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Graphical Highlight 

 

 

Expected air recovery as a function of air rate (heavy dashed line) and air recoveries obtained using the GSS-
based PAR seeking control system starting from an air rate lower than the PAR air rate.  The order in which the 

air rates were selected by the control system is given by the numbered data points 

 

 

Research Highlights 

 Novel automated air rate control for froth flotation based on Peak Air Recovery  

 70 l continuous laboratory flotation system used to implement the control system 

 The proposed control system was based on the direct search algorithm 

 Flotation cell controlled to the PAR air rate both at steady and unsteady state  

 

 

 

ABSTRACT 

Automatic control of industrial flotation cells and circuits presents a set of significant challenges due to the number 

of variables, the sensitivity of flotation cells to variation in these variables and the complexity of predicting flotation 

performance and/or developing a strategy for optimisation.  Air recovery, a measure of froth stability, has been 

shown to pass through a peak as flotation cell aeration increases.  Furthermore, the air rate at which the Peak Air 

Recovery (PAR) is obtained results in optimal flotation performance, whether improved concentrate grade, 

recovery or both grade and recovery.  Peak air recovery, therefore, presents a clear optimising control strategy for 

the operation of flotation cells which is generic to all flotation cells regardless of position in the flotation circuit.  

In this study, a novel control system based on PAR is developed and demonstrated using a large continuous 

laboratory flotation cell. 

In this study, a direct search optimisation algorithm based on the GSS (generating set search) methodology was 

developed using a 70 l continuous flotation cell operating with a two-phase system (surfactant solution and air 

only).  Characterisation of the laboratory system showed that it was stable for up to 6 hours and exhibited a 
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reproducible peak in air recovery.   A dynamic model of the response of the system with regards to changes in air 

recovery was developed that allowed simulations of the proposed optimising control system to be carried out.  The 

optimisation algorithm was then applied to the experimental system.  The trialled GSS algorithm was shown to 

find the PAR air rate when starting above, below and at the PAR air rate, and additionally with a disturbance 

introduced into the system.  While the direct search approach can be slow, it is simple and robust.  This 

demonstrates an innovative approach to optimising control for froth flotation and is the first application of froth 

stability maximisation for flotation control. 

 

Keywords: Froth flotation; flotation control; flotation optimisation 

 

1. INTRODUCTION 

Froth flotation is a well-established and widely applied separation process, however the separation performance is 

dependent on numerous variables, including feed grade, particle size distribution, mineralogy (of both valuable 

minerals and gangue), slurry solids content, reagent type and addition and operating conditions such as air rate and 

froth depth.  Variation in any one of these aspects results in changes in the chemical conditions and physical sub-

processes in the pulp phase, which consequently affects the froth structure and stability and therefore the 

concentrate grade and the recovery of valuable minerals.  The complex nature of flotation operation means that 

control of industrial flotation cells continues to present a significant set of challenges (Bergh and Yianatos, 2011), 

but the potential rewards in terms of improved metallurgical performance are substantial (McKee, 1991).   

A comprehensive review of flotation control can be found in Shean and Cilliers (2011), however in general, 

flotation control occurs at several levels, from regulatory control to maintain primary variables at setpoints (e.g. 

pulp level) to optimising control to maximise profitability, as described by Hodouin et al. (2001) and Laurila et al. 

(2002).  Advanced or optimising control has been demonstrated through the application of model predictive 

control (Maldonado et al., 2009; Bergh and Yianatos, 2011) and expert systems (Aldrich et al., 1997). 

Model predictive control (MPC) offers the potential for high quality advanced control of flotation cells, however 

it relies on dynamic models accounting for the relationship between operating parameters and measured responses 

(Bergh and Yianatos, 2011).  The modelling of flotation systems, however, remains a much-studied field of 

research, not least due to the complex interactions of all variables (Mathe et al., 1998; Wang et al., 2015).  To this 

end, much research has been focused on expert and fuzzy control systems for flotation cells, at both lab 

(Jahedsaravani et al., 2016) and plant scale (Bergh et al., 1999; Osorio et al., 1999; Nunez et al., 2010), although 

hybrid MPC systems have also been suggested (Karelovic et al., 2015; Putz and Cipriano, 2015).  The development 

and advancement of machine vision technology, in particular, has enabled control systems based on fuzzy control 

to become more widely adopted (Aldrich et al., 2010). 

