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ABSTRACT. A flow-line model is presented for calcu

lating the surface profile and the velocity, strain-rate, and 

stress fields in an ice sheet with given base-elevation 
profile, ice thickness at the dome (divide), flow-law para

meters, mass-balance distribution, and convergence/ diver
gence conditions along the flow line . The model, which is 

based on a "quasi-similarity" hypothesis as regards the hori
zontal velocity-depth profiles, accounts for changes along 

the flow line in the depth distributions of temperature, 

normal stress deviators, and possible enhanced flow of deep 
ice of Wisconsin origin. A curvilinear coordinate system is 

applied with horizontal axes along flow lines and surface
elevation contours, respectively. The flow equations are 

reduced to two differential equations, one for the surface

elevation profile, and the other for a profile function that 

determines the depth distributions of velocities and strain

rates . The two equations are coupled through a profile 
parameter that communicates the influence of velocity

profile changes to the surface-profile equation . It is shown 

that the variation along the flow line of this parameter 
should also be considered when deriving flow-law 
parameters from ice-sheet flow-line data. For a symmetric 

dome, explicit expressions are derived for the depth 

distributions of the vertical velocity, strain-rates, and 

stresses. The strain-rate profiles display an inflection about 

half-way down the ice sheet, and, in the case of isothermal 

ice, have surface values 2.2 times their depth-averaged 

values. The depth distribution of the vertical velocity 

indicates that a relatively thick layer of almost stagnant ice 

is present at the ice-sheet base below a dome. 

I . INTRODUCTION 

Palaeo-environmental records obtained from ice cores 

have stressed the need for ice-sheet models that can provide 
realistic predictions of age profiles and annual layer

thickness profiles at drill sites. Also, the increasing amount 

of accurate data collected along flow lines on ice sheets and 

ice caps stresses the need for realistic flow-line models to 

which the data can be compared. Since ice sheets and ice 
caps seldom, if ever, reach a steady state, realistic ice-sheet 
modelling should in principle always include the time 

dimension and, in fact, several models have been designed 

for modelling the evolution of ice sheets in response to a 
changing environment, e.g. Budd and Smith, 1981 ; 

Oerlemanns, 1982; Lingle, 1985. However, in order to keep 

computation time within reasonable limits, these models are 
based on simplified ice dynamics, and therefore can account 

for ice-sheet dynamic behaviour in rather general terms 
only. Models which disregard the time evolution of the ice 

mass have been developed to much higher perfection as far 

as ice dynamics is concerned. There is a significant 
development from the simple ice-sheet profile models of 

Vialov (1958), Haefeli (1961), and Weertman (1961) to the 

flow-line models of Hooke and others (1979), Morland and 

Johnson (1980), Hutter (1983), Paterson and Waddington 

(1984), and Reeh and others (1985). 
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Such time-independent models have contributed a lot to 
our understanding of ice-sheet dynamics. A strong argument 

in their favour is that they do not necessarily pre-suppose 
the ice mass is in a steady state. This is due to the fact 
that , since inertia does not play any significant role in 

ice-sheet dynamics, the velocity and strain-rate fields will 

respond immediately to changing stress configurations caused 

by changes in: e.g. ice thickness, surface slope, or basal 
conditions. Therefore, even in the case of an ice sheet 

which is far from being in a steady state, the velocity and 

strain-rate fields reflect the actual ice-sheet geometry and 

ice-flow properties, and hence can in principle be predicted 

by time-independent modelling , assuming ice-sheet geometry 

and ice-flow properties are known. 
Of course, only quantities that depend solely on the 

present state of the ice sheet can be determined by this 
kind of modelling. To calculate quantttles such as 

layer-thickness and age profiles, knowledge of the strain 
history of the ice sheet is required as far back in time as 

the profiles are needed and, therefore, in principle, requires 

modelling including the time dimension . As far as such 

quantities are concerned , time-independent (steady-state) 

modelling should rather be considered a means of establish

ing references to which observations can be compared in 

order to evaluate to what extent "irregularities" in the data 
are due to temporal variations. 

Recent developments in ice-sheet flow-line modelling 

seem to follow two different lines: 

I. One approach is the "mathematical" approach, repre

sented by the work of, for example, Morland and Johnson 

(1980), and Hutter (1983), which is based on the rational 

approximation schemes used in non-Newtonian fluid 

dynamics. Even though this approach has led to a better 

understanding of the approximations behind various ice-flow 

models and also points to a rational manner of improving 

the models, several aspects known to have a major influence 

on ice-sheet dynamics are disregarded. Therefore, in their 

present state of development, the mathematical models, 
however useful they may be for other reasons and in spite 

of mathematical perfection, do not yet provide "realistic" 

solutions to which specific flow-line data can be profitably 
compared. 

2. The other line of development in flow-line modelling 
applies finite-element methods (e.g. Hooke and others, 1979; 

Paterson and Waddington, 1984; Fastook, 1985), which are 
particularly suited for treating differences in ice rheology, 

i.e. varying flow properties due to variations in, for 
example, temperature, ice fabric , ice-crystal size, and 

impurity content. The finite-element models, therefore, have 

the potential of producing "realistic" solutions and have in 
fact been successfully applied to explain observed ice-sheet 

flow-line data (e.g. Hooke and others, 1979). 

