
A Flexible Software
Architecture for Hybrid

Tracking

Miguel Ribo*
Christian Doppler Laboratory for
Automotive Measurement Research
Graz University of Technology
Schiessstattg.14B, A-8010 Graz, Austria
e-mail: ribo@emt.tugraz.at

Markus Brandner and Axel Pinz
Institute of Electrical Measurement and
Measurement Signal Processing
Graz University of Technology
Schiessstattg.14B, A-8010 Graz, Austria
e-mail: brandner@emt.tugraz.at,

pinz@emt.tugraz.at

Received 4 November 2003; accepted 4 November 2003

Fusion of vision-based and inertial pose estimation has many high-potential applications
in navigation, robotics, and augmented reality. Our research aims at the development of
a fully mobile, completely self-contained tracking system, that is able to estimate sensor
motion from known 3D scene structure. This requires a highly modular and scalable soft-
ware architecture for algorithm design and testing. As the main contribution of this paper,
we discuss the design of our hybrid tracker and emphasize important features: scalability,
code reusability, and testing facilities. In addition, we present a mobile augmented reality
application, and several first experiments with a fully mobile vision-inertial sensor head.
Our hybrid tracking system is not only capable of real-time performance, but can also be
used for offline analysis of tracker performance, comparison with ground truth, and
evaluation of several pose estimation and information fusion algorithms.
© 2004 Wiley Periodicals, Inc.

*To whom all correspondence should be addressed.
Contract grant sponsor: Christian Doppler Laboratory for Automotive Measurement Research; Contract grant sponsor: Mobile Collabo-
rative Augmented Reality project; Contract grant number: P14470-INF Contract grant sponsor: Tracking with Smart Sensors project;
Contract grant number: P15748; Contract grant sponsor: Visual Active Memory Processes and Interactive REtrieval project; Contract
grant number: IST-2001-34401.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
Journal of Robotic Systems 21(2), 53–62 (2004) © 2004 Wiley Periodicals, Inc.
Published online in Wiley InterScience (www.interscience.wiley.com). • DOI: 10.1002/rob.10124



54 • Journal of Robotic Systems—2004
1. INTRODUCTION

Fusion of vision-based and inertial pose estimation
will play an important role in future high-potential
mobile applications. Sensors are complementary, and
no external signals are required. Forthcoming techno-
logical developments will lead to very compact mo-
bile devices that will be used in navigation, aug-
mented reality, and mobile communication, as well as
on autonomous mobile platforms.

Many individual system components have to in-
teract in real-time for a fully autonomous vision-
inertial pose computation. Success has been reported,
on hybrid and even on purely vision-based tracking,
for cases where a carefully prepared environment can
be assumed,1 when the environment is simple and
can be well controlled,2 when there is a limited
amount of sensor motion or a limited number of de-
grees of freedom,3 when few objects are tracked,4 or
when many artificial landmarks can be placed in the
scene.5,6 As soon as natural landmarks have to be
tracked, and when the scene gets more complex
(changes in illumination, cluttered scene, occlusions,
other moving objects obscuring the stationary back-
ground, outdoor applications) it is our experience
that currently existing tracking algorithms tend to be-
come more fragile and to break down every now and
then. In summary, we have two reasons for the de-
velopment of a new, flexible software architecture for
hybrid real-time tracking:

Handling of many individual system compo-
nents: CCD cameras, CMOS cameras, several camera
interfaces (framegrabbers, firewire, USB), inertial
sensors, additional sensors (compass, GPS), 2D image
feature extraction, 2D prediction, 3D pose from 2D
features, 3D pose from stereo, Kalman filter, inertial
sensor raw data gathering, inertial pose computation,
time stamps for individual sensor readings, target se-
lection, etc. For many of these components, several
different sensors, algorithms, and implementations
may be available. Individual components have to be
compared, replaced, and tuned. Other components,
which are not required during real-time operation,
but should be also integrated into the framework, are
sensor calibration, pose initialization, logging of time
stamps, and synchronized sensor raw data stream for
offline analysis.

Testing, debugging, error handling: Whenever
the real-time operation breaks down, it should be
possible to do a detailed offline analysis of the case.
Besides the data logging mode listed above, we re-
quire the access to all the individual modules to iso-
late a problem and to study the interaction between
modules. It should be possible to process logged and
time-stamped data in the identical manner as for real-
time operation. For rapid prototyping, it would be
desirable to have identical functionality, but slower
execution times, on a development platform, e.g.,
MATLAB.