Machine vision quantifies the visual attributes of the froth, such as bubble size, froth velocity, colour and bubble 

stability which are often used for manual flotation control by experienced operators.  All of these features have 

been used as the basis for flotation control systems in recent years, as reviewed by Aldrich et al. (2010).  For 

example Zhu et al. (2014) developed a predictive controller for a copper flotation plant based on manipulating 

reagent dosage to obtain a specified bubble size distribution, with feed grade as an additional input.  Kaartinen et 

al. (2006) used an image analysis system to develop an expert controller for a zinc flotation plant, using image 

variables in feedback control to tailor reagent dosage.  This resulted in an estimated 1.3% increase in recovery.  

Supomo et al. (2008), on the other hand, used a commercial image analysis system to control solids flowrate to 

concentrate down a bank of flotation cells using froth depth, demonstrating improved plant stability and recovery.  

In all of these systems, however, some ‘tuning’ of the controller is required in order to establish an acceptable 

range of the target.  A generic optimising control strategy applicable to all flotation cells with a single objective 

function has, however, not yet been demonstrated. 
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Air recovery is a measure of froth stability and is defined as the fraction of air entering a flotation cell that overflows 

the cell lip as unburst bubbles.  It has been shown that air recovery passes through a peak as the cell air rate 

increases and that this corresponds to the air rate at which the highest mineral recovery is obtained (Hadler and 

Cilliers, 2009).  This is shown schematically in Figure 1. 

 

  

Improved performance through air recovery optimisation, while conceptually simple, can be explained by 

considering the mechanisms by which particles (both valuable and gangue) are recovered to the concentrate and 

by the flow behaviour of the overflowing froth (Hadler and Cilliers, 2009).  It is measured using the overflowing 

froth velocity, the height above the cell lip of the overflowing froth and the inlet air flowrate and offers a practical 

control strategy based on fundamental froth behaviour.  Moreover, it allows a single objective function to be used 

in the optimisation of both concentrate grade and recovery, since altering cell aeration to operate at the peak air 

recovery air rate can lead to both higher grade and recovery in the case where cells are over-aerated (Hadler et al., 

2010). 

While the existence of a peak in air recovery has been demonstrated for several industrial and laboratory systems 

(Hadler and Cilliers, 2009; Hadler et al., 2010; Smith et al., 2010; Qu et al., 2013), the PAR air rate varies with 

operating variables such as froth depth (Hadler et al., 2012), particle size (Norori-McCormac et al., 2014) and 

reagent addition (Qu et al., 2013).  Neethling and Cilliers (2008) demonstrated the existence of the peak in air 

recovery using fundamental physics-based modelling of the froth, however there are currently no predictive models 

available to determine the PAR air rate as a function of the numerous variables in industrial flotation systems.  In 

order, therefore, to develop an optimising control system based on PAR, algorithms are required that do not 

require models of the system.   

One such group of optimisation methods are the direct search methods, which are used when reliable models for 

a given system are unavailable.  Direct search methods focus on finding the ‘direction’ in which a system must 

move, and the step sizes that must be taken, such that some ‘profit function’ is maximised as rapidly as possible 

(Marlin, 2000).  While they can be slow to converge (Kolda et al., 2003), their ease of use make them applicable 

for process control where models are overly complex or unavailable and where there is significant noise (Xiong 

and Jutan, 2003).  This makes them particularly suited to a flotation control system based on the PAR concept.  

Direct search methods have been used in flotation circuit optimisation (Dey et al., 1989), however there are no 

reported studies of direct search optimisation for flotation cell control. 

The term ‘direct search optimisation’ encompasses a group of possible methods, with four of the most commonly 

mentioned methods being the Generating Set Search (GSS) method, the Golden Section Search method (GLDSS), 

the Inverse Parabolic Interpolation (IPI) search method, and the Function Fitting Search (FFS) method (Kolda et 

al., 2003).  GSS is slow but robust and is capable of multidimensional, constrained optimisation, widely regarded 

as the most robust method (Kolda et al., 2003).  A simplified example of the GSS method in 2 dimensions is 

illustrated in Figure 2. 

The GSS algorithm starts by computing the unknown objective function f(x) at an initial point, as in Figure 2a.  

The algorithm then takes steps of equal size of the independent variable x until f(x) no longer increases (Figure 2a 

– c).  This is an indication that the maximum has been bracketed (i.e. the maximum lies between the initial value 

of x and the value of x in Figure 2c).  At this stage the step size is decreased to allow for convergence and the 

search direction is reversed.  This is repeated until the step size falls below a minimum tolerance, at which stage 

the system is considered to have converged.   

