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Abstract We consider a mathematical model for fluid-

dynamic flows on networks which is based on conserva-

tion laws. Road networks are studied as graphs composed

by arcs that meet at some nodes, corresponding to junc-

tions, which play a key-role. Indeed interactions occur at

junctions and there the problem is underdetermined. The

approximation of scalar conservation laws along arcs is car-

ried out by using conservative methods, such as the classi-

cal Godunov scheme and the more recent discrete velocities

kinetic schemes with the use of suitable boundary condi-

tions at junctions. Riemann problems are solved by means

of a simulation algorithm which processes each junction.

We present the algorithm and its application to some simple

test cases and to portions of urban network.

1 Introduction

The study of traffic flow aims to understand traffic behav-

iour in urban context in order to answer to several questions:

where to install traffic lights or stop signs; how long the cy-

cle of traffic lights should be; where to construct entrances,
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exits, and overpasses. The purposes of this analysis are prin-

cipally represented by the maximization of cars flow, and the

minimization of traffic congestions, accidents and pollution.

In general, network models of transportation systems are as-

sumed to be static, but these models do not allow a correct

simulation of heavily congested urban road networks. For

this reason, traffic engineers have started to consider some

alternative models, often referred to as DTA (dynamic traf-

fic assignment) or within-day models, see the review paper

[3] and references therein. The use of within-day modelling

makes necessary to give a new formulation of the problem:

we have to solve the DNL (dynamic network loading) prob-

lem, that is, the reproduction of the traffic flow motion on the

network, which requires the introduction of time advancing

mathematical models (traffic simulation models). However,

the main problems in DNL models are the fact that they do

not properly reproduce the backward propagation of shocks

and the difficulty of collecting experimental data to test the

models.

Microscopic models, which form a widely used class of

models, are characterized by the fact that they are sensitive

to small perturbations. On the other hand, it can be difficult

to give a qualitative description and visualization of phe-

nomena on a macroscopic scale.

Here we deal with the fluid-dynamic models proposed in

[8, 9], which can be seen as a macroscopic model with some

traffic regulation strategies (within-day models) and which

allows to observe the network in the time evolution through

waves formation. In the 1950s James Lighthill and Gerald

Whitham in [20], and independently Richards in [24], pro-

posed to apply fluid dynamics concepts to traffic. In a single

road, this nonlinear model is based on the conservation of

cars described by the scalar hyperbolic conservation law:

∂tρ + ∂xf (ρ) = 0, (1.1)
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where ρ = ρ(t, x) ∈ [0, ρmax] is the density of cars, (t, x) ∈

R
2 and ρmax > 0 is the maximum density of cars on the

road. The function f (ρ) is the flux of cars, which is writ-

ten as product of the density and of the local speed of cars

v: i.e. f (ρ) = ρv. In most cases, and at least as a first or-

der approximation, one can assume that v is a decreasing

function, only depending on the density, and that the corre-

sponding flux is a concave function. We refer to [14, 25] for

more details and comments on the single road models. Let

us remark that fluid-dynamic models for traffic flow seem to

be the most appropriate to detect macroscopic phenomena

as shocks formation and propagation of waves backwards

along roads. However, they can develop discontinuities in a

finite time even starting from smooth initial data, then need-

ing for a careful definition of the analytical framework, and

an even greater consideration of suitable numerical schemes.

We refer to [5, 10] for an updated account of the theory of

general hyperbolic conservation laws, and to [12, 19] for a

standard introduction to the main numerical ideas. Notice

that, in all this classical works on traffic flows, only a sin-

gle road was taken into account. More recently, in [8, 9,

16, 18], some models have been proposed for traffic flow on

road networks. Following [9], we focus on a road network

composed by a finite number of roads parametrized by in-

tervals [ai, bi] that meet at some junctions. Junctions play a

key role, as the system at a junction is underdetermined even

after prescribing the conservation of cars, that can be written

as the Rankine-Hugoniot condition:

n
∑

i=1

f (ρi(t, bi)) =

n+m
∑

j=n+1

f (ρj (t, aj )),

where ρi , i = 1, . . . , n, are the car densities on incoming

roads; ρj , j = n + 1, . . . , n + m, are the car densities on

outgoing roads. Such relation expresses the equality of in-

going and outgoing fluxes. For endpoints that do not touch

a junction (and are not infinite), we assume to have a given

boundary data and solve the corresponding boundary prob-

lem, as in [4]. Let us remark that, in this paper, traffic lights

will not be considered, since their analytical and numerical

theory is already well understood [25].

As in [9], we make the following two assumptions: there

are some distribution coefficients of traffic from incoming

roads to outgoing roads; drivers behave in such a way to

maximize fluxes whenever is possible. One could also treat

junctions where the number of incoming roads is greater

than the number of outgoing ones, not covered by the analy-

sis of [9]. In particular, we are interested in the case of two

incoming and one outgoing roads. In this case, the two dis-

tribution coefficients of the incoming roads must be equal

to one, thus determining a loss of uniqueness for the solu-

tions. This is not a purely mathematical issue, but it is rather

due to the fact that if not all cars can go through the junction

then there should be a yielding rule between incoming roads.

To treat this case we introduce a new parameter q ∈ ]0,1[,

the right of way (see [8]), which permits to uniquely solve

Riemann problems. In particular, it indicates which, among

cars passing through the junction, is the percentage of cars

coming from the first incoming road and which is the per-

centage coming from the second road. The details about the

mentioned rules are discussed in Sect. 2.

We deal with the numerical approximation of the pos-

sibly discontinuous solutions produced by this model. In

particular, the main contribution of the paper is represented

by the introduction of suitable boundary conditions at the

junctions for classical and less classical numerical schemes.

These schemes, namely Godunov scheme and Kinetic meth-

ods, adapted to the problem, provide approximations which

are quite stable as we will show later through many numeri-

cal tests.

The paper is organized as follows. Section 2 is devoted to

the description of the model. Some examples of simple net-

works are proposed in Sect. 2.4. In Sect. 3 we describe the

numerical schemes with the particular boundary conditions

used to produce approximated solutions of the problem. In

Sect. 4 we give an extended presentation of some numerical

experiments which show the effectiveness of our approxi-

mation.