1.1. Related Work

Purely vision-based approaches to tracking and self
localization have been reported in the literature. The
XVision system7 was designed to allow for fast and
easy implementation of vision-based tracking experi-
ments. It consists of an object oriented class design
which is extendable and reusable. Concerning real-
time tracking, XVision has introduced a windowing
method to control processing time spent during fea-
ture computation. The V4R system as part of the
ROBVISION project2 is able to track a camera head’s
pose given a 3D CAD model. Tomasi and Kanade8 de-
scribe a feature tracker based on examining the mini-
mum eigenvalue of each 2 by 2 gradient matrix.
Multi-resolution tracking allows for even large dis-
placements between images. These systems have
been reported to perform well within the environ-
ments they have been designed for. However, they
are subjected to the limitations of vision based
tracking.

Hybrid systems using vision and some sort of
complementary sensors would allow us to alleviate
the shortcomings of a vision-based tracking system.
Azuma et al.9 present a hybrid system combining
gyro, compass, and tilt sensor. You et al.10 report
about an inertial/optical hybrid using a two-channel
complementary motion filter. Two extended Kalman
filters (EKF) sharing a common state prediction mod-
ule are used. Jung and Taylor11 present a system ca-
pable of estimating the affine trajectory given a struc-
ture from motion algorithm applied to a certain
number of key frames and an inertial sensor.
Naimark and Foxlin6 use a system consisting of a
vision-based fiducial tracker and an inertial sensor. In
a Kalman filter based algorithm they are able to both
fuse the sensor information and to incorporate a map-
building process.

2. HYBRID TRACKER SOFTWARE ARCHITECTURE

From the previous section it is clear that hybrid track-
ing systems are needed to provide stable and precise
pose readings in environments different from a con-
trolled laboratory or indoor scene. The requirement



Ribo, Brandner, and Pinz: Software for Hybrid Tracking • 55
of being able to rapidly prototype tracking applica-
tions and to conduct experiments led us to the design
of a flexible software architecture for hybrid tracking
applications. HT (hybrid tracker) is a set of object ori-
ented C++ classes that have been designed using
UML. HT’s design was focused on the following key
requirements:

Sensor classes: HT is capable of interfacing a va-
riety of traditional camera interfaces such as firewire,
USB, and selected framegrabbers. In addition, the de-
sign includes features to deal with nontraditional
sensors such as CMOS cameras utilizing their ran-
dom pixel-access capabilities and logarithmic pixel
response. Apart from vision sensors, HT offers inter-
faces to inertial sources such as accelerometers and
gyroscopes.

Scalability, Flexibility: Different applications re-
quire different configurations of vision and inertial
sensors. HT’s class structure is flexible enough to pro-
vide run-time configuration. Thus, setup information
such as sensor calibration data, sensor configuration,
and tracker configuration can be set at run-time. HT
supports XML configuration files to aid this task.

Reusability: HT is planned as a long-term project
with ongoing support by members of our research
group. Thus, the design supports the separation of
different modules into libraries which in turn can be
maintained and developed further individually. The
reusability of source code is a major design goal.

Complexity: The basic functionality offered by
HT is designed to be lightweight in terms of compu-
tational complexity. The HT framework provides in-
terfaces between different modules but does not incur
unnecessary CPU power.

2.1. The HT Environment

Figure 1 gives an overview on the environment of the
proposed HT design. The output of the tracking ap-
plication is a stream of pose information (either self-
pose of vision sensors and/or pose of distinct objects
within a vision sensor’s view). At system startup HT
loads the sensor configuration and builds up the
tracker class hierarchy. During the tracking process, a
constant exchange of target data and corresponding
features between the target selector and the tracker
takes place (see discussion below for details). An ad-
ministrator interface provides online status informa-
tion, logging, and parameter tuning.

2.2. Hybrid Tracking in HT

The basic entity within HT is the HybridUnit (see Fig-
ure 2) which is built up of a VisionUnit and an Iner-
tialUnit. Each unit is assigned a coordinate system the
relative poses of which are determined during a cali-
bration process. A sensor reading of an individual vi-
sion or inertial sensor within a given coordinate sys-
tem can be transformed to the coordinate system of
the base class by means of appropriate member
functions.