 

This study demonstrates the first application of an optimising control system based on air rate control to find and 

maintain peak air recovery using a large laboratory scale flotation cell.  The flotation cell operates with a two-phase 

surfactant-air system (i.e. there is no separation of solids) exhibiting froth behaviour analogous to industrial 

flotation operations.  Following characterisation of the air recovery response of the laboratory system, a dynamic 
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simulator was developed in order to test the efficacy of the control algorithm, before experimental trials were 

undertaken.  

 

2. EXPERIMENTAL SYSTEM 

Flotation System 

All tests were carried out using a custom built 70 l flotation cell (height 50 cm) with a sloped launder attached to 

the outside of the tank to allow removal of the overflowing froth.  The tank contained four baffles in the pulp 

phase to promote mixing and agitation was achieved using an overhead mixer (rated 0.25 kW) with six blade 

Rushton impeller operated at 1100 rpm.  The air was introduced into the cell directly below the impeller via tubing 

anchored to the base of the tank, with an elbow joint to direct the air flow upwards into the shear zone created by 

the impeller.  A diagram of the cell is given in Figure 3.  This system generated sufficient shear to create bubbles 

of approximately 1 mm (estimated visually) in the pulp zone, with a stable pulp-froth interface over a range of air 

rates.  The flotation cell operated continuously in a closed loop with a reservoir (capacity 50 l) collecting the 

overflowing froth from the launder and providing feed to the cell.   

The flotation system tested in this study was based on a two-phase system (i.e. surfactant solution and air), with 

no separation of solid particles carried out.  This allowed for continuous operation of the cell over long time 

periods in order to test the control system more rigorously.  To generate a froth phase for this two-phase system 

which exhibited behaviour analogous to that of typical industrial flotation separations, the following criteria were 

targeted: 

 The froth should be mobile and flow towards the cell lip 

 The froth should be sufficiently stable to overflow the launder and break down once in the launder 

 Coalescence of bubbles in the froth phase should occur, with a distinct range of bubble size present at the 

froth surface 

 The froth surface should be opaque with contrast between individual bubbles in order to enable adequate 

image analysis for the velocity and overflowing height measurements 

To achieve the required froth properties, a polyglycol frother (DowFroth 250) was used at a concentration of 7.5 

ppm and xanthan gum was added as a viscosity modifier at 70 ppm (Brito-Parada and Cilliers, 2012).  The addition 

of a viscosity modifier hindered drainage in the froth phase, where unattached particles would increase the viscosity 

of the slurry in the Plateau borders in industrial froths (Pugh, 1996; Neethling and Cilliers, 2003).  While this 

produced a coalescing overflowing froth, there was insufficient contrast between bubbles at the froth surface, 

resulting in erroneous image analysis data.  To address this, ultramarine blue U8 dye pigment was added at 1000 

ppm (d50 approximately 8 m) with the cationic surfactant dodecyl trimethylammonium bromide, DTAB, added 

at 0.7 ppm to impart further hydrophobicity to the particles, in addition to stabilising the froth.  Despite the 

addition of ultramarine pigment, the system was still considered to be two phase, as the proportion of solid particles 

was low and intended to provide colour only. 

Further addition of frother was required throughout the tests due to a reduction in froth overflowing the lip over 

the test duration following an initial 60 minute period of stability.  The additional frother was added to the reservoir 

tank at low flowrates for all tests and an initial period of 60 minutes ‘stabilisation time’ was allowed.  This system 

was demonstrated to be stable for up to 6 hours. 

Finally, as the system was two phase, it was found to be sensitive to environmental humidity, as demonstrated 

previously by Li et al. (2010).  The laboratory relative humidity was observed to vary between 20 and 80% 

depending on weather and season, affecting significantly the behaviour of the froth and producing poor 

experimental repeatability.  To control the effects of humidity, an enclosure was constructed around the entire 

system, allowing the relative humidity to be maintained at between 70 and 75% and the temperature to be regulated 

between 17 and 20 0C. 
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Air Recovery Measurement System 

Air recovery is determined using the following relationship (Woodburn et al., 1994): 

 𝛼 =
𝑣𝑓ℎ𝑓𝐿

𝑄𝑎
  Equation 1 

Where  is the air recovery, vf is the overflowing froth velocity (in cm/s), hf is the overflowing froth height (in 

cm), L is the overflowing lip length (cm) and Qa is the volumetric air flowrate entering the cell (cm3/s).  This 

relationship assumes that the liquid content of the overflowing froth is negligible, which is acceptable for operation 

of a flotation cell where the tank is not ‘sliming’ (i.e. under conditions where there is loss of the interface and the 

pulp overflows the lip).   