The flow-line model to be presented here is an 
alternative to the finite-element models . It is flexible with 
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respect to varying conditions along the flow line, in 

particular to varying flow properties of the ice. It is based 
on the fact that, with certain assumptions to be specified 

later, the integrations of the flow equations horizontally (to 
determine the surface-elevation profile) and vertically (to 

determine the velocity, strain-rate, and stress profiles) are 
coupled through a velocity-profile parameter only, which 

varies along the flow line, but which can be determined at 

any location along the flow line from the depth distribu

tions of ice temperature, shear stress, normal-stress devia
tors, and ice-flow-law parameter. No attempt has been 
made to apply the approximation schemes of the "mathem

atical" approach. However, the velocity and stress solutions 

produced by the model can be checked by substituting the 
solutions into the flow equations. As long as ice-thickness 

gradients are moderate, the residuals turn out to be small 

(see section 3.4 for discussion). For larger ice-thickness 

gradients, the solution can be used as the intial step in an 

iteration scheme (see section 3.4). 

2. DESCRIPTION OF FLOW-LINE MODEL 

The model is developed for calculating the velocity, 

strain-rate, and stress fields in an ice sheet. It has two 

versions: (I) with given surface- and base-elevation profiles, 

estimates of the flow-law parameters n and A can be 

obtained as well; (2) with given base-elevation profile, ice 

thickness at the divide (dome), and flow-law parameters, 
the surface-elevation profile can also be calculated. The 

model is essentially a generalization of Nye's simple uniform 

strain-rate and extending/ compressing glacier-flow model 
(Nye, 1957); all quantities, however, are allowed to vary in 
the direction of the flow line . Normal strain-rates may also 
vary with depth, and the flow-law parameter may vary 

along the flow line and with depth , depending on the 

temperature field (assumed to be known) and a possible 
basal layer of soft ice. All these generalizations, however, 

are introduced at the expense of exact satisfaction of the 
flow equations; the equation of continuity is strictly 

satisfied. However, the stress-equilibrium equations and the 

compatibility conditions are only approximately satisfied. In 

particular, these equations may be violated close to the base 

of the ice sheet at places where the ice-thickness gradient 
is significant and at a possible hard/ soft ice transition (see 

section 3.4). 
The model applies the generalized ice-flow law 

(I) 

Here , E ij' a' jj are strain-rate and stress-deviator 

components, T e IS effective shear stress defined by T e 2 = 
to' ij a' ij' F(T) is a function of temperature, and Ar and n 

are constants. E is the enhancement factor for the 

deformation rate of soft ice relative to hard ice (see section 

3.5). 

Divergence/ convergence of the flow is taken into 

account both in the calculation of the variation of ice flux 

along the flow line and by considering the contribution of 
the transverse normal-stress deviator to the effective shear 

stress. This means that the model can also be used to 
describe the slow flow along divides (ridges) with small 

surface slopes (Reeh and Paterson, 1988). The following 

capabilities of the model should be emphasized: it takes into 

account the influence of the depth variatIOns of 

temperature, effective shear stress, and flow-law parameter 
A on the depth profiles of velocities and strain-rates, and 

on the surface profile of the ice sheet, through a coupling 

between the surface-profile equation and the equations that 

determine the depth variations of velocities, strain-rates, and 

stresses. It is flexible with respect to varying conditions 
along the flow line, in particular, to varying flow properties 

of the ice . Furthermore, it is possible to introduce into the 
model a calculation of the temperature field synchronously 

with the velocity- and stress-field calculations, starting from 

the divide and moving step-by-step along the flow line. 

This facility has not yet been implemented. 

Reeh: Flow-line model [or all ice she 

2.1. Model input 

I. Base elevations. 

2. Mass- balance distribution along the flow line . 

3. Convergence/ divergence conditions along the flow line. 
4. Temperature field in a vertical section along the flow 

line. 

5. Depth along the flow line of the Holocene/ Wisconsinan 

transition (transition from hard to soft ice). 

6. Enhancement factor of soft ice relative to hard ice. 

7. Function F(T) for the temperature dependence of the 
flow-law parameter. 

For T ~ 263.2 K, F(T) is supposed to vary according 
to the Arrhenius equation with a constant value of the 

activation energy QT = 60000 J / mo!. For 
263.2 < T ~ 273.2 K, a similar relation is applied, 

however, with a value of the activation energy that 
increases linearly with T from 60000 J/ mol to 120000 

J/ mo!. Hence 

F(T) = AT/ Ar = exp{(QT - Qr)/ RT_10 

- QT/ RT + Qr/ RTrl. (2) 

Here, AT and Ar are flow-law parameter values 

referring to temperatures T (the actual ice 
temperature) and Tr (a reference temperature) , 

respectively. Q
T 

and Q r are activation energies for 
creep corresponding to temperatures T and T r. 

T_
10 

= 263.2 K . Q
T 

is calculated from the expression: 

Q
T 

60000 J/ mol for T ~ 263 .2 K , 

Q
T 

60000 {I + 0.1 (T - 263 .2») J/ mol for 

263 .2 K < T ~ 273.2 K, 

R 8.31 J/ moljK is the gas constant. 

8. Either (a) surface-elevation profile or (b) ice thickness 

at the divide and parameters Ar and n of the ice-flow 

law Ee = EArF(T)Te
n , where [e' Te are the effective 

strain-rate and the effective shear stress. 

2.2. Model output 

I. Either (a) flow-law parameters nand Ap or (b) 

surface-elevation profile. 

