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Abstract

The task of a topology selector within an analog synthesis
system is to find the best available analog circuit topology out
of a library for a given set of input specifications. The pro-
posed selection method consists of a combination of two ap-
proaches: procedural filtering and rule-based filtering. The
procedural filtering consists of two consecutive phases based
on boundary checking and interval analysis. Such a combina-
tion of different sorts of filtering is a new technique that allows
an optimal trade-off between selection accuracy and required
selection time. The tool that implements the method is technol-
ogy independent and fully open towards newly added design
knowledge.

1 Introduction

For the synthesis of analog integrated circuits, an hierarchi-
cal design strategy is nowadays being used in most programs
[1,2]. The design of higher-complexity modules (e.g. A/D con-
verters) is translated into the design of smaller lower-
complexity circuits (e.g. comparator) and ultimately devices. In
between each of the hierarchical levels the design process con-
sists of several steps such as topology selection, circuit sizing,
layout generation, extraction and verification. Topology selec-
tion has been recognized as the first of those consecutive steps.

The goal of topology selection is to search through the set of
candidate topologies in a library that implements the required
circuit behavior and to find the topology that best matches the
input performance specifications in the specified technology
process. The set of input specifications can be provided either
by a human designer who uses such a tool, or can be derived
from a synthesis step at a higher hierarchical level in an auto-
mated analog synthesis system. The process can be repeated
hierarchically in the sense that a topology is built up from lower
-level blocks, for each of which later on in the design process
again a lower-level topology has to be selected, and so forth.

Although topology selection is an inherent part of analog
synthesis, many programs published in the literature so far do
not cover this problem. Programs that do handle it, such as
OPASYN [3], OASYS [4], or the stand-alone tool HECTOR
[5], use heuristic rules to decide between the different prede-
fined alternatives. The selection between different related to-
pologies in [6] has been integrated within the sizing process, by
adding binary  variables that control the topology configuration
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as additional optimization variables. However, none of these
techniques makes explicit use of quantitative data about the
obtainable performance ranges of the different candidate to-
pologies to carry out the selection. The use of such information
is, however, essential for the selection of a good topology, and
the selection of a good topology is as important to obtain a high-
quality design solution (for the lowest power and area con-
sumption) as the use of (global) optimization when sizing the
selected topology afterwards. Our aim is to use quantitative
performance space data to select the most promising topology
candidate, which will then be sized by a separate sizing tool.
The use of performance-space data also reduces the need for
CPU-time-expensive redesign iterations - decreases the likeli-
hood that a selected topology later on in the design process
turns out not to be able to meet the input specifications.

This paper introduces a topology selection composed of
analytical filtering (based on boundary checking and interval
analysis) and rule-based filtering to obtain a flexible program
that combines selection precision with short selection time. In
section 2, the topology selection program is situated as essential
part of an overall analog synthesis system. Section 3 describes
the method used for the selection and covers three filter parts.
A detailed design example and implementation aspects are
discussed in section 4. Conclusions will be drawn in section 5.

2 Topology selection within analog synthesis

The topology selection program presented in this paper is an
essential part of the analog module synthesis system (Fig.1),
that is presently under development [7]. The main tools in the
system are the following programs: topology selection, sizing
and optimization, verification, and analog layout generation.
The key requirements for the system are modularity, openness
and flexibility, which means that the tools are independent and
exchangeable and interact through a common database under
control of a design controller (which manages the design flow),
that new design knowledge and new topologies as well as new
technology processes can be added easily, and that different
design styles are supported.

To accomplish this, two libraries are used in the system,
namely a technology library and a cell library. Technology in-
dependence (e.g. 2.4 cmos and 0.7 cmos) is established by
storing files with the actual values for technological process
parameters in the technology library. The cell library contains
descriptions of all module and circuit topologies that are known
to the system and contains all information that is needed to
carry out the different synthesis steps. In order to be able to
easily add new cells, the topology selection method must be



independent of the current and the future contents of this cell
library. At the same time, the topology selection program can
only select among topologies that are already stored in this cell
library and the information needed to obtain the performance
range at run time must be stored with each topology in the cell
library.
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Fig. 1. Logical model of an analog module synthesis system.