Air rate to the flotation cell was controlled using a mass flow controller with an operating range of 0 – 200 lpm 

for a supply pressure of 2 – 2.5 bar (gauge).  Experiments were carried out in the range of 130 – 190 lpm, 

corresponding to a superficial gas velocity (Jg) range of 1.10 – 1.61 cm/s.  A maximum change of 80 lpm was 

achieved in a time of 13.6 s, however in the development of the control system, the maximum allowable air rate 

change was 25 lpm, which could be achieved in 5 s. 

The overflowing froth velocity was measured using an in-house developed block matching image analysis algorithm 

that was interfaced with LabVIEW.  Development of image analysis techniques for the measurement of froth 

surface properties has been the focus of much research in the past 20 years; a comprehensive review is given in 

Aldrich et al. (2010).  The block matching algorithm is one of several established techniques for tracking bubbles 

at the froth surface.  The conversion of the froth velocity from pix/fr to cm/s accounted for the variation in froth 

surface height from the camera lens.   

The overflowing froth height was measured by optical level sensor, based on a visible laser pulse.  The laser used 

for this system (IFM electronic) was designed for the measurement of tank/silo levels, with an operating range of 

0.2 – 10 m.  The laser measured the height to the froth surface from a known height above the cell lip, allowing 

the height of the overflowing froth to be calculated (as shown in Figure 3).  The accuracy of the laser, as stated by 

the manufacturer, was ±1.5 cm, however this is dependent on lighting conditions, environmental conditions (e.g. 

dust) and the characteristics of the surface off which the laser pulse is reflected.  Prior to the addition of the 

ultramarine dye particles, the penetration of the laser through the froth surface was clear; the dye particles inhibited 

this effect producing a more opaque surface.  Additional checks using alternative methods were carried out that 

showed the accuracy was sufficient for the system. 

For both the froth velocity and overflowing froth height measurements, filtering on the raw data was carried out 

within 5 s time periods, removing data points outside 1 standard deviation of the previous ten data points.  

Additional filtering was added between 5 s intervals to account for sudden deviations in the data; this was 

implemented by comparing the mean velocity or froth height from a given 5 s period with the previous 30 s, 

removing points outside 2 standard deviations and replacing with an average.  A minimum standard deviation was 

set in order to avoid the system converging to a constant average value.  

 

3. AIR RECOVERY CHARACTERISATION  

Before implementing a control system, characterisation of the flotation cell was required to: 

1) Establish the repeatability over the duration of a test and between tests 

2) Determine the air recovery response as a function of air rate for modelling of the system and to determine 

where the control system should converge 

3) Examine the dynamic response of  froth velocity and overflowing froth height following a change in air 

rate for modelling of the system 
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Ten tests were carried out to investigate the variation in overflowing froth velocity and froth height over a range 

of 13 air rates from 130 to 190 lpm, equivalent to superficial gas velocity, Jg, of 1.10 cm/s to 1.61 cm/s respectively.  

The air rates were randomised for each test to avoid any system hysteresis affecting the results.  The average froth 

velocity and overflowing froth height over all 10 tests are shown in Figure 4 and Figure 5 respectively.  The error 

bars denote one standard deviation from the mean, with the dashed lines representing the 95% confidence interval. 

The froth velocity is shown to increase with increasing cell aeration, with a plateau after 165 lpm.  The velocity 

appears to drop at the very highest air rate, however this may be within experimental error.  This is the inverse of 

the trend in overflowing froth height as cell aeration increases, which decreases sharply from 4.1 cm at 130 lpm to 

3.6 cm at 160 lpm, before also remaining stable as the air continues to increase.  The final increase in overflowing 

froth height at higher air rates (above 180 lpm) appears to be a real trend.   

In industrial (i.e. particle stabilised) flotation systems, at low air flowrates, bubble surface area flux in the pulp 

phase is low relative to higher air rates (Hadler et al., 2010) resulting in an increased coating of hydrophobic 

particles.  These more heavily-laden bubbles rise slowly in the froth phase due to the low superficial gas velocity, 

allowing drainage of entrained liquid and unattached particles.  This slow-moving froth tends to have higher 

overflowing froth heights due to the increased bubble stability.  As air rate increases, so too does the froth mobility; 

this gives rise to an increase in froth velocity but the increased mobility and higher liquid content yields a lower 

overflowing froth height.  At higher air rates, the coating of stabilising particles on the bubbles decreases in the 

froth, and a fast flowing froth with unstable (bursting) bubbles is produced.  This has been shown industrially 

(Hadler et al., 2006; Hadler and Cilliers 2009), however for the experimental system in this study, it must be recalled 

that it is two phase; the froth is not particle stabilised.  It is important to note, however, that the froth behaviour 

for this laboratory system is similar to that observed industrially, suggesting that the reagent addition and viscosity 

modifier yield similar behaviour. 