2. Velocity fields (u and w as functions of x and z) . 

Here, the x-axis is horizontal, pointing down the flow 

line, the z-axis is vertical, positive upward, and u, IV 

are the x- and z-components of velocity (see Fig. 
I). 

3. Strain-rate fields (distribution with x and z of 

longitudinal , tranverse, and vertical strain-rates , and 

shear strain-rates i: xz in a vertical plane). 
4. Stress fields (normal stress deviators, and shear stresses 

T xz in a vertical plane). 
5. Steady-state particle paths in the vertical section along 

the flow line and travel times. 

6. Steady-state age and annual layer-thickness profiles at 
any location along the flow line. 

2.3 Assumptions 

I. Flow lines and surface-elevation contours are 
orthogona!. 

2. The direction of the horizontal flow vector does not 
change with depth. 

3. The shape of the velocity-depth profile varies only 
slowly with x. 

4. The gradient of the longitudinal stress deviator is 

neglected so that T xz is given by the standard formula 
(see section 3.4). All three normal stress deviators, 

however, are taken into account as regards their 

contributions to the effective shear stress. 

5. Horizontal shear (between the flow line and its 
neighbours) is neglected. 

Assumptions (3) and (4), which are closely related, impose 

certain restrictions as regards the roughness of the bed 

topography that can be handled by the model (e.g . Budd, 

1970; Hutter, 1981). This problem will be further discussed 
in section 3.4 
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Fig . 1. a. Shows horizontal. curvilinear coordinate axes x 

and y along flow lines and surface-elevation contours. 

respectively. Rand r are radii of curvature of the 

elevation contour and the flow line at their intersection . b. 

Shows a vertical section along the flow line. c. Shows 

transformed vertical section along the flow line (see text 

for details ). 

With these assumptions, the integrations in the x
direction (to determine the surface-elevation profile in the 

case of given nand Ar) and in the z-direction (to 

determine the velocity, strain-rate, and stress profiles) are 
coupled through a velocity-profile parameter only, which 

varies with x and which can be determined at each x from 

the depth distributions of the temperature, the depth 

distributions of the shear stress and normal stress deviators, 
the enhancement factor, and the thickness of a possible soft 

basal ice layer. Starting from the divide (dome), the cal
culations can therefore be performed by integrating alter

nately in the vertical and horizontal directions. 

If the surface elevations are used as input, the model 

will calculate n and the distribution of Ar along the flow 
line. Experience shows that the Ar distribution calculated in 

this way displays considerable short-distance variations. 

These, however, can be eliminated by moderate changes in 

the basal shear-stress distribution, accomplished, for 
example, by changing the surface-slope distribution slightly, 

without violating the surface-input data. This suggests that 

the calculated Ar variation is not real; in fact, one would 
not expect such a variation. Therefore, a better procedure is 

to choose a constant value of Ap calculate the surface 

profile, compare this to the observed profile, and then 

change Ar until a reasonable fit is obtained. The calculated 

profiles appear to be rather sensitive to changes in Ap so 

that the modelling gives a specific value for it. 

3. FLOW EQUATIONS 

3.1. Coordinate system 

A curvilinear, left-handed coordinate system is applied , 

with a horizontal, curved x-axis following the flow line and 
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oriented in the direction of flow, a horizontal y-axis 

transverse to the flow line along an elevation contour, and 

a vertical z-axis, posItIve upwards (see Fig. I). The 

directions of the x- and y-axes vary along the flow line, as 
indicated by the local unit vectors shown in the map of 
Figure I a. The radii of curvature of the surface-elevation 

contours and the flow lines at their intersection are denoted 
Rand r, respectively. Rand r are considered positive if a 

movement in the direction of the y-axis, respectively the x
axis, produces an anti-clockwise rotation, when viewed from 

the respective centers of curvature. 

Velocity components in the x- and z-directions are 
denoted u and w, respectively. Due to the definition of the 

flow line, and assumption (2) in section 2.3, the y 

component of the velocity is zero. However, in general, the 

transverse strain-rate E '# O. 
The upper and fower boundary surfaces of the ice 

mass are denoted S(x,Y) and B(x,y), respectively, while 

H(x,Y) = S(x,y) - B(x,y) denotes ice thickness (see 
Fig. Ib). 

3.2. M ass conservation (continuity equations) 

Local mass conservation is expressed as 

E'
X 

+ E y + E z = O. 

In the coordinate system of Figure I, the normal strain-rate 
components are (Jaeger, 1969, p . 45) 

Ex = au/ ax + vi r, Ey = av/ ay + u/ R, E
Z 

= aw/ az 

where rand R are the radii of curvature of the flow lines 

and the surface-elevation contours at their points of inter

section (see Fig. I a) . Since v = 0, these expressions reduce 
to 

EX = au/ ax, Ey = u/ R, EZ = aw/ az 

and the local mass-conservation equation may be re-written 

au/ ax + u/ R + aw/ az = O. (3) 

s 
An equation for the ice-volume flux q J udz is deter-

B 

mined by integrating this equation vertically: 

dq/ dx + q/ R = as + aB - as/ at (4) 

where as and aB are net mass balances (positive for 
accumulation, negative for ablation) at the ice-sheet surface 
and base, respectively, and as/ at is the rate of change of 
surface elevation. For Equations (3) and (4) to hold, the 

ice-sheet material must be assumed to be incompressible. In 

consequence, ice-equivalent thicknesses are used in the 
model. 

