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Abstract

In this paper, we present a flexible new technique 
for single viewpoint omnidirectional camera calibra-
tion. The proposed method only requires the camera to 
observe a planar pattern shown at a few different ori-
entations. Either the camera or the planar pattern can 
be freely moved. No a priori knowledge of the motion 
is required, nor a specific model of the omnidirectional 
sensor. The only assumption is that the image projec-
tion function can be described by a Taylor series ex-
pansion whose coefficients are estimated by solving a 
two-step least-squares linear minimization problem. 
To test the proposed technique, we calibrated a pano-
ramic camera having a field of view greater than 200° 
in the vertical direction, and we obtained very good 
results. To investigate the accuracy of the calibration, 
we also used the estimated omni-camera model in a 
structure from motion experiment. We obtained a 3D 
metric reconstruction of a scene from two highly dis-
torted omnidirectional images by using image corre-
spondences only. Compared with classical techniques, 
which rely on a specific parametric model of the omni-
directional camera, the proposed procedure is inde-
pendent of the sensor, easy to use, and flexible.  

1. Introduction 

Accurate calibration of a vision system is necessary 
for any computer vision task requiring extracting met-
ric information of the environment from 2D images, 
like in ego-motion estimation and structure from mo-
tion. While a number of methods have been developed 
concerning planar camera calibration [19, 20, 21], little 
work on omnidirectional cameras has been done, and 
the primary focus has been on particular sensor types. 

For omnidirectional camera is usually intended a vi-
sion system providing a 360° panoramic view of the 
scene. Such an enhanced field of view can be achieved 
by either using catadioptric systems, obtained by 
opportunely combining mirrors and conventional cam-
eras, or employing purely dioptric fish-eye lenses [13]. 
As noted in [1, 3, 11], it is highly desirable that such 
imaging systems have a single viewpoint [4, 6]. That 
is, there exists a single center of projection, so that, 
every pixel in the sensed images measures the irradi-
ance of the light passing through the same viewpoint in 
one particular direction. The reason a single viewpoint 
is so desirable is that it permits the generation of geo-
metrically correct perspective images from the pictures 
captured by the omnidirectional camera. Moreover, it 
allows applying the known theory of epipolar geome-
try, which easily permits to perform ego-motion esti-
mation and structure-from-motion from image corre-
spondences only. 

Previous works on omnidirectional camera calibra-
tion can be classified into two different categories. The 
first one includes methods which exploit prior knowl-
edge about the scene, such as the presence of calibra-
tion patterns [5, 7] or plumb lines [8]. The second 
group covers techniques that do not use this knowl-
edge. This includes calibration methods from pure 
rotation [7] or planar motion of the camera [9], and 
self-calibration procedures, which are performed from 
point correspondences and epipolar constraint through 
minimizing an objective function [10, 11].  
All mentioned techniques allow obtaining accurate 
calibration results, but primarily focus on particular 
sensor types (e.g. hyperbolic and parabolic mirrors or 
fish-eye lenses). Moreover, some of them require spe-
cial setting of the scene and expensive equipment [7, 
9]. For instance, in [7], a fish-eye lens with a 183° 
field of view is used as an omnidirectional sensor. 
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Here, the calibration is performed by using a half-
cylindrical calibration pattern perpendicular to the 
camera sensor, which rotates on a turntable.  
In [8, 10], the authors treat the case of a parabolic 
mirror. In [8] it is shown that vanishing points lie on a 
conic section which encodes the entire calibration 
information. Thus, projections of two sets of parallel 
lines suffice for intrinsic calibration. However, this 
property does not apply to non-parabolic mirrors. 
Therefore, the proposed technique cannot be easily 
generalized to other kinds of sensors.  

Conversely, the methods described in [10, 11, 12, 
14] fall in the self-calibration category. These methods 
require no calibration pattern, nor a priori knowledge 
about the scene. The only assumption is the capability 
to automatically find point correspondences in a set of 
panoramic images of the same scene. Then, calibration 
is directly performed by epipolar geometry by mini-
mizing an objective function. In [10, 12], this is done 
by employing a parabolic mirror, while in [11, 14] a 
fish-eye lens with a view angle greater than 180° is 
used. However, besides focusing on particular sensor 
types, the mentioned self-calibration techniques may 
suffer in case of tracking difficulties and of a small 
number of features points [16].  