The topology selection program will reject all cells from the
library that do not have the required behavior or are not able to
meet the input specifications. Depending on the tightness of
these specifications the outcome will be that none, one or more
topologies are considered as valid candidates. In the latter case,
the selection program must also rank all remaining candidate
topologies and choose the best one among them.

Redesign has to take place whenever the verification tool
detects that the circuit under design fails to meet the input
specifications. Depending on the fault recovery strategy, it
might then be necessary to redo topology selection, since the
previously selected topology might not have been a good one
after all. This might happen when the required circuit specifi-
cations fall on the edge of what a particular topology can offer.
Topology selection during this redesign phase differs from the
regular design selection because of the additional information
about the reasons of the failure that the selection program can
use in order to come up with a better solution. The sizing of a
selected topology is carried out by a separate sizing program
(Fig.1).

3 Method of topology selection

3.1 Overview of the applied method

In order to avoid design iterations in the synthesis system
that include several design phases (sizing and optimization or
even layout generation), the method for topology selection
should be reliable and accurate. Furthermore, the selection
method should be fast enough to allow interactive use. These
two constraints are usually in conflict and our aim was to ex-
plore possible trade-offs and to find a method that offers the
designer full flexibility in finding a good compromise.
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Fig. 2. Diagram of the topology selection program.

The filtering sequence (Fig.2) is a combination of proce-
dural and knowledge-based approaches. These filters are a

boundary checking (BC) filter, an interval analysis (IA) filter
and a rule-based (RB) filter, respectively, and will be discussed
in detail in the following subsections. The modular concept of
the selection filters provides two major advantages. Firstly, it
allows easy extension of the cell library. Secondly, it allows
tuning of its performance by means of accuracy-speed trade-
offs: The two procedural filters (BC and IA) differ in their
complexity, accuracy of their outcomes and their speed. On the
other hand, the procedural filters and the knowledge based
filter differ in their approaches and may be complementary.

The sequence of first applying BC, followed by IA and then
RB filtering ensures efficiency of the selection process in terms
of the overall required CPU time and the obtained accuracy.
The fast rejection of non-feasible topology candidates at the
beginning will reduce the set of topology candidates to a num-
ber acceptable from the perspective of the CPU time required to
perform IA. The rule-based ranking and in case of redesign
reranking, provide us with a reasonably good final selection.

3.2 Selection filter based on boundary checking

In analog IC design for each circuit (e.g. an opamp) there is
a finite, although relatively large set of possible topologies (e.g.
different opamp schematics). Each circuit topology can be char-
acterized by an analytic model represented by a set of design
constraints. The design constraints are, in general, nonlinear
equations and inequalities, giving the relationship between
design variables, i.e. circuit resources such as transistor sizes W
and L, and the performance behavior of the topology, i.e. circuit
properties (e.g. gain, bandwidth, power consumption, etc.). For
a circuit topology and a specified behavior, the circuit resources
can only take their values from within certain intervals. In the
case of transistor sizes, the lower boundary will be dictated by
the chosen technology process while the upper boundary will be
restricted by requirements of chip area minimization and layout
aspects, resulting in for instance an allowed transistor width
between 0.8 and 1000 µm. As a result, the different circuit
performance characteristics for the same topology will also
show values within some intervals. These feasible performance
intervals of course depend on the selected technology process.

For a given design application, the user imposes require-
ments on the performances that the circuit must achieve. These
are the input specifications that must be met by the topology
that is to be selected. For the example of an opamp, there are
more than 20 characteristics for which the designer can provide
a specification, but depending on the application only a subset
of these will really be specified. (This holds, especially, when
specifications are translated automatically from an upper hier-
archical level by an automated design system.) The specifica-
tions are intervals, corresponding to the range of values for each
particular performance characteristic that the designer can ac-
cept for his application. This specification interval can be finite
or open, and a special case of a finite interval is a single value
(e.g. 'Phase margin has to be at least 60°'; 'Power consumption
has to be less than 1mW'; 'Output range has to be -3V to +3V';'
Gain has to be exactly 100').