It is convenient to define the "flux-effective" mass 
balance as 

a = as + aB - as/ at . 

If steady state is assumed, as/ at = 0, and a = as + aB is 
simply the net mass balance. 

The distribution along the flow line of R, which can 

be read from a map of surface-elevation contours, 

determines the convergence/ divergence conditions along the 
flow line. With a and R given, q may be obtained from 

Equation (4) at any point along the flow line by standard 

numerical- integration techniques. 

3.3. Velocity and strain-rate components 

Horizontal velocity 

Assumption (3) in section 2.3 allows the horizontal 

velocity component u to be written: 

(5) 

s 
where um J udz/ H is the depth-averaged velocity, and 

B 
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where p is ice density and g is acceleration due to gravity. 

An approximate solution to these equations is given by 

Ox = -pgH(I - z) + 60, (13 ) 

0y = -pgH(I - z) + [(I + 2a) / (2 + a»)6a, ( 14) 

Oz = -pgH(I - z), (15) 

T xz = -T s(l - z) ( 16) 

where 60 = Ox - 0z ' a = Ey/ E'
X 

is the ratio between the 
transverse and longitudinal strain-rates, and 

T s = -pgHaS/ ax is basal shear stress. The second member 
of the expression for 0y is deduced by means of the 
stress-strain-rate relations of section 3.5 and the local 

continuity equation given in section 3.2 . 
The solution given by Equations (13)-(16) is dependent 

on the following conditions to be fulfilled: 

laTXz/axl « pg, 10/1 « pgH, 

« pglas/ ax l · 

and I allo/ ax I « 

The first of these conditions is equivalent to requiring 

(as/ ax)2 « I and Ha2S/ ax2 « I, and is satisfied to a 
very good approximation for most ice-sheet profiles. Also, 

the second condition is generally very well satisfied. The 
third condition , however, which is equivalent to requiri ng 

the normal stresses to be weak function s of x is a more 

restrictive condition. There are different ways of dealing 
with the normal stress-gradient term. Estimates can be made 

for the minimum smoothing distance for ice thicknesses that 
will allow the gradient term to be neglected (Budd, 1970). 

The gradient term can be accounted for by harmonic 

perturbation theory (e.g. Hutter , 1983; Reeh and others, 
1985) or by applying other rational approximation schemes 

for idealized cases (e.g . McMeeking and Johnso n, 1986). In 

the present model the gradient terms are a priori neg lected . 
Therefore, when the stresses have been calculated, they 

should be checked by insertion in the stress-g radient 
condition, and the quality of the solution obtained can then 
be evaluated as to how well this condition is satisfied . If 

the agreement is not satisfactory, the x-gradient of Ox may 
be calculated from the solution, and a first correction to 
the vertical shear-stress distribution can be found by 

integrating this gradient vertically. Also, a first correction to 

the vertical normal stress can be found by vertical integra

tion of the x-gradient of the shear stress . Corrected velocity 

and strain-rate distributions compatible with the corrected 
stresses can then be found by a procedure similar to that 

described in section 3.6. This iteration process may be 

repeated until the field equations are satisfied to a desired 

accuracy. 

3.5 . Stress- strain-rate r elations 

The relations between strain-rates and stresses, as given 
by the ice-flow law in Equation (I) , are: 

EX ArB(z)Ten-Iox' , 

• A B(-) n-l • 
Ey = r z Te 0y ' 

Ez = ArB(z)Ten- Ioz', 

EXZ B("')T n- IT Ar ~ e xz 

( 17) 

( 18) 

where B(z) = E(z)F(T(z» accounts for the depth variatIOn 
of the flow-law parameter due to temperature variations 

(F(T), see Equation (2» and possible enhanced flow (E(z» . 

The E('i) function used in the model is a step function 
jumping from the value E below the level zE to I above 

this level (see Fig. 2). This E-variation is introduced to 

model the different flow properties of soft ice of 
Wisconsinan origin and hard ice of Holocene origin 

(Paterson, 1977; Gundestrup and Hansen, 1984; Dahl-Jensen, 

1985), and thus zE represents the level of the Holocene/ 

Wisconsinan transition, i.e. the 10700 year age horizon 
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Fig . 2. Quantities affecting the depth distribution of ice-flow 

properties. a. Temperature distribution . b. Functioll 

F( T(z)) (see Equation (2)). c. Enhancement faclOr E(z). 

d . B(z) = E(z )F( T(z)). 

(Hammer and others, 1986). Softening of the ice due to the 
gradual development of a fabric, favorable for shear motion, 

could also be included in the E factor which in that case 
should be allowed to vary also in the x-direction. Since T 

and z E are allowed to vary with x, so will B. However, it 

is assumed that the aB/ ax terms are negligible . 
The normal stress deviators are obtained by means of 

Equations (13), (14), and (15): 

Ox ' = l(20x - 0y - oz) = 60/ (2 + a), (19) 

Oy' = l(20y - Ox - oz) = 6aa/ (2 + a) , 

oz ' = l(20z - Ox - Oy) = 6a(1 + a)/ (2 + a) 

where 60 and a are explained in connection with Equations 

(13)-( 16). The effective shear stress is determined by the 
expression 

where 

~ = (I 

T 2 
e T xz2 + (H6a)2 

T xz if given 
+ a + a

2
) /p + tal, 

by Equation 

(20) 

(16) and 

3.6. Differential equations for the surface - elevation profile 

and the horizontal velocity-depth profile 

Combining Equations (16), (18), and (20) yie lds 

au/ az = 2A r Bx (Z)Ts(X)n«(I - z)2 + 

+ [H x60
x

(Z )/ T s(x)]2}(n-I)/ 2(1 - z) (21) 

where the subscript x on B, C and 60 indicates their weak 

x-dependence. Another expression for au/ az is obtained 
by means of Equation (11): 

au/ az = [um(x)/ H(x») ~. (z) . 