All previous calibration procedures focus on par-
ticular sensor types, such as parabolic and hyperbolic 
mirrors or fish-eye lenses. Furthermore, they are 
strongly dependent on the omnidirectional sensor 
model they use, which is suitable only when the single 
effective viewpoint property is satisfied. Although 
several panoramic vision systems exist directly manu-
factured to have this property, for a catadioptric system 
this requires to accurately align the camera and the 
mirror axes. In addition, the focus point of the mirror 
has to coincide with the camera optical center. Since it 
is very difficult to avoid camera-mirror misalignments, 
an incorrectly aligned catadioptric sensor can lead to a 
quasi single-viewpoint optical system [2]. As a result, 
the sensor model used by the mentioned techniques 
could be suboptimal. In the case of fish-eye lenses the 
discussion above is analogue. 
Motivated by this observation, we propose a calibra-
tion procedure which uses a generalized parametric 
model of the sensor, which is suitable to different 
kinds of omnidirectional vision systems, both catadiop-
tric and dioptric. The proposed method requires the 
camera to observe a planar pattern shown at a few 
different locations. Either the camera or the planar 
pattern can be freely moved. No a-priori knowledge of 
the motion is required, nor a specific model of the 
omnidirectional sensor. The developed procedure is 
based on the assumption that the circular external 
boundary of the mirror or of the fish-eye lens (respec-

tively in the catadioptric and dioptric case) is visible in 
the image. Moreover, we assume that the image forma-
tion function, which manages the projection of a 3D 
real point onto a pixel of the image plane, can be de-
scribed by a Taylor series expansion. The expansion 
coefficients, which constitute our calibration parame-
ters, are estimated by solving a two-step least-squares 
linear minimization problem. Finally, the order of the 
series is determined by minimizing the reprojection 
error of the calibration points. 
The proposed procedure does not require any expen-
sive equipment. Moreover, it is very fast and com-
pletely automatic, as the user is only requested to col-
lect a few images of the calibration pattern. The 
method was applied to a KAIDAN 360° One VR sin-
gle-viewpoint mirror mounted on a CCD camera. The 
system has a vertical view angle greater than 200° and 
the image size is 900x1200 pixels. After calibration, 
we obtained an average reprojection error of 1 pixel. In 
order to test the accuracy of the method, we used the 
estimated model in a structure from motion problem, 
and we obtained a 3D metric reconstruction of a scene 
from two highly distorted omnidirectional images, by 
using image correspondences only. 
The structure of the paper is the following. The omni-
directional camera model and calibration are described 
in Sec. 2 and 3. The results of the calibration of a real 
system are given in Sec. 4. Finally, the 3D structure 
from motion experiment and its accuracy are shown 
and discussed in Sec. 5. 

2. Omnidirectional Camera Model 

We want to generalize our procedure to different 
kinds of single-viewpoint omnidirectional vision sys-
tems, both catadioptric and dioptric. In this section we 
will use the notation given in [11].  

In the general omnidirectional camera model, we 
identify two distinct references: the camera image 
plane )','( vu  and the sensor plane )'',''( vu . In Fig. 1 the 
two reference planes are shown in the case of a catadi-
optric system. In the dioptric case, the sign of u’’
would be reversed because of the absence of a reflec-
tive surface. All coordinates will be expressed in the 
coordinate system placed in O, with the z axis aligned 
with the sensor axis (see Fig. 1a).  

Let X  be a scene point. Then, assume T]'',''[ vu'u'
be the projection of X  onto the sensor plane, and 

T]','[ vuu'  its image in the camera plane (Fig. 1b and 
1c). As observed in [11], the two systems are related 
by an affine transformation, which incorporates the 
digitizing process and small axes misalignments; thus 

tAu''u' , where 22A x and 12t x . Then, let us 
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introduce the image projection function g, which cap-
tures the relationship between a point 'u' , in the sensor 
plane, and the vector p emanating from the viewpoint 
O to a scene point X (see Fig. 1a). By doing so, the 
complete model of an omnidirectional camera is 

0,  PtA Xu'g'u'gp ,   (1) 

where 4X is expressed in homogeneous coordi-
nates; 3x4P is the perspective projection matrix. By 
calibration of the omnidirectional camera we mean the 
estimation of the matrices A and t, and the non-linear 
function g, so that all vectors tAu'g  satisfy the 
projection equation (1). This means that, once the 
omnidirectional camera is calibrated, we are able to 
reconstruct, from each pixel, the direction of the corre-
sponding scene point in the real world. We assume for 
g the following expression 

T, u'',v''fu'',v''u'',v''g ,                  (2) 

where f is rotationally symmetric with respect to the 
sensor axis. For instance, in the catadioptric case, this 
corresponds to assume that the mirror is perfectly 
symmetric with respect to its axis. In general, such an 
assumption is highly reasonable because both mirror 
profiles and fish-eye lenses are manufactured with 
micrometric precision. 