2 Backgrounds

We consider the conservation of cars described by the equa-

tion [20, 24]:

∂tρ + ∂xf (ρ) = 0, (2.1)

where ρ = ρ(t, x) is the density of cars, with ρ ∈ [0, ρmax],

(t, x) ∈ R
2 and ρmax is the maximum density of cars on the

road; f (ρ) is the flux, which can be written f (ρ) = ρv(ρ),

with v(t, x) the velocity. Typically v is a smooth decreasing

function of ρ.

2.1 Traffic Variables: Velocity, Flow and Density

Equation (2.1) is the consequence of conservation of cars

and experimental relationships between car velocity and

traffic density.

2.1.1 Velocity Field

Let us consider a car moving along a highway. There are two

ways to measure velocity. The most common is to record the

velocity vi = dxi

dt
of each car. With N cars there are different

velocities, vi(t), i = 1, . . . ,N , each depending on time. If

the number of cars N is large, it becomes difficult to keep

track of each car. So, instead of measuring the velocity of
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each individual car, we associate to each point in space at

each time a velocity field, v(x, t). This would be the velocity

measured by an observer fixed at position x at time t .

2.1.2 Traffic Flow and Traffic Density

In addition to car velocities, an observer fixed at a certain

position along the highway, could measure the number of

cars that passed in a given length of time. The average num-

ber of cars passing per time unit (for example one minute) is

called the traffic flow f = f (x, t).

A systematic procedure could be employed to take into

account cars completely in a given region at a fixed time;

estimates of fractional cars could be used or a car could be

counted only if its center is in the region. These measure-

ments give the density of cars, ρ, that represents the number

of cars per distance unit (for example hundred of meters).

2.1.3 Flow Equals Density Times Velocity

There is a close relationship between the three fundamental

traffic variables: velocity, density and flow. It is quite real-

istic to think to the flux f —the number of cars per time

unit—as a function of the only density ρ. More precisely

the flux will be expressed as

f (x, t) = ρ(x, t)v(x, t), (2.2)

that means

traffic flow = (traffic density) × (mean velocity).

As the density increases (meaning there are more and more

cars per meter), the velocity of cars diminishes. Thus we

make the hypothesis that the velocity of cars at any point

of the road is a regular strictly decreasing function of the

density:

v = v(ρ).

Lighthill and Whitham and independently Richards in the

mid-1950 s proposed this type of mathematical model of

traffic flow.

If there are no other cars on the highway (corresponding

to very low traffic densities), then the car would travel at the

maximum speed vmax, sometimes referred to as the “mean

free speed”:

v(0) = vmax.

At a certain density cars stop before they touch to each other.

This maximum density, ρmax, usually corresponds to what is

called bumper-to-bumper traffic:

v(ρmax) = 0.

2.1.4 Conservation of the Number of Cars

Let us fix a certain segment (a, b) on the highway and two

quite close times t1 < t2. We are assuming that no cars are

created or destroyed in the interval, then the changes in the

number of cars result from crossings at x = a and x = b

only. We deduce that the cars entered from the point a at a

certain time will exit from the point b. Thus the difference

of the total quantity of cars in the segment between the two

considered instants

∫ b

a

ρ(x, t2)dx −

∫ b

a

ρ(x, t1)dx

must be equal to the difference of the total flux at the end-

points

∫ t2

t1

f (a, t)dt −

∫ t2

t1

f (b, t)dt.

Dividing the integrals for the product of b − a and t2 − t1

and taking the limits (b − a) → 0 and (t2 − t1) → 0, with

the assumption that v and f are regular, we finally obtain

the conservation law:

ρt + fx = 0. (2.3)

Taking the velocity as

v(ρ) = vmax

(

1 −
ρ

ρmax

)

,

we have the flux

f (ρ) = vmax

(

1 −
ρ

ρmax

)

ρ.

The flux is null if there are no cars or if the density is max-

imum and it reaches the maximum for ρ = ρmax

2
. It is easy

to see the presence of discontinuity if someone brakes. The

density assumes a discontinuity that propagates backwards

along the queue.

For further details see [14].
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2.2 Basic Definitions for Road Networks

For the notions about the model given in the sequel we refer

to the paper by Piccoli and coauthors [9].

Different types of mathematical models can be used for

the simulation of vehicular traffic. They can be roughly clas-

sified in microscopic, mesoscopic and macroscopic. The

basic models are the car following or microscopic mod-

els based on Newton’s law. The macroscopic models seem

to properly treat some phenomena such as shocks creation

and propagation. Here we propose a fluid-dynamic model

for traffic flow on a road network, which can be applied to

the case of crossings with lights and circles. We consider

the conservation law formulation proposed by Lighthill-

Whitham and Richards. More precisely, one considers the

conservation of cars described by (2.1), where ρ = ρ(x, t)

is the density of cars, with ρ ∈ [0, ρmax], (x, t) ∈ R
2 and

ρmax is the maximum density of cars on the road; f (ρ) is

the flux, which can be written f (ρ) = ρv(ρ), with v(x, t)

the velocity. Typically v is assumed to be a smooth decreas-

ing function of ρ.

Here we are interested in a road network. This means

that we have a finite number of roads modelled by intervals

[ai, bi] (with one of the endpoints eventually infinite) that

meet at the some junctions. We give boundary data and solve

the associated boundary problem for the endpoints (not in-

finite) that do not meet at any junction. Junctions play a

fundamental role, as the system at a junction is underdeter-

mined, even after prescribing the conservation of cars. The

Rankine-Hugoniot at a junction reads:

n
∑

i=1

f (ρi(t, bi)) =

n+m
∑

j=n+1

f (ρj (t, aj )),

where ρi , i = 1, . . . , n, are the car densities on incoming

roads; ρj , j = n + 1, . . . , n + m, are the car densities on the

outgoing roads.