The right-hand member of this equation is the product of 

an x-dependent term um(x) / H(x) and a z-dependent term 
~. (z) . Similarly, Equation (21) may be separated into an x

dependent term 2ArTs(x)n and a term that is mainly z

dependent, i.e. 

Bx(z)(1 - z)2 + [H
x

60
x

(Z)/Ts (X)]2}(n-I )(1 z). 

Since Tb = -pgHaS/ ax, this suggests a separation of 

the variables, writing 

um(x) / H(x) = 2C xAr(-pgH(x)aS/ ax)n (22) 

which is the differential equation that determines the 
surface-elevation profile of the ice sheet, and 

~. (z) = (I / C x)Bx(z){( 1 - Z)2 + 

+ [H
x

6a
x

(Z)/ T s(x)]2}(n-I)/2(1 - z) (23) 

https://doi.org/10.3189/S0022143000009059 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000009059


1 = (z - B(x,y» / H(x,y) (6) 

is a dimensionless vertical coordinate, standardized to the 

range 0-1 . 4l(1), which in the general case varies with x 
and y, is the shape function of the horizontal velocity/ depth 

1 

profile. It is subject to the condition f 4l(1)d1 = I. Further

o 
more, if the ice sheet does not slide over the base, 

4l(0) = O. 

By means of the coordinate transformation given in 

Equation (6), the vertical section along the flow line 

bounded by the irregularly shaped bed and surface curves 

z = B(x,O) and z = S(x,O) is mapped on to the parallel

sided strip bounded by the straight lines 'Z = 0 and 1 = I 

(see Fig. lc). This transformation, which has been applied 

by, for example, Philberth and Federer (1971) and Jenssen 

(1982), implies significant simplifications in the determina

tion of particle paths in a vertical section along the flow 

line (see section 4), and also simplifies problems involving 

the heat-transport equation (Jenssen, 1982). 

The change of 41 along the flow line is given by 

dq,/ dx = Bq,/ Bx + Bq,/ B'Z d'Z / dx. In accordance with 

assumption (3) of section 2.3, Bq,/ Bx is assumed to be 

negligible. This quasi-similarity hypothesis for the shape of 

the horizontal velocity profile, however, does not imply that 

dq,/ dx can be neglected; by means of Equation (6) , we get 

d'Z / dx = --(BB/ Bx + 'ZBH/ Bx) / H (7) 

which (unless Band H do not vary with x, i.e. a constant

thickness ice sheet on a horizontal bed, or Bq,/ Oz 0 (i.e. 

uniform velocity/ depth distribution) contributes a non

negligible term to dq,/ dx. 

Normal strain-rates 

By differentiating Equation (5) with respect to x and 

applying Equation (7), we get 

Ex = Bu/ Bx = Bum/ Bx4l('Z) - (um/ H)q,'('Z)(BB/ Bx + 'Z BH/ Bx) 

where 41' ('Z) denotes dq,/ d'Z. Furthermore, by means of 

Equation (4), we obtain Bum/ Bx = a/ H - (um/ H)BH/ Bx 

um/ R, and hence the longitudinal strain-rate becomes 

EX = (a/ H - (um / H)BH/ Bx - um/ R)4l('Z) - (um / H)(BB/ Bx + 

+ 'ZBH/ Bx)cP' ('Z). (8) 

Since E Y u/ R, the transverse strain-rate is simply 

E Y = (um/ R)4l('Z). (9) 

The vertical strain-rate is obtained by means of Equations 

(3), (8), and (9): 

EZ = - (a / H - (um /H)BH/ Bx)4l('Z) + (um / H)(BB/ Bx + 

+ 'ZBH/ BxW (1 ). (10) 

It appears from Equations (8) and (J 0) that the longi

tudinal and vertical strain-rates are composed of a cP-term 

and a 41' -term. The q,-term is distributed with depth in the 

same manner as the horizontal velocity, while the cP' -term 

is twice the product of the shear strain-rate (see Equation 

(11)) and a slope term that varies linearly with depth 

between surface slope ('Z = I) and bed slope (1 = 0). Where 

the horizontal velocity changes slowly with depth, i.e. where 

cP' - 0, which is the case in the upper part of an ice 

sheet, only the q,-term contributes significantly to the 

strain-rates. However, near the base, where the shear rate is 

generally large (unless ice motion is mainly due to basal 

sliding) and the slope term approaches the bed slope, which 

may also be large, the 41' -term becomes important, and may 

even dominate the q,-term. 

Shear strain-rates 

In the coordinate system shown in Figure I, the shear 

Reeh: Flow-lille model/or all ice sheet 

strain-rates become 

and 

EXY = (I / 2)(Bu/ By - vi R + av/ Bx - u/ r), 

E X Z = (I / 2)(Bu/ Bz + Bw/ ax), 

Eyz (I / 2)(av/ Bz + Bw/ ay). 