In order to reflect the physical properties of dif-
ferent inertial sources such as accelerometers (i.e.,
sensor pose w.r.t. the InertialUnit’s coordinate system)
an InertialUnit is modeled as aggregation of Iner-
tialSensors. Similarly, a VisionUnit consists of one
(mono-view) or more (stereo- and multiview, respec-
tively) VisionSensors. A VisionSensor is in control of a
physical vision sensor (e.g., camera plus grabber). For
every feature type (e.g., blobs, fiducials, corners) a
separate FetaureTrackerController is instantiated which
is responsible for tracking of features of the given
type. The VisionSensor controls the camera access and

Figure 1. Overview of the hybrid tracking system.

Figure 2. Subtree of HT’s UML class diagrams. A
HybridUnit consists of an aggregation of an InertialUnit
and a VisionUnit. The correspondence search between
model and test features takes place at the VisionUnit level.



56 • Journal of Robotic Systems—2004
can, therefore, avoid multiple readouts of a given re-
gion through different calls of the assigned feature
trackers.

2.3. Treating Complexity: Target Selection

For any vision-based tracking algorithm that is re-
quired to autonomously initialize and recover from
feature loss, the complexity of underlying search-
spaces is a limiting factor for real-time operation. The
HT design defeats its real-time capabilities via two
distinct approaches:

Stateful Tracker Design: Within HT every visual
feature involved in the tracking process carries an as-
sociated feature state. Figure 3(a) depicts the possible
states and transitions of a single feature in 2D. Init-
features are used to recover distinct areas of the input
image (i.e., after feature loss). They are also used to
identify potential search areas that are delivered by
the correspondence module to enhance tracking per-
formance (e.g., to avoid ill-posed feature configura-
tions prior to computing the pose). During normal
tracking operation a feature is either locked, i.e., has
been successfully found within the current frame, or
searching, i.e., was found in previous frames but has
been lost since then. The feature state is propagated
through HT’s class hierarchy resulting in states for
features in 3D (prior to the correspondence module)
and states of corresponding model and test feature
pairs (after the correspondence module). Given states
of corresponding features the correspondence mod-

Figure 3. Possible states within HT: (a) depending on the
result of the last tracker run, each feature is assigned a
distinct state. (b) Feature states are propagated upwards
within the class hierarchy and result in different states of
the correspondence module.
ule itself is state driven. If enough model features and
test features are found to correspond during the
current frame, the correspondence module switches
from the reset to the verify state. Thus, during further
tracking frames no new correspondence search is
initialized, rather the current correspondence is
verified. This process is of considerably lower
complexity.

Target Selection: In order to make the HT design as
independent of its field of application as possible we
decided to separate the tracking process from the tar-
get selection process (see Figure 1). Each vision sen-
sor in the HT application is assigned a Target Selector
which at a constant (but lower than framerate) rate
delivers the set of features that are visible to the cor-
responding sensor. This process is similar to deliver-
ing a CAD model to the tracker as is done by the V4R
application. However, the target selection not only
takes into account the pose of the vision system but
also the context of the application running the tracker.
In the case of an augmented reality system this could
be the introduction or removal of a new interaction
device (such as a handheld PC) to the field of view of
the vision sensor. In addition, HT provides the pos-
sibility to deliver features to the target selector that
are not already stored within the database (map
building) and to refine feature attributes (e.g., pose
w.r.t. world coordinates).

2.4. Sensor Fusion

In HT data fusion of vision and inertial sensors takes
places in the HybridUnit. The design of our tracking
system does not restrict the fusion algorithm to be of
any distinct type. Thus, the HybridUnit serves as a
pose source to both the InertialUnit and the Vision-
Unit. This gives HT the possibility to correct sensor
offsets in the case of inertial sensors and to utilize the
inertial pose during a prediction step for the vision-
based tracker.

2.5. Debugging HT

A number of test applications (see Section 4) have
been implemented using the proposed HT design.
However, HT is still under development which
makes a proper debugging interface extremely im-
portant. The design of HT allows us to both process
live input data (inertial sensor data and vision data)
and to play-back previously stored experiments.
Therefore, main classes in HT provide debugging in-
put and output interfaces (e.g., video output, inertial
data stream, pose streams, . . . ).