 

The shape of the trends in froth velocity and overflowing froth height with increasing air rate both appear to fit a 

quadratic curve, however it must be highlighted that the response of the froth to higher air rates than those tested 

here will not necessarily follow the same trend; as air rates increase further, the liquid content of the froth continues 

to increase until the region of the pulp-froth interface becomes indistinct and overflows the cell lip. 

The froth velocity and overflowing height are combined to produce an air recovery curve.  In order to clarify 

trends in air recovery with changing air rate, the average and standard deviation of the froth velocity and 

overflowing froth height are used to calculate an average air recovery and standard deviation per air rate.  This is 

given in Figure 6, where it can be seen that a broad peak in air recovery occurs as the cell air rate increases.  While 

the scatter in the data is large, the general trend can be observed, and this agrees with air recovery trends obtained 

industrially (Hadler and Cilliers, 2009).  The peak in air recovery is the combined effect of increased froth mobility 

but decreased bubble stability as aeration increases.  The magnitude of the measured air recoveries are somewhat 

higher than those measured at industrial sites (e.g. Smith et al., 2010), which are typically below 40% for rougher 

cells.  It must be remembered, however, that the froth in the laboratory system is not particle stabilised and is 

operating in a high humidity environment.  Moreover it is the trends that are important in the context of PAR and 

the measured peak in air recovery shows that this two phase froth exhibits trends similar to those measured 

industrially.  This demonstrates its suitability as a system on which to test a PAR-based control system. 

The large 95% confidence intervals are caused by the high standard deviation in the air recovery.  Statistical analysis 

of the significance of the peak using Student’s t-test shows that the air recovery at 160 lpm is statistically higher 

than at both 130 lpm and 190 lpm at the 95% confidence level.  Consequently, while the peak in air recovery is 

statistically significant, the specific air rate at which PAR is obtained is less clear.  In the following control system, 

an air rate in the region of 150 – 160 lpm is accepted as the PAR air rate, in light of the lack of a distinct PAR air 

rate. 
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4. DEVELOPMENT OF AN OPTIMISING FLOTATION CONTROL SYSTEM 

Based on the PAR concept, a simplified flowsheet of the proposed control system is given in Figure 7, where the 

measurements for air recovery are taken, data filtering is applied and air recovery is calculated, before the controller 

establishes the next air rate.  The PAR control system is based on direct search methods, which require no 

modelling of the system and do not rely on artificial intelligence.  Specifically, the Generating Set Search (GSS) 

method was used to develop the PAR control system, and the algorithm used is outlined more fully in Figure 8.   

In Figure 8, it is worth noting that the achievable step size sets both upper and lower limits (task 1), and for each 

step taken a check is performed to ensure the new value of the independent variable is within the constrained 

region (task 2).  The method by Kolda et al. (2003) also recommends that for a specific step resulting in an increase 

in the objective function, the next step size should be increased to ensure the maximum is reached more quickly 

(true case of task 3).  The simplicity and non-assuming nature of this optimisation method make it very versatile 

and robust, and it has been mathematically proven to converge on all continuous, differentiable, smooth functions. 

Kolda et al. (2003) further mentions that this method is able to handle noisy data, although there is no mention of 

the system being able to handle disturbances to the objective function.  

  

 

It is important to note that only one variable, air flowrate, will be manipulated by the PAR control algorithm.  

Direct search methods are frequently used on systems where multiple parameters are altered, and for these cases 

the inter-dependencies of the manipulated variables need to be considered.  For example, on a self-aerated flotation 

cell, changing the froth depth also results in a change in the air flowrate.  Additionally, many direct search 

optimising methods are designed to converge to the maximum of a constant unknown function and then stop.  

Industrially, the PAR curve as a function of air flowrate is not constant and will change with varying feed, therefore 

for the algorithm tested here, the system continuously seeks to improve the air recovery even when the minimum 

step size has been reached, to accommodate for any changes in PAR or disturbances to the system. 

The data from the baseline air recovery curve obtained during the characterisation phase of testing was used to 

build a dynamic model of the system on which the proposed optimising control algorithm was tested initially.    

The required information for the model included: 

 The behaviour of v and h at steady state conditions. 

 The behaviour of v and h under dynamic conditions. 

 The amount of variance/noise expected in the v and h raw data. 