Since v = 0 and aw/ ax and Bw/ ay can be shown to be 

second-order terms in the surface and base gradients, and 

therefore are neglected, the shear strain-rates become 

EXY = (l / 2)(Bu/ ay - u/ r), E xz = (1 / 2)au/ Bz , and Eyz = o. 

For flow along a divide between drainage bas ins and 

along the center line of a drainage basin, Bu/ ay is zero , 

since the xy- distribution of the horizontal velocity attains a 

local minimum and a local maximum along these lines . 

Moreover, if the divide or center line is a straight line or 

displays a moderate curvature only, u/ r can also be 

neglected, and the horizontal shear rate E xy vanishes. In all 

other cases, horizontal shear may be important. The 

importance of horizontal shear in ice-sheet flow will be 

discussed elsewhere. Here, horizontal shear will be neglected 

as stated in assumption (5) of section 2.3. Therefore, the 

only non-vanishing shear strain-rate is i: X Z ' which by 

differentiating Equation (5) is obtained as 

EXZ = (J / 2)(um/ H)cP' (1 ). (11 ) 

Vertical velocity 

Integration of Equation (10) with respect to z yields 

the vertical velocity--depth distribution 

w = -Ql/I(}) + um 4l('Z)(BB/ ax + 1BH/ Bx) + aB (12) 

'Z 

where I/I{'Z) f 4l('Z)d1, and aB is the rate of melting or 

o 

freeze-on of ice at the ice-sheet base. Notice that a = as + 

aB - BS / Bt includes the mass balances at both the surface 

and the base of the ice sheet, as well as the time rate of 

change of the surface elevation. 

The profile function I/I{'Z) is subject to the conditions 

1/1(0) = 0 and 1/1( I) = I. 
Equation (12) shows that the vertical velocity is 

composed of a IP term and a 41 term. The former accounts 

for the vertical transport of material within the ice sheet, 

whereas the latter is related to the flow caused by 

ice-thickness changes. The latter term may be interpreted as 

the product of the horizontal velocity and the slope term 

discussed in connection with the normal strain-rates, and 

may dominate the former term near the base of the ice 

sheet if the basal gradient is large. 

Up till now, the theory has been purely kinematic. It 
has been based on the quasi-similarity hypothesis for the 

horizontal velocity profiles and on the principle of mass 

conservation, and may be considered as an extension of the 

kinematic ice-sheet models of Dansgaard and Johnsen (1969) 

and Philberth and Federer (1971) to the case of non

uniform distributions of ice thickness and accumulation rate 

along the flow line; for any prescribed shape function 4l('Z) 

of the horizontal velocity profile, the velocity and strain

rate fields can be determined by the above equations. In 

the present theory, the velocity-profile function is 

determined by means of the force-balance equation and the 

flow law of ice, as shown in the following sections. 

3.4 . Stress-equilibrium equations 

The form of the stress-equilibrium equations valid in 

the xyz-coordinate system shown in Figure will be 

discussed elsewhere. It can be shown that for slightly 

curved flow lines and along symmetric ridges and center 

lines of drainage basins, the equilibrium equations reduce to 

those for two-dimensional flow. Moreover, since transverse 

shear in vertical planes is neglected (assumption (5) in 

section 2.3), the equations become: 

Bux/ Bx + Br xz/ az = 0, BUy/ By = 0, and Br xz / Bx + 

+ Buz/ Oz = pg 
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which is the differential equation for the profile function cP 

that determines the depth distributions of velocity 
components and strain-rates. 

The parameter ex that occurs in both of Equations 
(22) and (23) is determined by means of the condition IP(I) 

1 

J cP(z)dz = I : 

o 
lZ 

ex J J I3x(z)t l - z)2 + [H x t.ax (z) / TB(X)]2}tn-l) / 2 

o 0 

(I - z)dzdz / [ I - cP(0)]. (24) 

Since 13 and ~t.a / T B are weakly dependent on x, so is e as 

indicated by the subscript x. The ex parameter is the link 
between the surface-profile equation and the shape-function 

equation and, thus, being a function of x, communicates the 

influence of velocity-profile changes to the surface-profile 
equation. 

It appears from Equation (24) that the value of ex 

depends on the depth distribution of the flow-law parameter 
given by I3x(Z) = £(z)F(T(z», on the ratio of the longitudi

nal stress deviator to the basal shear stress, and on the 

degree of basal sliding. Consequently, any change in the 

£-z distribution (for example, due to a change in the 

relative depth to the Holocene/ Wisconsinan transition), any 
change in the temperature-depth distribution, any change in 

the ratio of longitudinal stress to basal shear stress, and any 
change in the ratio of sliding velocity to average velocity, 

will change the value of ex' Even though in general the 

gradient BC x / Bx is small, nevertheless large changes in ex 

are to be expected along an extended flow line. This has 

consequences for the established method for deriving 
ice-flow-law parameters from ice-sheet flow-line studies 

based on log-log plots of um(x)/ H(x) against T B(x) (e.g. 
Budd and Smith, 1981; Hamley and others, 1985). As indi

cated by Equation (22), proper derivation of flow-law 

parameters by this method must consider the magnitude and 
the variation of ex along the flow-line section in question. 

This problem and other consequences of the ex variation 
will be discussed in more detail elsewhere. 

