1. Dataset number and percentage of flows by type.

We also need data to train the models, and therefore a

compilation of data flows with both normal traffic and LR-

DDoS attacks are used. Specifically, we used the CIC DoS

Dataset (2017) [56], which contains regular traffic (labeled

as normal) and eight low rate attack variations. The features

source IP, destination IP, ports, and protocol are removed

from the original dataset since they do not add relevant

information about the LR-DDoS attacks. Moreover, the orig-

inal dataset consists of packets over a conventional network,

and flowtbag was used to convert the packet data as flow

data, to adapt the dataset to an SDN environment. Flowtbag

takes as input a set of packets with 44 features, and outputs

flows with the same 44 features. Table 1 shows the distribu-

tion of the different types of traffic available in the dataset.
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Readers interested in the complete list and description are

referred to [58].

C. HYPERPARAMETER OPTIMIZATION

Two different approaches for hyperparameter optimization

were used depending on the ML techniques. The random

search technique gathers samples from the search space and

evaluates sets from a specified value-range with a uniform

probability distribution. It was also used to find the optimal

values for parameters as activation functions, maximum num-

ber of iterations, and the size of hidden layers. The gradient

search technique uses an exhaustive search for every possi-

ble value of every given combinations. The combination of

random and grid searches are used to train the parameters of

each classifier, the general training parameters including all

the algorithms are shown in Table 2.

TABLE 2. Optimal training parameters.

Further optimizations on SVM include the training of

different kernels, including linear, polynomial, Radial Basis

Function (RBF), and Sigmoid kernel using a subset of the

dataset. RBF kernel classifier is selected since it shows better

accuracy score. Table 3 shows results for SVM accuracy

using different kernels. For MLP we found the best perfor-

mance using 30 epochs, five layers (one input, three hidden,

one output)

TABLE 3. SVM accuracy score.

It is worth noting that we also implemented algorithms

such as a Simple 3-layer Neural Network and AdaBoostM1,

which did not achieve acceptable performance. Thus, such

algorithms are not included in evaluation performance

testing.

VI. FINDINGS

Wewill now describe the findings from the evaluations based

on the setup described in Section V. Each algorithm is eval-

uated in terms of accuracy, false alarm rate, precision, recall,

and F1-measure. An ideal IDS should achieve high accuracy,

precision, recall, and F1-measure with low false alarm rate.

Accuracy is computed as follows:

Accuracy =
TP+ TN

TP+ TN + FN + FP
(1)

In the above equation, true positive (TP) denotes the cor-

rectly classified malicious flow, true negative denotes the

correctly classified normal flow, false negative (FN) is the

incorrectly classified normal flow, and false positive (FP) is

the incorrectly classified attacking flow.

False alarm rate is calculated as follows:

False Alarm Rate =
FP

TN + FP
(2)

Precision is computed as follows:

Precision =
TP

TP+ FP
(3)

Recall is calculated as follows:

Recall =
TP

TP+ FN
(4)

Finally, the F1-measure is computed as follows:

F1-measure = 2 ×
Precision × Recall

Precision + Recall
(5)

The findings of the evaluation are depicted in Table 4

and Figure 6. We can observe that in terms of LR-DDoS

attack detection, Random Forest achieves an accuracy rate

of 94.41% and false alarm rate of 3.56%, SVM with 93.1%

accuracy and 1.6% false alarm rate, and MLP with 95.01%

accuracy and 0.52% false alarm rate.

In the evaluation, we also attempted the different attacks

supported by the SlowHTTPTest tool (Slowloris, SlowHead-

ers, R.U.D.Y., etc.), and the IPS successfully blocked attacks

previously identified by the IDS. Thus, the IPS effectively

blocks attacks that previously have a 100% in the drop prob-

ability table as discussed in Section IV-B.

One can also observe that the IDS can effectively detect

whether a flow is anomalous and support attack classification

for generic (i.e., attacks outside the provided categories),

SlowBody, SlowRead, DDoSSim, SlowHeaders, GoldenEye,

R.U.D.Y., H.U.L.K. and Slowloris.

In conventional DoS and DDoS attacks, ML algorithms

generally seek for patterns to classify flows as mali-

cious or legitimate. Due to the nature of LR-DDoS attacks,

DL algorithms such as MLP appear to perform better

since their hidden layers allow for features (e.g., connec-

tion duration and memory footprint) to be used to inform

classification.

Moreover, our findings described in this section show that

the proposed framework is robust and flexible in LR-DDoS

attack detection and mitigation. The IDS being the most
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TABLE 4. Performance metrics by algorithm.

FIGURE 6. (a) Accuracy estimation results by algorithm. (b) Evaluation metric results.

processing-intensive module is located outside the SDNCon-

troller. In other words, the IDS is isolated from the controller,

and therefore performing at rates close to an inline, hardware-

based IDS since such module can be executed as a virtualized

component with NFV or as a hardware-based component.

VII. CONCLUSION AND FUTURE WORK

LR-DDoS attacks are likely to remain a threat to our systems,

particularly those that are centralized (e.g., cloud computing

platforms). In this paper, we designed and implemented a

modular and flexible security architecture to detect and mit-

igate LR-DDoS attacks in SDN environments. The modu-

larity of the design allows one to easily replace any module

without affecting the other modules of the architecture. The

IDS module in our architecture is designed to detect flows

using different previously trained ML models, which can be

developed using different programming languages and frame-

works. Findings from the evaluations of the six different ML

algorithms using the CIC DoS dataset reported an accuracy

rate of 95%. We also deployed our architecture using a real

virtualized environment using Mininet virtual machine over

VirtualBox and the ONOS controller. We also used the (com-

plex) ONOS controller since this controller is widely used in

production environments and specially in datacenters, in our

evaluations so that the results can easily migrate to a real-

world production environment. In our deployment, we used

two different topologies and demonstrated that all attacks

previously identified by the IDS were successfully mitigated.

In the future, we intend to extend this work to include

newer ML and deep learning techniques, with the aim of

improving the performance for example against other attacks.

In order to provide amore robust evaluation of the framework,

we plan to include more deep learning algorithms as they

yield promising results on LR-DDoS attack detection. For

example to improve the mitigation strategy, can we use statis-

tical filters such as Exponentially Weighted Moving Average

(EWMA) [59] and Kalman filters [60] to facilitate decision

making in terms of flow rule installation. The goal of such

techniques is to avoid blocking legitimate users when the

false positive rate increases. In terms of scalability, we also

plan to include a selective testing mechanism of flows from

the IPS to the IDS. Such an approach is likely to be interoper-

able with big network topologies and real-world production

networks in datacenters.
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