To determine a unique solution to Riemann problems at

junctions, assume the following criteria:

(A) there are some fixed coefficients, the prescribed prefer-

ences of drivers, that express the distribution of traffic

from incoming to outgoing roads;

(B) respecting (A), drivers choices are made in order to

maximize the flux.

Let us consider the rule (A). We fix a matrix, called traffic

distribution matrix:

A = {αji}j=n+1,...,n+m,i=1,...,n ∈ Rm×n ,

such that

0 < αji < 1,

n+m
∑

j=n+1

αji = 1, (2.4)

for i = 1, . . . , n and j = n + 1, . . . , n + m, where αji is the

percentage of drivers arriving from the i-th incoming road

that take the j -th outgoing road.

Remark 2.1 Note that the only the rule (A) is not sufficient

to have a unique solution to Riemann problems, that are still

under-determined.

Under suitable assumptions on A and rules (A)–(B), repre-

senting a situation where drivers have a final destination and

maximize the flux whenever is possible, Riemann problems

can be uniquely solved. In [9] it has been proved existence

of each solution to Cauchy problems respecting rules (A)

and (B).

It is possible to introduce time dependent coefficients for

the rule (A), and in particular traffic lights are modelled to

deal with periodic coefficients. In the same way, we can

treat networks assigning a different flux function fi on each

road Ii .

Let us first recall the basic definitions and results from

[9]. The parametrization of roads composing a network

is made through a set of intervals Ii = [ai, bi] ⊂ R, i ∈

1, . . . ,N , with the endpoints possibly infinite. The datum

is a finite collection of densities ρi defined on Ii ×[0,+∞).

ρi is a weak entropy solution on road Ii , if for every

ϕ : Ii → R smooth and with compact support on (ai, bi) ×

(0,+∞) one has

∫ bi

ai

∫ +∞

0

(

ρi

∂ϕ

∂t
+ f (ρi)

∂ϕ

∂x

)

dxdt = 0 (2.5)

and for every k ∈ R and ϕ̃ : Ii → R smooth, positive with

compact support on (ai, bi) × (0,+∞)

∫ bi

ai

∫ +∞

0

(

|ρi − k|
∂ϕ̃

∂t

+ sgn(ρi − k)(f (ρi) − f (k))
∂ϕ̃

∂x

)

dxdt ≥ 0. (2.6)

For (2.1) on R it is well-known that there exists a unique

weak entropy solution for every initial data belonging to

L∞, with a continuous dependence on the initial data in

L1
loc. Roads are linked to each other by some junctions, with

the assumption that each road can be incoming at most for

one junction and outgoing at most for one junction. Conse-

quently the complete model is given by a pair (I,J ), with

I = {Ii : i = 1, . . . ,N} the collection of roads and J the

number of junctions.

Consider a junction J with n incoming roads, say

I1, . . . , In, and m outgoing roads, say In+1, . . . , In+m.

A weak solution at the junction J is a collection of func-

tions ρl : [0,+∞[×Il → R, l = 1, . . . , n + m, such that

n+m
∑

l=0

(∫ +∞

0

∫ bl

al

(

ρl

∂ϕl

∂t
+ f (ρl)

∂ϕl

∂x

)

dxdt

)

= 0, (2.7)



« ARCO 11831 layout: Large reference style: basic file: arco9004.tex (Aistes) aid: 9004 doctopic: OriginalPaper class: spr-twocol-v1 v.2007/05/18 Prn:19/05/2007; 13:34 p. 5»

A Fluid-Dynamic Traffic Model on Road Networks

433 487

434 488

435 489

436 490

437 491

438 492

439 493

440 494

441 495

442 496

443 497

444 498

445 499

446 500

447 501

448 502

449 503

450 504

451 505

452 506

453 507

454 508

455 509

456 510

457 511

458 512

459 513

460 514

461 515

462 516

463 517

464 518

465 519

466 520

467 521

468 522

469 523

470 524

471 525

472 526

473 527

474 528

475 529

476 530

477 531

478 532

479 533

480 534

481 535

482 536

483 537

484 538

485 539

486 540

for every ϕl , l = 1, . . . , n + m, smooth having compact sup-

port in (0,+∞) × (al, bl] for l = 1, . . . , n (incoming roads)

and in (0,+∞)×[al, bl) for l = n+1, . . . , n+m (outgoing

roads), that are also smooth across the junction, i.e.

ϕi(bi, ·) = ϕj (aj , ·),
∂ϕi

∂x
(bi, ·) =

∂ϕj

∂x
(aj , ·),

i = 1, . . . , n, j = n + 1, . . . , n + m.

Remark 2.2 Let ρ = (ρ1, . . . , ρn+m) be a weak solution at

the junction such that each x → ρi(t, x) has bounded vari-

ation. We can deduce that ρ satisfies the Rankine-Hugoniot

Condition at the junction J , namely

n
∑

i=1

f (ρi(bi−, t)) =

n+m
∑

j=n+1

f (ρj (aj+, t)), (2.8)

for almost every t > 0.

The rules (A) and (B) can be given explicitly only for

solutions with bounded variation as in the next definition.

Definition 2.3 Let ρ = (ρ1, . . . , ρn+m) be such that ρi(x, t)

is of bounded variation for every t ≥ 0. Then ρ is an ad-

missible weak solution of (2.1) associated to the matrix A,

satisfying (2.4), at the junction J the following properties

hold:

(i) ρ is a weak solution at the junction;

(ii) f (ρj (a
+
j , ·)) =

∑n
i=1 αjif (ρi(b

+
i , ·)), for j = n +

1, . . . , n + m;

(iii) f (ρi(b
−
i , ·)) +

∑n+m
j=n+1 f (ρj (a

+
j , ·)), is maximum

subject to (ii).

A boundary data ψi : [0,+∞] → R is assigned in the

following cases: for each road Ii = [ai, bi], if ai > −∞ and

Ii is not the outgoing road of any junction, or if bi < +∞

and Ii is not the incoming road of any junction. If bound-

ary data is given, we need φi to verify ρi(ai, t) = ψi(t) or

ρi(bi, t) = ψi(t) in the sense of [4].