In the discussion up to now it has been tacitly assumed 

that t.a was known as a function of Z. In fact, this 
function remains to be determined. This is done by 

combining Equations (8), (17) , (19), and (20) to obtain 

0r13x(Z)TBlI((I - z)2 + [HxMx(Z)/ TB12}(1I-1)/2/ (2 + a)} 

t.ax(Z)/ TB = (a / H - (um / H)BH/ Bx - um / R)cP(z) 

- (um / H)(BB/ Bx + zBH/ Bx)cP' (z). (25) 

For given x, the depth distributions of t.a x and cP can be 
obtained from Equations (23) and (25) by combined 

numerical integration in the vertical direction starting at the 
ice-sheet base, and iteration at each step of integration to 

determine t.a and a at the corrresponding z-Ievel. Next, 
with ex calculated from Equation (24), the integration of 

the surface-profile Equation (22) in the horizontal direction 

can be carried on one step further. In this manner, the 

depth distributions of velocity components, strain-rates, and 
stresses, and the surface-elevation profile are determined by 

integrating alternately in the vertical and horizontal 
directions. 

4. PARTICLE PATHS AND TRAVEL TIMES 

With the velocity components given by Equations (5) 
and (12), the particle paths in the vertical section along the 

flow line are determined by the equations 

(26) 

and 

dz / dt -aoJi(z) + um(x)cP(z)(BB/ Bx + zBH/ Bx) + aB' 
(27) 

As mentioned in the introduction, the expressions for 

velocity components, strain-rates, and stresses do not pre-

Reeh: FlolV-line model for an ice sheel 

suppose a steady-state assumption. However, for the calcu

lation of particle paths and travel times, steady state must 

be assumed. It appears that Equation (27) can be replaced 
by a simpler equation in terms of the transformed 

coordinate Z. The time derivative of z may be expanded as 
follows: 

dz/dl = dz/dz dz / dl + dz / dx dx/ dl . 

Using the identities dz / dz = H- 1
, dz/dt = w, and 

dx/ dl u, and substituting for dz / dx by means of 
Equation (7), the above equation may be rewritten 

dz / dt = w/H - (u/ H)(BB/ Bx + zBH/ Bx). 

Substituting for u and w by means of Equations (5) and 
(12), respectively, this equation is simplified to 

dz / dt - [a(x) / H(x») oJi(z) + aB(x)/ H(x). (28) 

Equations (26) and (28) can be solved for x and z as 

functions of time I, by standard numerical integration 
techniques, to determine travel times and particle paths in 

the transformed xz -coordinate system. In the actual x z 

coordinate system, travel times are unchanged, while the 

particle paths are found by changing z into z by means of 

the transformation z = B(x) + zH(x). 

5. THE SOLUTION FOR A SYMMETRICAL DOME 

At a dome with the xz- and yz-planes as symmetry 

planes, special conditions prevail, since in that case R = 0, 

urn = 0, and TB = O. Generally, the expressions for velocity 
components, strain-rates, and stresses are considerably 
simplified. The expressions for velocities, strain-rates, and 

stresses can be found by studying the expressions deduced 

in section 3 at the limit of vanishing R, urn' and TB' The 
components of velocilY (Equations (5) and (12» become 

u = 0, w = -aoJi(z) + aB' 

The expressions for the slrain-rales are also considerably 

simplified. Obviously, at the dome i: xz = O. Furthermore, 
from Equations (8), (9), and (10), we get 

i: x = (a/ H)cP(z)/ ( I + a), E y = (a / H)cP(z)a/ (I + a), and 

E z -(a/ H)cP(z). 

It is worth notlcmg that at the dome the depth distribu
tions of all normal strain-rates have the same shape, 

determined by the profile function cP(z). Moreover, an 
explicit expression can be found for this profile function: in 

the limit of T B ~ 0, Equations (23) and (24) yield 

1 Z 
where ex J J l3(z)[Ht.a(z)t-1(l - z)dzdz. 

o 0 

Also, for TB ~ 0, urn ~ 0, and R ~ 0, Equation (25) is 
simplified to 

This equation can be explicitly solved for t.a(z): 

t.a(z) = (a/ H)(t01
-
n cP(z)(2 + a)/ (A r l3(z)(1 + a»}l/Il 

(30) 
Substituting this solution into Equation (29) yields 

(31 ) 

1 z 
where ex' = J J l3(z)1/1IcP(z)(1I-1)/Il(l - z)dzdz. 

o 0 

The solution of the differential Equation (31) is 
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1 
4>(1) U 13(1)I/n(l (32) 

o 

For isothermal, non-enhanced ice, 13(1) = I. Applying this 13 

distribution and taking n = 3, Equation (32) yields 

~13(1 3 3 -2 I 
4>(1) = -1 + - z - 1 3 ) 

2 2 4 8 
(33) 

from which 4>(1) = 2.1875 and 4>(0.5) = 0.923. Hence, at the 

dome of an isothermal ice sheet, the surface strain-rates are 

approximately 2.2 times their depth-averaged values. Half

way down the ice sheet, the strain-rates are 92% their 

average values, as illustrated in Figure 3a. The strain-rate 

distribution shown in this figure deviates considerably from 

the linear distribution suggested by Raymond (1983) as an 

approximation to the strain-rate variation at the dome. 

Raymond (1983) pointed out that a linear distribution does 

not fit the boundary conditions of vanishing shear stress 

(shear strain) at the base and surface of the ice sheet, i.e. 

rP' (0) = 0 and rP' (I) = 0, and that the true distribution 

must be concave-up near the surface and concave-down 

near the base, and thus have an inflection as indicated by 

Raymond's precise profile as well as by the present analysis. 