Thus both the feasible performance intervals and the re-
quired performance specifications can be represented by inter-
vals; different circuit topologies can be evaluated by comparing
their feasible performance intervals; topology selection can be
performed by comparing the specifications with the topologies'
feasible performance intervals. The calculation of these inter-



vals, which indicate the minimal and maximal possible values
achievable by that topology, can be done at run-time or on fore-
hand. In the latter case the precalculated intervals can be stored
in the cell library together with the circuit topology, which re-
duces the required CPU time at run time but has the drawback
of being technology dependent. The actual selection process is
then carried out as follows. Each topology for which there is at
least one performance characteristic that shows no overlap be-
tween the specification interval and the corresponding feasible
interval covered by that topology must be rejected, as this to-
pology is definitely not able to meet that particular specification
in the given process. In this way, already a large number of
inappropriate topologies can be eliminated. This technique is
called filtering based on boundary checking.

Fig.3a shows a 1D comparison of four topologies (T1 till T4)
based on the feasible interval for one performance parameter i
with a specification range Pi. The selection process rejects T2
whose feasible interval does not overlap with Pi, and ranks the
remaining topologies as T3, T1, T4 depending on the size of the
overlap region. Fig.3b depicts another comparison of four to-
pologies, 2D - this time based on feasible intervals for two per-
formance parameters P1 and P2. T1 and T4 are rejected and the
ranking of the remaining topologies is T3, T2.
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Fig. 3. Boundary checking illustrated for one and two performance
characteristics, respectively.

In a real design example, as said before, the topology will
have many more performance parameters, say n, and the feasi-
ble intervals for these performances will form an n-dimensional
bounding box. The BC filter then checks whether there is a
cross section with the box of the specifications or not. Since the
filter essentially considers each performance parameter inde-
pendently of all the others, BC is simple and fast. Topologies
that pass BC do not necessarily meet the specifications after
sizing since the filter does not take the correlations between the
different performances into account (an opamp can not obtain
the maximum gain at the same time as the maximum band-
width). In other words, the real feasibility space is a subspace
of the bounding box used in the BC filter. Since the relation
between performance parameters is contained within the cir-
cuit's design equations, in order to achieve a more accurate
definition of the feasibility space we have to take these design
equations into account, which brings us to the concept of  IA.

3.3 Selection filter based on interval analysis

To allow a more accurate selection between the remaining
candidate topologies, the feasible intervals for all performances,
taking into account all their mutual influences or correlations,
have to be calculated for each of these topologies. All design
(in)equalities for the performance variables bounded by their
specification values have to be solved simultaneously. Then the
obtained intervals will depict the complete solution space and
again unfeasible topologies can be eliminated. This technique is
called filtering based on interval analysis.

The key of the technique is to calculate the solution space. A

method has been reported in [8] to find the whole solution
space for an underconstrained system of linear inhomogeneous
(in)equalities, together with its application to analog circuit
design. Although the design equations are usually nonlinear,
nonlinear functions can be approximated by a piecewise linear
(PL) format and then all solutions can be found. In either case
the solution space is described by a linear combination of a set
of vectors (corner points of the solution space). This technique
is also very useful in hierarchical design [9]. If the solution
space is empty at the higher design level, it means that there is
no need to explore the lower levels (e.g. subcircuits) since no
feasible design is possible.

The improvement that IA brings over BC is depicted in the
examples of Fig.4 and 5. Fig.4 differs from Fig.3 in that the
correlation (functions f1 and f2) between the performance pa-
rameters P1 and P2 has been added. This correlation between
parameters is expressed by the model equations.
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Fig. 4. Feasibility check with the relations between two parameters.

For the topology T3, Fig.5 shows user-specified intervals (1)
and the initial intervals (2) for two performance parameters as
stored in the cell library, together with intervals (3) for those
parameters after an evaluation took place taking into account
the relationship between P1 and P2. Point d belongs to the solu-
tion space of the T3 topology, while point c is outside of it, in
contrast with simple BC that would accept both c and d.
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Fig. 5. Combined results of  boundary checking and interval analysis.

The accuracy of the obtained solution space depends on the
accuracy of the models (equations) used to compute the solution
space. Since the calculation method itself (but not its perform-
ance) is independent from the model used to describe a topol-
ogy, it is possible to achieve acceptable selection accuracy with
moderate CPU-time and memory usage by using higher-level
description models for analog modules and circuits. Higher-
level IA avoids possible redundancy (with sizing) introduced by
considering the solution space at the lowest level. Eventually,
however, we have to deal with a topology at the device level,
and then we have to manage models with a relatively large
number of parameters, which drastically increases the CPU-
time and memory consumption. By reducing the number of
parameters taken into account for IA, we can reduce the re-
quired CPU time at the expense of selection accuracy. Here a
compromise takes place: a number of parameters is modeled for
IA and a number of parameters is evaluated by the rule base.