Definition 2.4 Given ρ̄i : Ii → R and possibly ψi : [0,+∞[

→ R, functions of L∞, a collection of functions ρ =

(ρ1, . . . , ρN ) with ρi : [0,+∞[×Ii → R continuous as

functions from [0,+∞[ into L1
loc, is an admissible solution

if ρi is a weak entropy solution to (2.1) on Ii , ρi(x,0) =

ρ̄i(x) a.e., ρi(bi, t) = ψi(t) in the sense of [4], finally such

that at each junction ρ is a weak solution and is an admissi-

ble weak solution in case of bounded variation.

We recall the construction of solutions to the Riemann

problems for rules (A) and (B). A Riemann problem for

a scalar conservation law is a Cauchy problem for an ini-

tial data of Heaviside type, that is piecewise constant with

Fig. 1 Junction

only one discontinuity. Once Riemann problems are solved,

a solution to Cauchy problems can be obtained, for in-

stance, by wave front tracking. In case of concave or con-

vex fluxes, the Riemann solutions are of two types: contin-

uous waves called rarefactions and travelling discontinuities

called shocks. The speed of the waves is related to f ′(ρ).

For a junction, as for a scalar conservation law, a Rie-

mann problem is a Cauchy problem with an initial data that

is constant on each road. Let us make the subsequent as-

sumptions on the flux:

(F ) f : [0,1] → R is smooth, strictly concave (i.e. f ′′ ≤

−c < 0 for some c > 0), f (0) = f (1) = 0, |f ′(x)| ≤

C < +∞. Hence there exists a unique σ ∈ ]0,1[ such

that f ′(σ ) = 0 (that is σ is a strict maximum).

Consider a junction J with n incoming roads and m outgo-

ing roads. The densities of cars on the incoming roads are

indicated by:

(x, t) ∈ R
+ × Ii 	→ ρi(x, t) ∈ [0,1], i ∈ {1, . . . , n}

and those on the outgoing roads:

(x, t) ∈ R
+ × Ij 	→ ρj (x, t) ∈ [0,1], j ∈ {1, . . . ,m}.

We introduce the following application:

Definition 2.5 Let τ : [0,1] 	→ [0,1], τ (σ ) = σ , be the map

satisfying the following

τ(ρ) 
= ρ, f (τ(ρ)) = f (ρ),

for each ρ 
= σ .

Evidently τ is well-defined and it verifies

0 ≤ ρ ≤ σ ⇐⇒ σ ≤ τ(ρ) ≤ 1,

σ ≤ ρ ≤ 1 ⇐⇒ 0 ≤ τ(ρ) ≤ σ.

In order to ensure uniqueness of the solution to Riemann

problems we need some generic additional conditions on the

matrix A. Let {e1, . . . , en} be the canonical basis of R
n and

for every subset V ⊂ R
n, indicate by V ⊥ its orthogonal. For
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every i = 1, . . . , n, let us define Hi the coordinate hyper-

plane orthogonal to ei and for every j = n + 1, . . . , n + m

define Hj = αj
⊥, with αj = (αj1, . . . , αjn). Indicate by K

the set of indices k = (k1, . . . , kl), 1 ≤ l ≤ n − 1, such that

0 ≤ k1 < k2 < · · · < kl ≤ n + m and for every k ∈ K we set

Hk =

l
⋂

h=1

Hkh
.

Letting 1 = (1, . . . ,1) ∈ R
n, we assume

(RP) For every k ∈ K, 1 /∈ H⊥
k .

From (RP) easily follows m ≥ n, for the details see [9].

The existence and uniqueness of admissible solutions for

the Riemann problem of a junction is expressed by the next

theorem.

Theorem 2.6 Let f : [0,1] → R satisfy (F ), the matrix A

satisfy (C) and ρ1,0, . . . , ρn+m,0 ∈ [0,1] be constants. There

exists a unique admissible weak solution, in the sense of De-

finition 2.3, namely ρ = (ρ1, . . . , ρn+m) of (2.1) at the junc-

tion J such that

ρ1(0, ·) ≡ ρ1,0, . . . , ρn+m(0, ·) ≡ ρn+m,0.

Moreover, there exists a unique (n+m)–uple (ρ̂1, . . . , ρ̂n+m)

∈ [0,1]n+m, such that

ρ̂i ∈

{

{ρi,0} ∪ (τ (ρi,0),1] if 0 ≤ ρi,0 ≤ σ ,

[σ,1] if σ ≤ ρi,0 ≤ 1,

i = 1, . . . , n, (2.9)

and,

ρ̂j ∈

{

[0, σ ] if 0 ≤ ρj,0 ≤ σ ,

{ρj,0} ∪ [0, τ (ρj,0)) if σ ≤ ρj,0 ≤ 1,

j = n + 1, . . . , n + m. (2.10)

Fixed i ∈ {1, . . . , n}, if ρi,0 ≤ ρ̂i the solution is a shock:

ρi(x, t) =

{

ρi0 if x ≤
f (ρ̂i )−f (ρi,0)

ρ̂i−ρi,0
t ,

ρ̂i otherwise,
(2.11)

and if ρi,0 > ρ̂i the solution is a rarefaction:

ρi(x, t) =

⎧

⎨

⎩

ρi0 if x ≤ f ′(ρi,0)t ,

(f ′)−1( x
t
) f ′(ρi,0)t ≤ x ≤ f ′(ρ̂i)t ,

ρ̂i if x > f ′(ρ̂i)t .

(2.12)

Proof Define the map

E : (γ1, . . . , γn) ∈ R
n 	−→

n
∑

i=1

γi

and the sets

�i
.
=

{

[0, f (ρi,0)], if 0 ≤ ρi,0 ≤ σ ,

[0, f (σ )], if σ ≤ ρi,0 ≤ 1,
i = 1, . . . , n,

�j
.
=

{

[0, f (σ )], if 0 ≤ ρj,0 ≤ σ ,

[0, f (ρj,0)], if σ ≤ ρj,0 ≤ 1,

j = n + 1, . . . , n + m,

�
.
=

{

(γ1, . . . , γn) ∈ �1 × · · · × �n

∣

∣A · (γ1, . . . , γn)
T

∈ �n+1 × · · · × �n+m

}

.