Following the acquisition of all the required data, it was possible to model the behaviour of the froth phase at both 

steady state and dynamic conditions for a given change in Qa.  The addition of noise to the predicted trend was 

achieved using an inverse Gaussian distribution function, and a series of simulated random variables to dictate 

how much deviation from the mean should be applied to each data point.  This allowed for the predicted results 

to be simulated with the typical standard deviation that is present in the experimental data, which for the laboratory 

system was 0.53 cm/s and 0.14 cm for v and h respectively.  Note that these values are the standard deviation from 

the mean for any given test at a given air rate.  Importantly, the modelled noise is randomly generated, which 

means that no two tests were the same and the degree to which the simulated data deviated from the expected 

trend varied between tests (as was the case on the laboratory system). 

Using the dynamic and steady state models for v and h as a function of Qa with and without noise enabled the 

simulation of the GSS method.  The air flowrate settings used in the simulation trials were as follows: 

 Qa range allowed: 130 – 190 lpm 

 Maximum Qa step size: 25 lpm  
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 Minimum Qa step size: 5 lpm   

 Initial Qa step size: 20 lpm (arbitrarily chosen as 33% of full Qa range) 

The allocated PAR control timing regime was as follows: 

 Stabilisation time: 60 min (allowing h decay to become linear)  

 Measurement time: 9 min (time allocated for v and h measurement) 

 Wait time: 6 min (time allowed to reach steady state after Qa change, based on kinetics of change) 

 Total run time: 6 hours (i.e. 1 hour stabilisation time, 5 hours of the system being optimised) 

 Step size expansion factor: 120% 

 Step size contraction factor: 50% 

The results of three simulated PAR control runs (with noise added to simulated data), all starting from an air 

flowrate of 130 lpm, therefore lower than the PAR air rate, are given in Figure 9, where the step change in air 

flowrate and air recovery response are shown.  In each case, it can be seen that the air rate is changed such that 

the air recovery increases towards PAR.  The difference in the three simulations are the result of noise added to 

the data; it can be seen that the top two simulations yield the same response in the initial 4 air rate changes, however 

the third simulation shows a drop to 130 lpm and a corresponding drop in air recovery.  Similar simulations were 

carried out for cases starting at an air rate above PAR (190 lpm) and at the PAR air rate (160 lpm).   

A summary of the convergence times are given in Table 1 and it can be seen that the shortest time to obtain PAR 

was 105 minutes, or 7 iterations, which was achieved when starting at air rates below the PAR air rate.  This 

highlights the slow approach of the GSS direct search method, however in all cases, PAR was obtained, taking into 

account experimental noise.  There is clear room for improvement on this technique, however it is robust in finding 

the PAR air rate.  

 

 

5. CONTROL SYSTEM IMPLEMENTATION AND TESTING 

The GSS model tested on the simulated data was applied to the experimental system using LabVIEW.  Three cases 

were tested; starting at an air rate below the PAR air rate, at an air rate higher than the PAR air rate, and starting 

at the PAR air rate with an artificial disturbance introduced into the system.  Once the PAR control system was 

started, no interaction was made with the system at all, with the exception of the case where the effects of a 

disruption to the objective function were being investigated. 

The first test of the PAR control system on the laboratory flotation cell was for the case where the initial air rate 

is lower than the expected PAR air rate.  The results of the trial are shown in Figure 10, where the numbered points 

show the air rates and corresponding measured air recoveries in the sequence set by the control system.  The air 

recoveries obtained are compared to the results from the PAR characterisation studies, showing good agreement 

between the values obtained during the PAR control test and the averaged values from the preliminary tests. 

From Figure 10, it can be seen that the GSS-based PAR control system was able to rapidly drive the laboratory 

system towards PAR (points 1 to 3), and then maintain the system near PAR.  The majority of the results lie 

between 150 – 170 lpm, this despite some considerable noise in the measured data (examples being points 4 and 

7).  Moreover, these results are in good agreement with the simulated results, although the observed noise was 

greater in the experimental results.  The greater amount of noise in the experimental data compared to the 

simulated data is likely to have originated in the standard deviation in the simulations being an averaged standard 

deviation.  Secondly, the model is not sensitive to all of the variables that affect the laboratory system, leading to 

unexpected disturbances in the experimental data.  For example, the humidity in the enclosure tended to rise slowly 

over time, especially when the cell operated at higher air rates, yielding slight increases in the measured air 

recoveries.  This observation agrees with the study of Li et al. (2010). 
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In a second trial of the control system, the initial air rate was set above the PAR air rate.  The results of this trial 

can be seen in Figure 11.  It is interesting to note that during this trial, the flotation system was not stable across 

the 6 hour test duration, as demonstrated by the increasing air recovery over time.  This originated in the 

overflowing froth velocity increasing over the test, suggesting that the frother addition rate was too high for this 

experiment.  This highlights the sensitivity of flotation froths, both for this system and industrially, to small changes 

in one of the many variables that effect froth stability. 