Ribo, Brandner, and Pinz: Software for Hybrid Tracking • 57
Figure 4. Processing of a simple facade. (a) Corner features tracked by the HT application, (b) augmented view of the
scene.
2.6. Real-Time Tracking

The HT project is implemented on a standard Linux
platform. We have run first experiments using a real-
time kernel (Linux Real-Time Application Interface—
RTAI). This platform enables us to run distinct parts
of the HT application as a real-time process with guar-
anteed response times and latencies. We are currently
investigating the use of AnyTime algorithms and a
specialized tracker scheduling policy which prevents
the vision-based tracker from spending too much
time processing features that do not contribute to the
tracking accuracy.

3. MOBILE AUGMENTED REALITY APPLICATION

The major current application of our tracking system
is in mobile augmented reality (AR). While many so-
lutions have been presented for indoor tracking, lim-
ited user motion, and prepared rooms, fully mobile
tracking of natural landmarks (indoor and outdoor)
still poses a challenge for current tracking systems. In
ref. 12 we describe initial experiments with our hy-
brid tracker for a simple (backyard of an office build-
ing) and for a complex (historic city center) urban
scene. The hybrid tracker works for a 13.5 s sequence
in the simple scene, but fails for the complex scene.
Figure 4 shows a frame from the backyard scene, the
extracted ‘‘promising features to track’’ (mostly cor-
ners of the windows), and the resulting simple aug-
mentation of the scene as it is perceived by the user.
Figure 5 shows the current state of our mobile AR
setup, which consists of two subsystems. The tracking
subsystem runs on a single-board PC with interfaces to
a camera and an inertial tracker, which are mounted
to the user’s helmet. Hybrid tracking delivers six de-
grees of freedom of head pose at rates of approxi-
mately 100 Hz. The visualization subsystem consists of
a laptop with 3D graphics acceleration and a see-
through head-mounted-display (HMD). The HMD
delivers virtual 3D graphics as stereo video streams
which are blended with the user’s natural perception
of the real scene using semitransparent mirrors. An
additional firewire webcam is mounted at the front of
the helmet and connected to the laptop. This camera
can be used (but was not used in our current experi-
ments) for 3D human–computer interaction, e.g.,
tracking of an interaction pad and pen, as described
in ref. 13. There are many exciting applications of mo-
bile outdoor AR: architectural visualization, city
guide, maintenance support, navigation, rescue and
emergency operations, to name just a few. Most of
these applications require a reliable continuous track-
ing with high accuracy, low jitter, and no lag. Tracking
requirements become even more stringent for mul-
tiuser AR scenarios, where several mobile users re-
quire an augmented perception which is consistent in
space and time.

4. FIRST EXPERIMENTS AND RESULTS

We employ point-based visual pose estimation, so
that point-like visual features have to be extracted
from the individual 2D image frames. We have ex-
perimented with several visual targets (from infrared



58 • Journal of Robotic Systems—2004
Figure 5. AR gear prototype. (a) Backpack with laptop and tracking PC. (b) Close-up of the helmet with inertial sensor
(back), camera, and head mounted display (HMD).
LED blobs to ‘‘natural landmarks’’ like the corners of
the windows in Figure 4). Figure 6 shows the type of
features which were used for the experiments de-
scribed below: Figure 6(a) shows three targets, each of
them carrying seven individual simple corner fea-
tures. The arrangement of these corners helps in iden-
tifying each target by a combination of two cross-
ratios (see ref. 14). The design of our fiducial features
[Figure 6(b)] that carry the position of the blob in 2D
and a fiducial code for unmistakable identification
was inspired by Naimark and Foxlin6 but has been
adapted to provide more robust recognition under
strong perspective distortion. Furthermore, our de-
tector has been extended to deal with the logarithmic
characteristic of certain types of CMOS cameras (e.g.,
Fuga 1000 sensor).