The set � is closed, convex and not empty. Furthermore,

by (RP), ∇E is not orthogonal to any nontrivial subspace

contained in a supporting hyperplane of �, therefore there

exists a unique vector (γ̂1, . . . , γ̂n) ∈ � such that

E(γ̂1, . . . , γ̂n) = max
(γ1,...,γn)∈�

E(γ1, . . . , γn).

For every i ∈ {1, . . . , n}, we choose ρ̂i ∈ [0,1] such that

f (ρ̂i) = γ̂i,

ρ̂i ∈

{

{ρi,0}∪ ]τ(ρi,0),1], if 0 ≤ ρi,0 ≤ σ ,

[σ,1], if σ ≤ ρi,0 ≤ 1.
(2.13)

By (F ), ρ̂i exists and is unique. Let

γ̂j
.
=

n
∑

i=1

αji γ̂i, j = n + 1, . . . , n + m,

and ρ̂j ∈ [0,1] be such that

f (ρ̂j ) = γ̂j ,

ρ̂j ∈

{

[0, σ ], if 0 ≤ ρj,0 ≤ σ ,

{ρj,0} ∪ [0, τ (ρj,0)[, if σ ≤ ρj,0 ≤ 1.
(2.14)

Since (γ̂1, . . . , γ̂n) ∈ �, ρ̂j exists and is unique for every

j ∈ {n + 1, . . . , n + m}. The thesis is achieved. �

The solution on each road is given by the solution to Rie-

mann problem with data (ρi0, ρ̂i) for incoming roads and

(ρ̂j , ρj0) for outgoing roads. Once the solution to Riemann

problems is obtained, one can use a wave front tracking al-

gorithm to build a sequence of approximate solutions.

Remark 2.7 In order to have admissible solutions to Rie-

mann problems, we need that (ρi0, ρ̂i) is solved by waves

with negative speed, while (ρ̂j , ρj0) is solved by waves with

positive speed. This is equivalent to conditions (2.9) and

(2.10).

2.3 Existence of Solutions

Once the solution of Riemann problems at junctions is ob-

tained, using that the speed of propagation is finite, one con-

structs solutions via wave-front tracking algorithm.
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Fig. 2 Traffic light

Now we are assuming to have junctions composed by two

incoming and two outgoing roads. We are able to give an es-

timate of the total variation of the flux along an approximate

wave front tracking solution.

Lemma 2.8 Consider a road network (I,J ). For some

K > 0 we have the estimate on the flux variation

Tot.Var.(f (ρ(t, ·))) ≤ eKtTot.Var.(f (ρ(0+, ·)))

≤ eKtTot.Var.(f (ρ(0, ·))) + 2Rf (σ)

for each t ≥ 0, with R the total number of roads of the net-

work.

Now we can state the existence result for the approximate

solution.

Theorem 2.9 Fix a road network (I,J ). Given C > 0 and

T > 0, there exists an admissible solution defined on [0, T ]

for every initial data ρ̄ ∈ cl{ρ : T V (ρ) ≤ C}, where cl is the

closure in L1
loc.

For the proof of these results see again [9].

2.4 Examples

2.4.1 Traffic Light

In [8] the results on Cauchy problems have been extended

to the case of time dependent coefficients αij with a finite

number of discontinuities. Indeed, a possible assumption for

the coefficients of junction with a traffic light is to take them

as varying with red or green light.

At t = 0 the light-colour is fixed. On each incoming road,

the effect of the traffic light can be qualitatively traced as

follows. Equation (2.1) together with a boundary condition

at x = 0 describes the evolution of the car densities. This

boundary datum is defined as a piecewise constant periodic

function of time whose period is �g + �r . When cars stop,

a backward shock wave along the incoming road is created.

However, here we present a simpler modellization, that

will be shown in Sect. 3.3.3. We consider a single road with

a traffic light, where �g and �r are the two light phases:

Fig. 3 The flux functions f1(ρ) and f2(ρ)

Fig. 4 Interface at the

bottleneck

namely green and red. Traffic light is reproduced by the in-

troduction of boundary conditions in the numerical approxi-

mation scheme in correspondence of the traffic light position

along the road.

2.4.2 Bottleneck

The simplest application of the fluid-dynamic model pre-

sented in the previous section is represented by the bottle-

neck, which is a layout of the road characterized by a narrow

passage that can constitute a point of congestion.

We consider two different flux functions along the road,

where the conservation of cars is always expressed by (2.1)

endowed with initial conditions (ρ1,0, ρ2,0) and boundary

condition on the widest road ρ1(t,0) = ρ1,b(t). In the largest

road the flux assumed is the following

f1(ρ) = ρ(1 − ρ), ρ ∈ [0,1], (2.15)

while, in the narrowest one, the flux considered is

f2(ρ) = ρ

(

1 −
3

2
ρ

)

, ρ ∈ [0,2/3]. (2.16)

The maximum for the fluxes is unique:

f1(σ1) = max
[0,1]

f1(ρ) =
1

4
, with σ1 =

1

2
, (2.17)

f2(σ2) = max
[0,2/3]

f2(ρ) =
1

6
, with σ2 =

1

3
. (2.18)

A key role is played by the separation point between the

two parts of the road, say D. Indicate by ρl the point placed

on the left respect to D (that belongs to the widest part of
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Fig. 5 A junction with two incoming and two outgoing roads

the street) and by ρr the point of the narrowest part on the

right respect to S so that we can consider the bottleneck as

composed by two roads. The maximization of f1 and f2 is

performed following the rules, respectively

f max
1 (ρ) =

{

f1(ρl) if ρl ≤ σ1,

f1(σ1) if ρl ≥ σ1,

f max
2 (u) =

{

f2(σ2) if ρr ≤ σ2,

f2(ρr) if ρr ≥ σ2

and the intersection point between the two intervals is ob-

tained taking the minimum

γ = min{f max
1 (ρl), f

max
2 (ρr)}, (2.19)

with ρl and ρr instantaneously fixed.