(a) (b) (c) 

Figure 1. (a) Coordinate system in the catadi-
optric case. (b) Sensor plane, in metric coor-
dinates. (c) Camera image plane, expressed in 
pixel coordinates. (b) and (c) are related by an 
affine transformation. 

Function f  can have various forms related to the 
mirror or the lens construction [12, 13, 14]. As men-
tioned in the introduction, we want to apply a general-
ized parametric model of f , which is suitable to differ-
ent kinds of sensors. Moreover, we want this model to 
compensate for any misalignment between the focus 
point of the mirror (or the fish-eye lens) and the cam-
era optical center. We propose the following polyno-
mial form for f

N
Naaaau'',v''f ,,2,,

2
,,

10 ... ,       (3) 

where the coefficients ...N2,1,0,, iai , and the poly-
nomial degree N are the model parameters to be de-
termined by the calibration; 0,,  is the metric dis-
tance from the sensor axis. Thus, (1) can be rewritten 
as

0,P
'',''

tA
tA

''
''
''

X
u'

u'g
vuf

w
v
u

(4).

3. Camera Calibration 

By calibration of an omnidirectional camera we 
mean the estimation of the parameters [A, 
t, Naaaa ,...,,, 210 ] so that all vectors tAu'g  satisfy the 
equation (4). In order to reduce the number of parame-
ters to be estimated, we compute the matrices A and t,
up to a scale factor , by transforming the view field 
ellipse (see Fig. 1c) into a circle centered on the ellipse 
center. This transformation is calculated automatically 
by using an ellipse detector if the circular external 
boundary of the sensor is visible in the image. After 
performing the affine transformation, an image 
point u' is related to the corresponding point on the 
sensor plane 'u' by u''u' . Thus, by substituting 
this relation in (4) and using (3), we have the following 
projection equation 

(5)

0,

,P
'...

'
'

'
'
'

''
''
''

0

Xu'g
N

Naa
v
u

f
v
u

w
v
u

where now 'u and 'v  are the pixel coordinates of an 
image point with respect to the circle center, and ' is
the Euclidean distance. Also, note that the factor can
be directly integrated in the depth factor ; thus, only 
N+1 parameters ( Naaaa ,...,,, 210 ) need to be estimated. 
 During the calibration procedure, a planar pattern 
of known geometry is shown at different unknown 
positions, which are related to the sensor coordinate 
system by a rotation matrix ][ 321 r,r,rR and a transla-
tion t, called extrinsic parameters. Let iI be an 
observed image of the calibration pat-
tern, ],,[ ijijijij ZYXM the 3D coordinate of its points in 
the pattern coordinate system, and T],[ ijijij vum the 
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correspondent pixel coordinates in the image plane. 
Since we assumed the pattern to be planar, without loss 
of generality we have 0ijZ . Then, equation (5) be-
comes 

(6)

1
1
0

P

...

232

i

0

ij

ij
ij

ij

N
ijN

ij

ij

ijij

Y
X

Y
X

aa

v
u

iii
1

iiii
1

ij

trrtrrr

Xp

Therefore, in order to solve for camera calibration, the 
extrinsic parameters have to be determined for each 
pose of the calibration pattern. 

3.1. Solving for camera extrinsic parameters 

Before describing how to determine the extrinsic 
parameters, let us eliminate the dependence from the 
depth scale ij . This can be done by multiplying both 
sides of equation (6) vectorially by ijp

0
1...

0
1

0

ij

ij

N
ijN

ij

ij

ij

ij

ij

Y
X

aa

v
u

Y
X

ii
2

i
1

ii
2

i
1ijijij

trr

trrppp

.  (7) 

Now, let us focus on a particular observation of the 
calibration pattern. From (7), we have that each 
point jp on the pattern contributes three homogeneous 
equations 

0)()()( 2222133231 tYrXrftYrXrv jjjjjj (8.1)

0)()()( 3323111211 tYrXrutYrXrf jjjjjj (8.2)

0)()( 1121122221 tYrXrvtYrXru jjjjjj (8.3)

Here jj YX , and jZ are known, and so are jj vu , . Also, 
observe that only (8.3) is linear in the unknown 

2122211211 ,,,,, ttrrrr . Thus, by stacking all the unknown 
entries of (8.3) into a vector, we rewrite the equation 
(8.3) for L points of the calibration pattern as a system 
of linear equations 

0HM ,                             (9) 
where

T
2122211211 ],,,,,[ ttrrrrH ,

and

LLLLLLLLLL uvYuXuYvXv

uvYuXuYvXv
M ::::::

1111111111

A linear estimate of H can be obtained by minimiz-
ing the least-squares criterion 2Hmin M , subject to 

1 H 2 . This is accomplished by using the SVD. 
The solution of (9) is known up to a scale factor, 
which can be determined uniquely since vec-
tors 21, rr are orthonormal. Because of the orthonormal-
ity, the unknown entries 3231 , rr can also be computed 
uniquely.  