However, even though there is a qualitative agreement 

between the profile calculated by Raymond and that of the 

present analysis, there appears to be a quantitative 

difference. 

One might think of explaining the difference as being 
due to break-down of the basic assumptions of the present 

analysis, making this a poor approximation at the divide. 

However, a more detailed analysis to be given elsewhere 

shows that this is not the case. Even the gradient of the 

longitudinal stress deviator vanishes at the divide for reasons 

of symmetry. The normal-stress distributions are slightly 

changed by a term that depends on ice thickness and the 

curvature of the ice-sheet surface in a vertical plane, but 

strain-rates are essentially unchanged. Raymond (personal 

communication) has suggested that the spatial resolution in 

his finite-element model might have smeared out some of 

the real spatial variatIOns. This might explain the 

quantitative difference between his calculated profile and 

the profile of the present analysis. 

The depth profile of the vertical velocity 1/1(1) is found 

by integrating Equation (33): 

35 6 I 
1/1(1) - 14(1 - - 1 + t12 - -13 ) (34) 

8 5 14 

which is shown in Figure 3b. It is evident from this figure 

that there is a relatively thick layer of almost stagnant ice 

at the ice-sheet base below a symmetric isothermal dome. 

If the dome is supposed to be in a steady state, the 

annual layer thickness varies with depth in the same manner 

as the vertical velocity , and so Figure 3b also represents the 

annual layer-thickness profile. 

The age-depth profile at the dome is obtained from 

the equation 

dz / dt = w. 

Assuming stready state and zero mass balance at the ice

sheet base (aB = 0), the time-scale therefore becomes 

1 

H/ asJ rJ!(zr1dz. 

1 

This time-scale is plotted in Figure 4 together with the 

Raymond (1983) time-scale and the classical logarithmic Nye 

(1963) time-scale, which assumes constant vertical strain

rate. The three time-scales show distinctly different 

assymptotic behaviour for 1 .... 0, i.e. 1 -3, Z-l, and In(1), 

respectively. This results in order-of-magnitude different age 

estimates for the deep ice when applying the different 

time-scales, the time-scale of this work predicting the oldest 

ages, and the Nye time-~cale the youngest ages. For 

example, using present-day central Greenland accumulation 

rate and ice thickness, the age of the ice 300 m above the 
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Fig. 3. Depth distribution 0/ strain-rates (a). and vertical 

velocity (b) at the dome 0/ a symmetrical. isothermal ice 

sheet consisting 0/ nOli-enhanced ice throughout. 

bottom is predicted as c. 1 000000, 100000, and 20000 

years by the three models. At a depth of 150 m above the 

bottom, the differences become even larger, i.e. 

c. 6500000, 200000, and 30000 years. The ages estimated 

by the time-scale of this work, are much too old (the 

Greenland ice sheet is supposed to be of Quaternary age, 

i.e. at most c. 2.5 Ma old). There are many reasons for the 

ages to be too old, since several factors tending to decrease 

the age of the deep ice have been neglected, e.g. the non

uniform temperature-depth profile, enhanced flow of 

ice-age ice, and, what is probably the main reason, 

temporal variations of accumulation rate, ice temperature, 

ice thickness, and dome position . Also, the possibility of 

basal melting in shorter or longer periods during the 

glacial! interglacial cycles must be considered . A more 

detailed discussion of the influence of these factors on the 

time-scale at the dome will be given elsewhere. 

6. CONCLUSIONS 

A model study of the flow line from the dome of 
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Fig . 4. Age profile at the dome of a symmetrical, 

isothermal. steady-state ice sheet ( 1). The age profiles 
resulting from Raymond's (1983) linear strain-rate 

distribution (2), and Nye's (1963) uniform strain-rate 

distribution (3) are also shown for comparison . 

Devon Island Ice Cap along a divide (ridge), with low 

surface slope and through a bore-hole location off the 
ridge, shows good agreement between observations and the 

predicted surface-profile and strain-rate variations along the 

ridge. Also, the observed depth profiles of the horizontal 

and vertical velocities at the drill site are reasonably well 
predicted by the model. The details of this study are 

presented elsewhere (Reeh and Paterson, 1988). 

Moreover, there are several "spin-offs" from the model 
that seem to deserve more detailed investigation: 

I. The curvilinear coordinate system with horizontal axes 
along flow lines and surface-elevation contours, respectively , 

is very suitable for studying the dynamics of ice flow at 
domes displaying various degrees of divergence, ranging 

from the conditions prevailing at a circular dome (E yl t x = 

I) to those prevailing at a straight horizontal ice divide 

(tylE x = 0) and, similarly, for studying the dynamics of ice 

flow near a saddle point with negative E y/ E x ratios. 

2. Horizontal shear in ice-sheet flow can also be studied 

profitably by applying the curvilinear coordinate system. 

3. The model also provides explicit expressions for the 

depth distributions of the vertical velocity, the strain-rates, 

and stresses at the dome with due consideration of the 

temperature profile and possible enhanced flow . This opens 
up for study the annual-layer thickness and age profiles at 

the dome, and even considering the influence of time 

variations of ice temperature, ice thickness, accumulation 

rate, and enhancement factor on these profiles. 

4. The model indicates how to improve the established 

method of deriving ice-flow-Iaw parameters from flow-line 

data by considering the hitherto neglected influence of 
changing velocity-depth profiles along the flow line. 
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