As the maximum density allowed in the second part is

given by σ2 = 1
6

, the creation of queues occurs when the

density on the first road verifies

ρ(1 − ρ) =
1

6
⇐⇒ ρ̄ =

1 −

√

1
3

2
≃ 0.21. (2.20)

Hence, if we start from an empty configuration (namely

ρ1,0 = 1, ρ2,0 = 0) and the boundary datum satisfies the

condition ρ1,b(t) < ρ̄, then there is no formation of shocks

propagating backwards.

2.4.3 Two Incoming and Two Outgoing Roads

Here we consider the particular case of a junction with two

outgoing and two incoming roads. The flux function is taken

as follows:

f (ρ) = ρ(1 − ρ).

The incoming roads are indicated as 1 and 2, while the out-

going roads are 3 and 4. In order to determine the region for

the maximization of the flux, we impose a restriction on the

initial data. For roads i = 1,2 the maximum flux reads:

f max
i =

{

f (σ ) if ρi,0 ∈ [σ,ρmax],

f (ρi,0) if ρi,0 ∈ [0, σ ),

while for roads j = 3,4 the maximum flux is:

f max
j =

{

f (σ ) if ρj,0 ∈ [0, σ ],

f (ρj,0) if ρj,0 ∈ (σ,ρmax].

Fig. 6 Maximization region

Fig. 7 A junction with two

incoming and one outgoing

roads

We obtain the two sets:

�12 = [0, f (ρ̄10)] × [0, f (ρ̄20)] and

�34 = [0, f (ρ̄30)] × [0, f (ρ̄40)]

and maximize the sum of fluxes on the region �12 ∩

A−1(�34).

Introducing the notation γl = f (ρ̄l,0), l = 1,2,3,4, we

have

max(γ1 + γ2) = γ̂1 + γ̂2

and we obtain γ̂3 and γ̂4, through the following relation

A

(

γ̂1

γ̂2

)

=

(

γ̂3

γ̂4

)

∈ �34, (2.21)

where the traffic distribution matrix reads

A =

(

α31 α32

α41 α42

)

. (2.22)

The solution is:

(γ̂1, γ̂2, γ̂3, γ̂4)

and the corresponding ρ̂l are given by

f (ρ̂l) = γ̂l, l = 1, . . . ,4. (2.23)

In particular, we invert (2.23) using the following rules:

i = 1,2, ρ̂i ∈

{

{ρi,0}∪ ]τ(ρi,0),1], if 0 ≤ ρi,0 ≤ σ ,

[σ,1], if σ ≤ ρi,0 ≤ 1,

(2.24)

j = 3,4, ρ̂j ∈

{

[0, σ ], if 0 ≤ ρj,0 ≤ σ ,

{ρj,0} ∪ [0, τ (ρj,0)[, if σ ≤ ρj,0 ≤ 1.

(2.25)
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Fig. 8 Solutions to Riemann

problem for rule (C)

2.4.4 Two Incoming and One Outgoing Roads

In order to show how rule (C) previously introduced works,

let us consider a junction with one outgoing and two incom-

ing roads. As explained in Sect. 2, condition (RP) on A can-

not hold for crossings with two incoming and one outgo-

ing roads. Then we introduce a further parameter, namely q ,

with the following meaning: when the number of cars is too

big to let all of them go through crossing, there is a yield-

ing rule that describes the percentage of cars going through

the crossing, that comes from the first road. Let us fix a

crossing with two incoming roads [ai, bi], i = 1,2, and one

outgoing road [a3, b3] and assume that a right of way pa-

rameter q ∈ ]0,1[ is given. The solution to the Riemann

problem with initial data (ρ1,0, ρ2,0, ρ3,0) is composed by

a single wave on each road connecting the initial states to

(ρ̂1, ρ̂2, ρ̂3) determined as follows (cfr. with the solution

to the Riemann problem in the two incoming-two outgoing

roads). Define γ max
i , i = 1,2 and γ max

3 in the following way:

γ max
i =

{

f (ρi,0) if ρi,0 ∈ [0, σ ],

f (σ ) if ρi,0 ∈ ]σ,1],

and

γ max
3 =

{

f (σ ) if ρ3,0 ∈ [0, σ ],

f (ρ3,0) if ρ3,0 ∈ ]σ,1].

The quantities γ max
i represent the maximum flux that can be

reached by a single wave solution on each road. Since our

goal is to maximize going through traffic, we set:

γ̂3 = min{γ max
1 + γ max

2 , γ max
3 }. (2.26)

Consider the space (γ1, γ2), then rule (C) is respected by

points on the line:

γ2 =
1 − q

q
γ1. (2.27)

Thus define P to be the point of intersection of the line

(2.27) with the line γ1 + γ2 = γ̂3. Recall that the final fluxes

should belong to the region:

� = {(γ1, γ2) : 0 ≤ γi ≤ γ max
i },

then we distinguish two cases:

(a) P is inside �,

(b) P is outside �.

In the first case we set (γ̂1, γ̂2) = P , while in the second

we set (γ̂1, γ̂2) = Q, where Q is the point of the segment

� ∩ {(γ1, γ2) : γ1 + γ2 = γ̂3} closest to the line (2.27). We

show in Fig. 8 the cases (a)–(b).

Then we determine ρ̂i with rules (2.13) and (2.14) pre-

sented in the previous section.

2.5 Traffic Circles

Here we deal with the following traffic regulation problem:

given a junction with some incoming roads and some out-

going ones, is it preferable to regulate the flux via a traf-

fic light or via a traffic circle on which the incoming traffic

enters continuously? More precisely, assuming that drivers

arriving at the junction distribute on the outgoing roads ac-

cording to some known coefficients, our purpose is to under-

stand which solution performs better from the point of view

of total amount of cars going through the junction.