It is well known that certain topologies, regarding a specific
performance, have advantages over others. A typical example is
the use of cascoded versus noncascoded subblocks depending



on the gain requirements. Using if-then-else rules to decide
when to apply one or the other is usually much more efficient
than to explore the complete solution space in order to find the
most appropriate topology. It is therefore appropriate to include
such general design knowledge as rules into the rule base of the
knowledge-based filter.

3.4 Rule-based selection filter

Up till now, starting from all topologies in the cell library
that implement the required circuit behavior, the first filter
based on BC has rejected all obviously unfeasible topologies.
The second filter based on IA has found the solution space for
the remaining topologies and then decided whether or not to
reject them. Eventually there might be several candidate to-
pologies left. The final step is to rank these candidates using
the information about the topology's property attributes. This
ranking has been implemented as a knowledge-based filter
based on heuristic selection rules [3-5]. Indeed, a knowledge-
based approach is suitable for conflict resolution problems.
Since the ranking of the remaining topologies that satisfy the
specifications with their solution space can be considered as a
conflict resolution, this ranking can be performed efficiently by
means of rules.

A strong reason to use the knowledge-based filter are the re-
design iterations in the analog design system of Fig.1. When a
new topology has to be selected for the same specifications, the
procedural filters do not have to be rerun since they will return
exactly the same result. The rule-based filter on the other hand
can use the additional failure information about the specifica-
tions that were not met by the original topology that caused the
redesign, to rerank the remaining topologies and select a new
best topology. A redesign rule can then for instance state that if
the gain requirement was not met for a noncascoded topology,
then the cascoded version has to be tried next.

4 Example of topology selection

4.1 Implementation aspects

The topology selection program has been implemented in
the C language for the procedural filters and in Prolog for the
rule-based filter, on a SUN workstation and it is presently being
integrated into the analog synthesis system of Fig.1. The pro-
gram is built up completely in a modular way (see also Fig.2)
and all three filters take different data files from the cell library
as inputs, besides the overall inputs like user specifications,
technology data, etc. The inputs are ASCII text files. The BC
data file contains the boundary values for the feasible perform-
ance intervals, which are calculated in advance and stored in
the cell library for well established designs (fixed cells) or
which can be calculated at run time (parameterized and custom
cells). The IA data file contains all kinds of data needed for
interval analysis, related to a specific topology. Openness to-
wards new design is fully respected: new topologies for a
known function block can be added to the cell library just by
adding their necessary data files. No recompilation or code
update of the selection program are needed. The same holds for
adding new technology processes (e.g. 0.xx µm) within one of
the covered technology classes (e.g. CMOS).

The model development process can substantially be facili-
tated by the use of tools such as ISAAC [10] and DONALD
[11]. The IA model file contains information which is at the

runtime transformed in the following form:
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The coefficients aij  are constants whose values depend on
the input specifications, the particular topology and the speci-
fied technology process. The unknowns xj are the design pa-
rameters that can take values from intervals, the boundaries of
which are defined by input specifications, properties of the
particular topology and the technology parameters used. The
solution obtained by IA is in the form of a linear combination of
vectors, depicting the solution space for the unknowns xj. Due
to the nature of the algorithm, it is advisable to keep the num-
ber of unknowns relatively small in order to limit the time re-
quired to solve the system. One of the severe constraints for the
model is its required linearity. As said above, however, nonlin-
ear equations can also be handled by approximating them with
piecewise linear models [8].

4.2 Practical design example

The particle-detector front-end circuitry of Fig.7 consisting
of a CSA (charge sensitive amplifier) and a PSA (pulse shaping
amplifier) is chosen as example here. The CSA and PSA are
from the classes of modules (amplifiers and filters) that the
analog module synthesis system will be able to generate. The
CSA is built of an OTA (operational transconductance ampli-
fier), while the PSA is built of several OPAMPs, in an hierar-
chical way.

reset
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H(s)Detector

Cf

PSA

 
n integrators
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Fig. 7. Particle-detector front-end circuitry as an example.