4.1. Vision-Based Pose Estimation

After successful 2D localization and identification of
point features on a target object, point-based pose es-
timation can be performed, which is commonly done
by solving the perspective n-point problem (PnP).15 A
perspective vision model that assumes the projection
of a 3D object onto a 2D image plane through a pin-
hole camera model is used. As a result, the minimum
value of n that produces a finite number of solutions
is three, although up to four solutions are possible.
Four coplanar and non-collinear points give a unique
solution. Four or five non-coplanar and non-collinear
points give two solutions. For n greater than five non-
collinear points, the result is unique and consists of
an overdetermined set that can be solved using least
squared error techniques. In general, as n increases,
the accuracy of the pose estimation increases.

The pose algorithm used in our system is the one
proposed by Lu et al.16 The authors show that the
pose estimation problem can be formulated as a met-
ric error minimization based on collinearity in object
space. As a result, they are able to derive an algorithm
that operates by successively improving an estimate
of the rotation (of the pose) and then estimates an as-
sociated translation. The proposed method is itera-
tive, but it is efficient and robust. Moreover, when the
system computes a valid pose, we use this informa-
tion as prior initialization for the next pose



Ribo, Brandner, and Pinz: Software for Hybrid Tracking • 59
Figure 6. Different types of features used during our experiments: (a) corner features and (b) fiducial features.
computation. In this way, we improve the pose’s ac-
curacy and we reduce the computational costs.

For the evaluation of the system’s self-
localization abilities the results of the inside-out
tracker (vision-based) were compared to the results
obtained by an outside-in tracker1 with the following
experimental setup (see Figure 7): The outside-in
tracker consisting of an IR sensitive stereo camera
pair and IR light sources determines the pose of the
camera by tracking IR reflectors mounted on the cam-
era. The camera performs inside-out tracking and es-
timates its pose relative to the corner targets. The
comparison of the trajectories recorded by the
outside-in and the inside-out system is shown in Fig-
ure 8. Though neither corner targets nor IR targets are
measured at high precision, the mean absolute error
is approximately 1 cm which results in an absolute
value of the error relative to the distance below 0.5%.

Beside the PnP-based pose estimation following
Lu et al.16 we have also implemented a combination
of Fischler and Bolles15 and Lu et al.16 (see ref. 14),
and the method proposed by Ansar and Daniilidis.17

Moreover, thanks to the modularity and the flexibility
of HT, all implemented pose estimation algorithms
can be compared (e.g., speed versus accuracy) in a
straightforward and intuitive manner.

4.2. Pose Estimation with Inertial Sensors

Inertial tracking systems compute the relative change
in position �pn and orientation �qn from the appear-
ing acceleration and angular velocity in the moving
target (‘‘moving-frame’’) with respect to an inertial
(acceleration free) reference coordinate system
(‘‘reference-frame’’). With a known absolute start po-
sition p0 and start orientation q0 the actual absolute
position pn and orientation qn is further determined
(see Figure 9). The parameter set (pn ,qn) is called the
pose at time n .

We have developed our own custom inertial
tracker which provides higher update rate and better
synchronization, but we also use the commercially
available Xsens MT9 tracker, which provides updates
at 100 Hz using a serial interface. Both inertial track-
ers are supported in HT, and can be used in a trans-
parent way (i.e., loading an appropriate XML con-
figuration file).

In the experimental setup our custom inertial
tracker was used in conjunction with a vision-based

Figure 7. Sketch of the experimental setup: comparison
of the outside-in versus hybrid inside-out tracker.



60 • Journal of Robotic Systems—2004
tracker that served as a ground-truth at a rate of 30
Hz. The inertial tracker rate was 500 Hz with drift up-
dates at a rate of 10 Hz. Translation and rotation ex-
periments were done. The translation experiments
were carried out manually while the rotation experi-
ments were performed with a pan-tilt unit that allows
for a controlled simultaneous independent rotation in

Figure 8. Comparison of inside-out (IO, thin line) and
outside-in tracker (OI, thick line): Coordinates (corner tar-
get coordinate system) of the outside-in camera estimated
from inside-out and outside-in tracking system x ,y ,z , dis-
tance from target to camera d , absolute and relative error
of distance d using outside-in as reference data
�err�,�errrel�.

Figure 9. Inertial tracking process. The inertial tracker
computes the relative changes in position �pn and orien-
tation �qn , and determines the actual pose (pn ,qn) rela-
tive to start configuration (p0 ,q0).
two axes. Figures 10 and 11 show results from
practical translation and rotation experiments,
respectively.