In order to treat this problem we need a model that de-

scribes the above situation and provides an accurate analy-

sis. To this aim we consider the fluid dynamic model based

on (2.1), proposed in [9] and adapted in a suitable way in

order to treat the case of traffic circles in [8], where a traf-

fic circle can be modelled using rule (C). Consider a general

network, as the traffic circle, with junctions having either

one incoming and two outgoing or two incoming and one

outgoing roads. Therefore at each junction we can refer to

the cases represented in Sects. 2.4.3, 2.4.4. Once the solu-

tion to Riemann problems is fixed then we can introduce the

definition of admissible solutions as in [8]. Similarly we can
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Fig. 9 Traffic circle

deal with the case of coefficients αij and right of way para-

meters qk depending on time.

Notice that we only treat the case of the single-lane traffic

circles. A model for the multi-lane traffic circles is proposed

in [8].

Consider a simple network representing a traffic circle

composed by four roads, named 1, . . . ,4, the first two in-

coming in the circle and the other two outgoing. In addition

there are four roads 1R, . . . ,4R that form the circle as in

Fig. 9. As before the parametrization of roads is given by

[ai, bi], i = 1, . . . ,4, and [aiR, biR], i = 1, . . . ,4. We assign

a traffic distribution matrix A describing how traffic coming

from roads 1,2 distributes through roads 3 and 4, passing

by the intermediate roads of the circle. Two parameters are

fixed, namely α,β ∈ ]0,1[, such that

(C1) If M cars reach the circle from road 1, then αM drive

to road 3 and (1 − α)M drive to road 4,

(C2) If M cars reach the circle from road 2, then βM drive

to road 4 and (1 − β)M drive to road 3.

Then we can determine the distribution coefficients, see [8].

3 Numerical Approximation

In order to find approximate solutions, we adapt to the prob-

lem the classical Godunov scheme (FG) and the 3-Velocities

Kinetic scheme of first and second order (K3V), already

presented and discussed in [7]. Concerning the discrete ki-

netic scheme, we recall that is a quite recent scheme for

conservation laws [1, 21], applied to traffic flow problem

in [7]. The kinetic scheme we consider are known for the

Cauchy problem. They were first introduced in the frame-

work of the Boltzmann approach of hydrodynamic prob-

lems, see [11, 22, 23]. A kinetic interpretation of flux split-

ting schemes is given in the paper by A. Harten, P.D. Lax,

Fig. 10 The flux function

and B. van Leer [15]. For general conservation laws, S. Jin

and Z. Xin introduced a relaxation approximation and con-

structed related numerical schemes, which are equivalent

to kinetic schemes with discrete velocities, for the Cauchy

problem [17]. A quite complete investigation on second or-

der relaxation and discrete kinetic schemes for general sys-

tems of conservation laws in several space variables and

with boundary conditions was developed in [1] and [2]. The

interactions at junctions are solved by the use of a Lin-

ear Programming algorithm that computes the maximized

fluxes for all the schemes.

For definitiveness, we choose the following flux

f (ρ) = vmaxρ

(

1 −
ρ

ρmax

)

, (3.1)

and, setting for simplicity ρmax = 1 = vmax:

f (ρ) = ρ(1 − ρ). (3.2)

The maximum σ = 1
2

is unique: f (σ ) = max[0,1] f (ρ) =

f max = 1
4

.

Remark 3.1 However, any concave flux could be assumed

instead of (3.1).

The graph in Fig. 10 represents the flux function f (ρ).

We define a numerical grid in (0, T ) × R
L using the fol-

lowing notations:

• �x is the space grid size;

• �t is the time grid size;

• (th, xm) = (h�t,m�x) for h ∈ N and m ∈ Z are the grid

points.

For a function v defined on the grid we write vh
m = v(th, xm)

for m,h varying on a subset of Z and N respectively. We

also use the notation uh
m for u(th, xm) when u is a continuous

function on the (t, x) plane.

3.1 Godunov Scheme [12, 13]

A good numerical method to solve the equations along roads

is represented by the Godunov scheme, which is based on

exact solutions to Riemann problems, [12, 13]. This method

was introduced in 1959 as an approach to solving the Euler
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equations of gas dynamics in the presence of shock waves,

for details see for instance [12]. The idea is the following:

first the initial datum is approximated by a piecewise con-

stant function; then the corresponding Riemann problems

are solved exactly and a global solution is simply obtained

by piecing them together; finally, one takes the mean and

proceeds by induction.

Let us now detail the scheme. We take a piecewise con-

stant approximation of the initial datum:

v0
m =

1

�x

∫ xm+1/2

xm−1/2

u0(x)dx, m ≥ 0 (3.3)

and the scheme defines vh
m recursively starting from v0

m.

Waves in two neighbour cells do not interact before time

�t if the CFL condition holds:

�t sup
m,h

{

sup
u∈I (uh

m−1/2,u
h
m+1/2)

|f ′(u)|
}

≤
1

2
�x. (3.4)

Solutions to Riemann problems from xm−1/2 are taken and

then projected on a piecewise constant function by

vh+1
m =

1

�x

∫ xm+1/2

xm−1/2

v�(th+1, x)dx. (3.5)

Since v is an exact solution of (2.1), we can use the Gauss-

Green formula in (2.1) to compute vh+1.