Nevertheless, despite this instability in the laboratory system, the GSS-based PAR control system was still clearly 

able to drive the system towards PAR.  This example further illustrates the robustness of the GSS algorithm and 

its ability to continue to optimise the system even when the objective function is slowly changing with time, as will 

often be the case for industrial flotation systems where changes in feed properties occur frequently.  

From the results of the simulations on the performance of the control system, the GSS algorithm was found to 

handle efficiently (albeit slowly) both starting at the PAR air rate and step change disturbances in the objective 

function.  From the previous control trials, however, the artificially-added noise in the simulations is an 

underestimate of the experimental noise.  In order to test fully the robustness of the GSS-based PAR control 

system, a trial was carried out starting at PAR and experiencing a large step change in the objective function, 

introduced by multiplying the overflowing froth height, h, by an arbitrarily selected factor in order to drive away 

the air rates from the PAR position.  The results are shown in Figure 12.  

From Figure 12, it can be seen that steps 4, 5 and 6 were the points in which the manual disturbance was 

implemented.  Following the disturbance, the control system was able to drive the system back to PAR, converging 

between points 10-14.  This particular experiment was repeated three times, in each case the GSS-based PAR 

control system performed similarly, despite the level of experimental noise.  This is further testament to the simple, 

robust strategy employed by the GSS direct search method; that is, to only consider the last two data points, and 

constantly direct the air flowrate in the direction that results in the air recovery increasing.  Inclusion of AI into a 

PAR control system may well result in increased efficiency. 

These results demonstrate, for the first time, a flotation optimisation control system based on a direct search 

approach.  It should be noted that this has been implemented for a single cell only, where industrially, cells operate 

in series with the performance of the first cell affecting the feed into the second.  The advantage of this approach 

and the PAR concept as a control strategy is that the optimal air rate for given feed and reagent conditions will be 

targeted always.      

 

6. CONCLUSIONS 

Optimising control of froth flotation presents a challenge for industrial operations, not least due to instabilities in 

industrial circuits arising from variations in feed material.  Air recovery is the fraction of air entering a flotation 

cell that overflows as unburst bubbles and is used to quantify froth stability.  Air recovery is known to pass through 

a peak as cell aeration is increased, and it has been shown that operating flotation cells at the air rate that yields 

this peak air recovery (PAR) results in improved separation performance, whether through high recovery, higher 

grade, or both.   

The concept of PAR introduces a target, or objective function, for use in the control of flotation cells.  In this 

paper, a large scale (70 l) continuous laboratory flotation system was designed with a reagent system that 

demonstrated characteristics similar to those found industrially, that is, exhibiting a peak in air recovery with 

increasing air rate.  Following characterisation tests to establish an average air recovery curve, the response of the 

system to changes in air rate, both under dynamic (i.e. changing air rate) and steady state conditions was modelled 

to allow a suitable platform on which to test potential control algorithms.  The Generating Set Search (GSS) direct 
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search method was shown to be a slow but robust method, capable of finding the PAR air rate using the simulated 

data when starting below, above and at PAR. 

The GSS control system was trialled on the laboratory rig, showing in each case that PAR could be obtained and 

maintained, even under conditions in which air recovery was varying over time.  This demonstrates that suitability 

of such a control system to the changing conditions observed at most industrial flotation operations. 

This study has demonstrated for the first time a novel optimising control strategy and system based on PAR for 

flotation cells.   
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Figure 1:  Effect of air rate on flotation performance with respect to Peak Air Recovery (PAR) (Hadler et al., 2010) 

 

 

 

Figure 2:  Simplified example of the GSS method 
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Figure 3:  Diagram of the custom-built laboratory flotation cell, including overflowing froth height measurement 
by laser and camera for image analysis of froth surface 

 

Figure 4:  Average overflowing froth velocity as a function of air rate over 10 repeats.  Vertical error bars represent 
one standard deviation in the data (across different tests), and the dashed lines represent the respective upper and 
lower 95% confidence limits. 

  

1.5

2.0

2.5

3.0

3.5

4.0

4.5

120 130 140 150 160 170 180 190 200

Fr
o

th
 v

e
lo

ci
ty

 (
cm

/s
)

Air flowrate (lpm)



16 
 

 

Figure 5:  Average overflowing froth height as a function of air flowrate over 10 tests.  The vertical error bars represent 
one standard deviation in the data (across different tests), and the dashed lines represent the respective upper and 
lower 95% confidence limits.   