To resume, the first calibration step allows finding 
the extrinsic parameters 21323122211211 ,,,,,,, ttrrrrrr for each 
pose of the calibration pattern, except for the transla-
tion parameter 3t . This parameter will be computed in 
the next step, which concerns the estimation of the 
image projection function. 

3.2. Solving for camera intrinsic parameters 

In the previous step, we exploited equation (8.3) to 
find the camera extrinsic parameters. Now, we substi-
tute the estimated values in the equations (8.1) and 
(8.2), and solve for the camera intrinsic parameters 

Naaaa ,...,,, 210  that describe the shape of the image 
projection function g. At the same time, we also com-
pute the unknown it3  for each pose of the calibration 
pattern. As done above, we stack all the unknown 
entries of (8.1) and (8.2) into a vector and rewrite the 
equations as a system of linear equations. But now, we 
incorporate all K observations of the calibration rig. 
We obtain the following system 

(10)

K

K

K

N

K
N

KKKKK

K
N

KKKKK

N

N

D
B

D
B

t

t
a

a

uCCC
vAAA

uCCC
vAAA

:

:

:

..00..

..00..
:..:::..::
0..0...
0..0..

1

1

3

1
3

0

111111

111111
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where

iiiii
i tYrXrA 22221 , )( 3231

iiii
ii YrXrvB ,

iiiii
i tYrXrC 11211      and )( 3231

iiiii
i XrXruD .

Finally, the least-squares solution of the overdeter-
mined system is obtained by using the pseudoinverse. 
Thus, the intrinsic parameters Naaaa ,...,,, 210 , which 
describe the model, are now available. In order to 
compute the best polynomial degree N, we actually 
start from N=2. Then, we increase N by unitary steps 
and we compute the average value of the reprojection 
error of all calibration points. The procedure stops 
when a minimum error is found. 

4. Experimental Results 

The calibration algorithm presented in the previous 
sections was tested on real data. The omnidirectional 
sensor to be calibrated is a catadioptric system com-
posed of a KAIDAN 360° One VR hyperbolic mirror 
and a SONY CCD camera having a resolution of 
900x1200 pixels. The calibration rig is a checker pat-
tern containing 9x7 squares, so there are 48 corners 
(calibration points) (see Fig. 4). The size of the pattern 
is 24.3cm x 18.9 cm. Eleven images of the plane under 
different orientations were taken, some of which are 
shown in Fig. 2. 

Figure 2. Some images of the calibration pat-
tern taken under different orientations 

4.1. Performance with respect to the number of 
planes and the polynomial degree 

This experiment investigates the performance of our 
technique with respect to the number of images of the 
planar pattern, for a given polynomial degree. We vary 
the number of pictures from 2 to 11, and for each set 
we perform the calibration. Next, according to the 
estimated extrinsic parameters, we reproject the 3D 

calibration points onto the images. Then, we compute 
the Root of Mean Squared Distances (RMS), in pixels, 
between the detected image points and the reprojected 
ones. The calculated RMS values versus the number of 
images are plotted in Fig. 3 for different polynomial 
degrees. Note that the error decreases when more im-
ages are used. Moreover, by using a 4th order polyno-
mial to fit the model, we obtain the minimum RMS 
value, that is of about 1.2 pixels. A 3rd order polyno-
mial also provides a similar performance if more than 
four images are taken. Conversely, by using a 2nd order 
expansion, the RMS remains above 2 pixels. Thus, for 
our applications we used a 4th order expansion. As a 
result, the RMS error of all reprojected calibration 
points is 1.2 pixels. This value is very good if we con-
sider that the image resolution is 900x1200 pixels, and 
that corner detection is less precise on omnidirectional 
images than on conventional perspective pictures. In 
Fig. 4 you can see several corner points used to per-
form the calibration, and the same points reprojected 
onto the image according to the intrinsic and extrinsic 
parameters estimated by the calibration. 

Figure 4. The corner points used for calibra-
tion (red crosses) and the reprojected ones 
(yellow rounds) after calibration. 