Figure 10 depicts results from a translation ex-
periment of a simultaneous movement in the
x-direction and the y-direction. The position stan-
dard deviation is (4.1 mm, 9.4 mm, 1.8 mm). Figure 11
depicts results from a rotation experiment of a simul-
taneous 30° rotation around the y-axis and 90° rota-
tion around the z-axis with an angular velocity of
50° s�1 in quaternion representation. The orientation
standard deviation is (0.29° ,0.29° ,0.31°).

4.3. Fusion of Pose Estimates

Vision-based tracking often lacks fast motion tracking
performance due to the rapid change of visual

Figure 10. 2D Translation. Simultaneous motion in x- and
y-direction.

Figure 11. 2D Rotation. Simultaneous 30° rotation
around the y-axis and 90° rotation around the z-axis with
an angular velocity of 50 °s�1.



Ribo, Brandner, and Pinz: Software for Hybrid Tracking • 61
Figure 12. Fusion of vision-based and inertial tracker with a modified extended Kalman filter.
content, especially with fast rotations of the camera.
Inertial tracking itself is fast but lacks long-term sta-
bility due to sensor noise and drift. This is in contrast
to high precision and long-term stability of vision-
based tracking with slow motion. Thus, sensor fusion
is used to exploit the complementary properties of
both technologies and to compensate for their respec-
tive drawbacks.

The sensor fusion process integrates an extended
Kalman filter that operates in a predictor-corrector
manner (see Figure 12). The state vector x maintains
position p, velocity v, acceleration a, acceleration sen-
sor bias ab , and orientation q and is updated by sen-
sor measurements �m , am from the inertial system
and pm , qm from the vision-based system. The cor-
rected orientation q is also used for the necessary co-
ordinate transformation of the acceleration since po-
sition computation takes place in the world
coordinate system and acceleration is measured in

Figure 13. 3D position: Hybrid system (fusion) versus
ground truth (outside-in, OI).
the moving coordinate system. Operating inertial and
vision-based trackers on the same CPU allows for
simple temporal synchronization between both track-
ing systems. The experimental result illustrates the
capabilities of our hybrid tracking system. It is based
on the fusion between our Vision-based tracker and
our inertial tracking system (see Section 4.2). The ex-
periment was done by a person wearing our mobile
AR setup (see Figure 5) and facing the target depicted
in Figure 6(a). Our reference coordinate system is cen-
tered in the upper left corner of the white board, with
the x-direction pointing right, the y-direction point-
ing down, and the z-direction pointing backward.
The movement of the user is almost in the xz-plane
(from the left to the right), and he mainly rotates his
head in the y- and z-directions. Moreover, the scene
(i.e., white board�user) is observed by our
outside-in tracker which gives us the ground-truth of

Figure 14. 3D rotation: Hybrid system (fusion) versus
ground truth (outside-in, OI).



62 • Journal of Robotic Systems—2004
the user’s 6 d.o.f. Figure 13 shows the user’s 3D po-
sition, while Figure 14 depicts the four quaternion
components of the user’s 3D rotation. Notice the dif-
ferent scaling, which makes, e.g., a jitter of 5 cm in the
y-direction (Figure 13) and an offset of 1.7° , over the
value qw (Figure 14) visible.

5. DISCUSSION AND OUTLOOK

We have presented a software architecture for hybrid
tracking applications. HT, our hybrid tracking envi-
ronment provides a scalable class structure for any
combination of vision and inertial sensors. The aim of
the design was reusability and flexibility of the track-
ing application. HT is configurable through XML con-
figuration files and is able to support a variety of de-
bugging interfaces used during implementation of
new applications. The proposed design strictly sepa-
rates the tracking process from the context dependent
model feature selection. Thus, HT is independent of
the pose client application (e.g., an augmented reality
scenario with user interaction). The design inherently
supports multisensor fusion and does not restrict the
fusion algorithm to be of any distinct type. HT is
therefore well suited for experimental as well as pro-
duction hybrid tracking applications.

We have shown the feasibility of the proposed
structure to act as an experimental platform for AR
applications. Due to the modular design a compari-
son of different pose estimation techniques was easily
implemented. Furthermore, we have been able to
compare different fusion algorithms. HT currently
supports our own custom-built inertial sensor as well
as a commercial product. Again, the open design al-
lows us to extend the range of supported hardware in
a minimum time.