 

Figure 6:  Average calculated air recovery values as a function of air rate over 10 tests.  The vertical error bars 
represent one standard deviation in the data, and the dashed lines represent the respective upper and lower 95% 
confidence limits.   
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Figure 7:  Simplified block diagram of PAR control system; the dashed box highlights the air recovery measurement 
module 

 

Figure 8:  Modified generalised constrained region GSS algorithm from Kolda et al. (2003) 

  

Filtering 

Measurement of froth 

velocity towards cell lip (v) 

Measurement of air flowrate 

into cell (Jg)  

Measurement of froth 

height above cell lip (h) 

Control system algorithm 

Start 

Calculation of α 

Change operating 

parameters 

Initialisation: 
Let f(x) be the objective function over constrained region of x 

Let x0 (𝑥0 ∈ ϑ,where ϑ is the set of allowable values) be the initial guess 

Let d be a unit sized direction vector of -1 or 1  

Let ∆0 (∆0> 0) be the initial step-length parameter 

Let ∅ (∅ ≥ 1) be the step size expansion factor 

Let Ж (Ж < 1) be the step size contraction factor 

Let 𝛽𝑚𝑎𝑥 and 𝛽𝑚𝑖𝑛 (such that 𝛽𝑚𝑎𝑥  ≥ 𝛽𝑚𝑖𝑛 > 0) be the upper and lower bounds on the step size 

 

Algorithm;  

For k = 1, 2, 3.... (Initiate a for loop) 

  

Task 1:  Ensure 𝛽𝑚𝑖𝑛 ≤  ∆𝑘 ∙ 𝑑 ≤ 𝛽𝑚𝑎𝑥   (check step size is within limits) 

Task 2:  Solve for ∝𝑘 (𝑑) such that it is the largest positive value for which  

𝑥𝑘 +∝𝑘 (𝑑) ∙ 𝑑 ∈ ϑ. Then let ∆′𝑘(𝑑) = min(∆𝑘 , ∝𝑘 (𝑑))    

(check next step is within constrained region, else take to limit of constrained region) 

Task 3:  Is 𝑓(𝑥𝑘 + ∆′𝑘(𝑑) ∙ 𝑑) ≥  𝑓(𝑥𝑘)   (check if there has been an increase) 

 TRUE  

 Set 𝑥𝑘+1 = 𝑥𝑘 + ∆′𝑘(𝑑) ∙ 𝑑    (change value of x) 

 Set ∆𝑘+1= ∅ ∙ ∆𝑘     (expand the step size) 

 FALSE 

 Set 𝑥𝑘+1 = 𝑥𝑘     (do not change the value of x) 

 Set ∆𝑘+1= Ж ∙ ∆𝑘     (reduce the step size) 

 Set 𝑑 = −1 ∙ 𝑑     (change direction) 

 

End   (End of for loop) 
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Figure 9:  Results of GSS simulations.  Qa initially set at 130 lpm (lower than PAR air rate). Each row shows Qa (lpm) 
as a function of time (min) (left hand column) (centre column), air recovery as a function of time (min), and air 
recovery as a function of Qa (lpm)(right hand column).    

 

Figure 10:  Expected air recovery as a function of air rate (heavy dashed line) and air recoveries obtained using the 
GSS-based PAR seeking control system starting from an air rate lower than the PAR air rate.  The order in which 

the air rates were selected by the control system is given by the numbered data points 
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Figure 11:  Expected air recovery as a function of air rate (heavy dashed line) and air recoveries obtained using the 
GSS-based PAR seeking control system starting from an air rate higher than the PAR air rate.  The vertical arrow 
indicates the direction in which air recovery increased over the experimental duration. 

 

Figure 12:  Expected air recovery as a function of air rate (heavy dashed line) and air recoveries obtained using the 
GSS-based PAR seeking control system.  The circled data points are those manually changed to induce a system 
disturbance by moving the air recovery away from PAR. 
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Table 1:  Time to converge at PAR for the simulation with and without noise starting from below, at and above PAR 

 Time to reach 
PAR (without 
noise) 

Number of 
iterations 

Time to reach PAR (with 
noise) (three repeats at each 
condition) 

Time for convergence (min) 
starting below PAR 

105 7 First convergence times at 105, 
105, 195 min 

Time for convergence (min) 
starting above PAR 

225 15 First convergence times at 105, 
120, 195 min 

Time for convergence (min) 
starting at PAR 

180 12 First convergence times at 165, 
150, 135 min 

 

 

 