0,00
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2 3 4 5 6 7 8 9 10 11

Figure 3. RMS error versus the number of 
images of the pattern. The RMS values are 
computed for different polynomial degrees: 
2nd order (black ), 3rd order (blue ) and 4th

order (red ).
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4.2. Performance with respect to the noise level 

In this experiment, we study the robustness of our 
calibration technique in case of inaccuracy in detecting 
the calibration points. At this end, Gaussian noise with 
mean 0 and standard deviation is added to the input 
calibration points. We vary the noise level from 0.1 
pixels to 1.5 pixels. For each level, we perform the 
calibration and we compute the RMS error of the re-
projected points. The results obtained using a 4th order 
polynomial are shown in Fig. 5. As it can be seen, the 
RMS values remain under 2 pixels. 

4.3. Performance with respect to image rectifi-
cation

In this experiment, we test the accuracy of the esti-
mated sensor model by rectifying all calibration im-
ages. Rectification determines a transformation of the 
original distorted image such that the new image ap-
pears as taken by a conventional perspective camera. 

In general, is impossible to rectify the whole omni-
directional image because of a view field larger than 
180°. However, it is possible to perform rectification 
on image regions which cover a smaller field of view. 
As a result, linearity is preserved in the rectified image. 
As you can see in Fig. 6, curved edges of a sample 

pattern in the original image (Fig. 6) appear straight 
after rectification (Fig. 7).  

5. Application to Structure from Motion 

Our work on omnidirectional camera calibration is 
motivated by the use of panoramic vision sensors for 
structure from motion and 3D reconstruction. In this 
section, we perform a 3D metric reconstruction of a 
real object from two omnidirectional images, by using 
the sensor model estimated by our calibration proce-
dure. In order to compare the reconstruction results 
with a ground truth, we exploited a trihedral object 
composed of three orthogonal checker patterns of 
known geometry (see Fig. 8).  

Figure 8. The sample trihedron used for the 
3D reconstruction experiment. 

Two images of the trihedron were taken by positioning 
our calibrated camera at two unknown different loca-
tions (see Fig. 9). Then, several point matches were 
picked manually from both views of the object and the 
eight point algorithm [17] was applied. In order to 
obtain good reconstruction results, more than eight 
points (actually 135) were extracted. Then, the coordi-
nates of the correspondent 3D vectors, back-projected 
into the space, were normalized according to the non-
uniform mirror resolution. The results of the recon-
struction are shown in Fig. 10, where we used checker 
patches to fit the reconstructed 3D points (red rounds). 
In order to compare the results with the ground truth, 
we computed the angles between the three planes fit-
ting the reconstructed points. We found the following 
values: 94.6°, 86.8° and 85.3°. Moreover, the average 
distances of these points from the fitted planes were 
respectively 0.05 cm, 0.75 cm and 0.07 cm. Finally, 
since we knew the size of each checker to be 6.0 cm x 
6.0 cm, we also calculated the dimension of every 
reconstructed checker, and we found an average error 
of 0.29 cm. 

1,0

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

2,0

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5

Figure 5. RMS error versus the noise level. 

Figure 6. A sample 
image before rectifi-
cation.

Figure 7. The sample 
image of Fig. 6 after 
rectification. Now the 
edges (highlighted) 
appear straight. 
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Figure 9. Two pictures of the trihedron taken 
by the omnidirectional camera. The points 
used for the 3D reconstruction are indicated 
by red dots.

Figure 10. Three rendered views of the recon-
structed trihedron. Note that the object was 
reconstructed only from two highly distorted 
omnidirectional images (as in Fig. 9).

6. Conclusions 

In this paper, we presented a flexible new technique 
for single-viewpoint omnidirectional camera calibra-
tion. The proposed method only requires the camera to 
observe a planar pattern shown at a few different ori-
entations. No a-priori knowledge of the motion is re-
quired, nor a specific model of the omnidirectional 
sensor. The only assumption is that the image projec-
tion function can be described by a Taylor series ex-
pansion whose coefficients are estimated by solving a 

two-step least-squares linear minimization problem. To 
test the proposed technique, we calibrated a panoramic 
camera having a field of view greater than 200° in the 
vertical direction, and we obtained very good results. 
To investigate the accuracy of the calibration, we also 
used the estimated omni-camera model in a structure 
from motion experiment. We obtained a 3D metric 
reconstruction of a real object from two omnidirec-
tional images, by using image correspondences only. 
The reconstruction results were also compared with the 
ground truth. With respect to classical techniques, 
which rely on a specific parametric model of the omni-
directional camera, the proposed procedure is inde-
pendent of the sensor, easy to use and flexible. 
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