Still there remain open issues for future work:
HT’s prime application was targeted at AR scenarios.
We plan to extend HT’s interface toward an integra-
tion with the OpenTracker18 platform. We are currently
in the process of extending HT’s real-time capabilities
to achieve hard real-time performance.

REFERENCES

1. M. Ribo, A. Pinz, and A.L. Fuhrmann, A new optical
tracking system for virtual and augmented reality ap-
plications, in Proc IEEE Instrumentation and Measure-
ment Technology Conf, IMTC 2001, Budapest, Hun-
gary, May 2001, vol. 3, pp. 1932–1936.

2. W. Ponweiser, M. Ayromlou, M. Vincze, C. Beltran, O.
Madsen, and A. Gasteratos, Robvision—vision based
navigation for mobile robots, IEEE Int Conf on Multi-
sensor Fusion and Integration for Intelligent Systems
(MFI), Baden-Baden, 2001, pp. 109–114.

3. K. Satoh, M. Anabuki, H. Yamamoto, and H. Tamura,
A hybrid registration method for outdoor augmented
reality, in Int Symposium on Augmented Reality, 2001,
pp. 67–76.

4. V. Ferrari, T. Tuytelaars, and L. Van Gool, Markerless
augmented reality with a real-time affine region
tracker, in Proc IEEE and ACM Intl Symposium on
Augmented Reality, October 2001, vol. I, pp. 87–96.

5. M. Billinghurst, H. Kato, and I. Poupyrev, The Magic-
Book: a transitional AR interface, Comput Graph, 25
(2001), 745–753.

6. L. Naimark and E. Foxlin, Circular data matrix fiducial
system and robust image processing for a wearable
vision-inertial self-tracker, in IEEE ISMAR, Darmstadt,
Germany, 2001.

7. G.D. Hager and K. Toyama, XVision: A portable sub-
strate for real-time vision applications, Comput Vision
Image Understand 69:(1) (1998), 23–37.

8. C. Tomasi and T. Kanade, Detection and tracking of
point features, Tech. Rep. CMU-CS-91-132, Carnegie
Mellon University, April 1991.

9. R. Azuma, B. Hoff, and H. Sarfaty, A motionstabilized
outdoor augmented reality system, in Proc IEEE
VR’99, Houston, TX, March 1999, pp. 252–259.

10. S. You and U. Neumann, Fusion of vision and gyro
tracking for robust augmented reality registration, in
IEEE Conf on Virtual Reality, Yokohama, Japan, March
2001, pp. 71–78.

11. S.-H. Jung and C.J. Taylor, Camera trajectory estima-
tion using inertial sensor measurements and structure
from motion results, in IEEE CVPR, Kauai, HI, Decem-
ber 2001, vol. 2, pp. 732–727.

12. M. Ribo, H. Ganster, M. Brandner, P. Lang, C. Stock,
and A. Pinz, Hybrid tracking for outdoor AR applica-
tions, IEEE Comput Graph Applic Mag 22:(6) (2002),
54–63.

13. Z. Szalavári and M. Gervautz, The personal interaction
panel—A two-handed interface for augmented reality,
Comput Graph Forum 16:(3) (1997), 335–346.

14. M.K. Chandraker, C. Stock, and A. Pinz, Real-time
camera pose in a room, in 3rd ICVS, Graz, Austria,
April 2003, pp. 98–110.

15. M.A. Fischler and R.C. Bolles, Random sample consen-
sus: A paradigm for model fitting with applications to
image analysis and automated cartography, Commun
ACM, 24:(6) (1981), 381–395.

16. C.P. Lu, G.D. Hager, and E. Mjolsness, Fast and glo-
bally convergent pose estimation from video images,
IEEE PAMI, 22:(6) (2000), 610–622.

17. A. Ansar and K. Daniilidis, Linear pose estimation
from points or lines, in ECCV, edited by A. Heyden
et al., Copenhagen, Denmark, May 2002, Springer,
New York, vol. 4, pp. 282–296.

18. G. Reitmayr and D. Schmalstieg, An open software ar-
chitecture for virtual reality interaction, in VRST, Banff,
Canada, 15–17 November 2001.