The performance of the read-out module is controlled by 5
major design parameters: the width, length and bias current of
the input transistor, the shaping time and the number of integra-
tors in the shaping amplifier. The key input specifications are
noise performance, power consumption and speed for a speci-
fied detector capacitance. All of these specifications are directly
affected by the choice of the values for the design parameters.
The input transistor's width and length have practical limits
imposed either by technology or by the performance of other
parameters, the bias current is limited by the power consump-
tion requirement, the shaping time is an input specification and
limited as well, and finally the number of integrators is a prop-
erty of the particular topology. To keep the model sufficiently
accurate, yet simple, ten input parameters (Fig.9) were chosen
to be included in the interval-analysis model. This model has
been chosen taking into account design knowledge and the
relative importance of some parameters over the others. Con-
ceptually, the model looks as follows:
A : specs, topology's design parameters, technology parameters
(speed) BandWidth= ƒ1(A);
(noise) EquivalentNoiseCharge= ƒ2(A);
(power) DissipatedPower = ƒ3(A);
(design equations): ƒi(A)=0 i = 4,...,m.

In this model, the design parameters vary from topology to
topology in two different ways. Firstly, the parameters are dif-
ferent for different topologies (e.g. different expressions for the



speed). Secondly, the boundary values for the intervals for the
parameters differ from one topology to the other. The total
number of model variables in the used models was >25.

The topology selection program has then been tested for a
cell library containing 8 cells with different design styles for
CSA-PSA topologies. There were 4 topologies with PMOS and
4 with NMOS input transistors, called Pi and Ni, respectively (i
= 1,...,4). The number of topologies that pass the BC or IA filter
depends on how relaxed or tight the input specifications are.
The time required for the IA filter is proportional to the number
of topologies remaining after the BC filter. The ranking re-
turned by the IA filter differs from the initial ranking returned
by the BC filter, because of the shrinking of the intervals during
the IA filtering. Relaxed specifications are used here to visual-
ize the results of IA. Fig.8 shows the lower noise boundary for a
given power consumption and vice versa for the eight different
CSA-PSA topologies. Those are the corner points of the solu-
tion space for the given requirements, obtained by IA. The rele-
vant rules for ranking in the rule-based filter consider general
knowledge about noise performance and required chip area.
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Fig. 8. Some corner points of the solution space determined by inter-
val analysis for the different CSA-PSA topologies

Two sets of input specifications together with the obtained
results are summarized in Fig.9. These two sets represent op-
timized noise and power consumption cases, respectively. In
both cases the CPU time was below one second, most of it be-
ing spent during the IA filtering. The example shows the BC
has rejected 2 and 3 cells due to their non-feasibility, for the
two cases respectively. Furthermore, IA finds that 4 and 2 of
the remaining cells, respectively, can not fulfill all the require-
ments simultaneously. The difference in ranking after IA and
RB is due to the nature of the evaluation: IA evaluates the size
of allowable intervals, and RB evaluates cell attributes. The
procedural filters calculate the ranking value for a topology j
according to:
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Fig. 9. Results of each filter's performance for 2 sets of input specs.

The final rank is obtained by rules addressing the topology's
properties such as complexity, and making a tradeoff between
noise and power performance. One example rule used for final
ranking within the RB has the following form:
IF { nr_integrator.cell_A < nr_integrator.cell_B } THEN
cell_A before cell_B

Another set of experiments were conducted with input
specifications from a very wide range. The outcome shows that:
the selected topology, the number of not rejected topologies and
their rank vary significantly with the variation of the input
specifications. Furthermore, it has been shown that each of the
8 used topologies has a region within the solution space where
it is dominant or superior to the others. The relatively large
number of input parameters, as well as the number of dimen-
sions of the solution space makes it difficult to visualize such a
result. Easy explainable results, however, are yet available in
numerical form.

5 Conclusions and future work

A new method has been presented for topology selection
within an automated analog synthesis system. The method con-
sists of the subsequent application of two procedural filters,
based on boundary checking and interval analysis respectively,
followed by a rule-based filtering. This combination allows a
trade-off between selection accuracy and required selection
time. Practical evaluation results of this method have been pre-
sented and show an acceptable performance, which is presently
being improved further on towards better speed and/or accu-
racy. The topology selector is currently being integrated within
a complete automated analog synthesis system.
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