Under the CFL condition

�t sup
m,h

{

sup
u∈I (uh

m−1/2,u
h
m+1/2)

|f ′(u)|
}

≤ �x, (3.6)

the waves, generated by Riemann solutions, do not influ-

ence the solution in x = xm+1/2, for t ∈ (th, th+1). As the

flux is time invariant and continuous, we can put it out of

the integral and, setting gG(u, v) = F(WR(0;u,v)), with

WR( x
t
;v−, v+) the self-similar solution between v− and v+,

and, under the condition (3.6), the scheme can be written as:

vh+1
m = vh

m −
�t

�x

(

gG(vh
m, vh

m+1) − gG(vh
m−1, v

h
m)

)

. (3.7)

Then we define the projection of the exact solution on a

piecewise constant function

vh+1
m =

1

�x

∫ xm+1

xm

v�(x, th+1)dx. (3.8)

Since v is an exact solution of (2.1), we use the Gauss-

Green formula in (2.1) to compute this value. Under the

CFL condition, the solutions are locally given by the Rie-

mann problems and in particular the flux in x = xm+1/2 for

t ∈ (th, th+1) is given by

f (u(t, xm+1/2)) = f (WR(0;vk
m−1, v

k
m)),

where WR( x
t
;v−, v+) is the self-similar solution between

v− and v+. As the flux is time invariant and continuous,

we can put it out of the integral and, setting gG(u, v) =

f (WR(0;u,v)) under the condition (3.4), the scheme can

be written as:

vh+1
m = vh

m −
�t

�x

(

gG(vh
m, vh

m+1) − gG(vh
m−1, v

h
m)

)

. (3.9)

The numerical flux gG, for the flux we are considering, has

the expression:

gG(u, v) =

⎧

⎪

⎨

⎪

⎩

min(f (u), f (v)) if u ≤ v ,

f (u) if v < u < σ ,

f max if v < σ < u,

f (v) if σ < v < u.

3.2 Kinetic Method for a Boundary Value Problem [1, 2]

Here we present the kinetic scheme for initial-boundary

value conservation equations:

ut + F(u)x = 0, (3.10)

u(0, x) = u0(x), x ≥ 0, (3.11)

u(t,0) = ub(t), t ≥ 0, (3.12)

and (3.12) can be imposed only where it is compatible with

the trace of the solution to the problem and with the flux F .

We have u(t, x) ∈ R for t ≥ 0, x ≥ 0, and F is a Lipschitz

continuous function.

A kinetic approximation of the problem (3.10–3.12) is

obtained solving the following BGK-like system of K non-

linear equations:

∂tf
ε
k + λk∂xf

ε
k =

1

ε

(

Mk(u
ε) − f ε

k

)

, k = 1, . . . ,K, (3.13)

where the λk are fixed velocities (a set of real numbers not

all zero), ǫ is a positive parameter, and each f ǫ
k is a func-

tion of R
+ × [0, T ] × R

+ with values in R. We impose the

corresponding initial and boundary data:

f ǫ
k (0, x) = Mk(u0(x)), x ∈ R

+, (3.14)

f ǫ
k (t,0) = Mk(ub(t)) ∀λk > 0 and t ≥ 0. (3.15)

Functions Mk , k = 1, . . . ,N , are the Maxwellian functions

depending on uǫ , F and λk . To have the convergence of uε =
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∑N
k=1 f ε

k when ε → 0 towards the solution of the problem

(3.10–3.12), we need to impose the following compatibility

conditions:

N
∑

k=1

Mk(u) = u,

N
∑

k=1

λkMk(u) = F(u), (3.16)

that show the link between problem (3.10) and system

(3.13).

A sufficient condition for convergence is that M is

Monotone Non Decreasing on I , [21]. Then the following

subcharacteristic condition is satisfied for all u ∈ I :

min
k

λk ≤ F ′(u) ≤ max
k

λk. (3.17)

3.2.1 Kinetic Approximations

Here follows a presentation of the different approximations

we used in kinetic schemes already proposed in [21].

• Two velocities model. K = 2, λ1 = −λ2 = −λ. We ap-

proximate the scalar conservation law (2.1) by a relax-

ation system which is diagonalized in the form

{

∂tf
ε
1 − λ∂xf

ε
1 = 1

ε
(M1(u

ε) − f ε
1 )

∂tf
ε
2 + λ∂xf

ε
2 = 1

ε
(M2(u

ε) − f ε
2 ).

The associated Maxwellian functions are

M1(u) =
1

2

(

u −
F(u)

λ

)

, M2(u) =
1

2

(

u +
F(u)

λ

)

.

In order to respect the monotonicity condition MND on

I ⊂ R, we have the following relation for the velocity

vector λ:

max
u∈I

|F ′(u)| < λ. (3.18)

• Three velocities model. Dealing with more velocities cor-

responds to more accurate approximation schemes. Take

K = 3 and the velocities λ3 = −λ1 = λ > 0, λ2 = 0. The

approximate kinetic system has the Maxwellian functions

given by

M1(u) =
1

λ

{

0, if u ≤ 1
2

,

u(u − 1) + 1
4
, if u ≥ 1

2
,

M2(u) =

{

(1 − 1
λ
)u + 1

λ
u2, if u ≤ 1

2
,

(1 + 1
λ
)u − 1

λ
u2 − 1

2λ
, if u ≥ 1

2
,

M3(u) =
1

λ

{

u(1 − u), if u ≤ 1
2

,

1
4
, if u ≥ 1

2
.

At the boundary we impose f3(t,0) = M3(ub(t)) and the

Maxwellian are MND if and only if the condition (3.18)

is satisfied. In this case (3.18) reads

0 ≤ M ′
2(u) ≤ 1 −

|F ′(u)|

λ
.

This model, at first order, is the kinetic expression of the

Engquist-Osher scheme.

3.2.2 Numerical Scheme

Following [1, 2], we discretize the problem (3.13–3.15) and

making ǫ tend to zero, we obtain a numerical scheme for

the initial boundary value problem for the conservation law

(3.10), see [1] for more details and convergence results. Here

we consider the three velocities model. As usual, we dis-

cretize data of the problem by a piecewise constant approx-

imation:

f h
−1,k = Mk(u

h
b), k = 1, . . . ,K, h = 0, . . . ,M − 1,

f 0
m,k = Mk(u

0
m), m ∈ N.

The operators used to solve system (3.13) are splitted into

the transport part and the collision part.

For the transport contribute, the scheme written in the

Harten formulation including both first and second order in

space approximation reads:

m ≥ 0,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

f
h+ 1

2

m,k = f h
m,k(1 − Dh

m− 1
2 ,k

) + Dh

m− 1
2 ,k

f h
m−1,k,

if λk > 0,

f
h+ 1

2

m,k = f h
m,k(1 − Dh

m+ 1
2 ,k

) + Dh

m+ 1
2 ,k

f h
m+1,k,

if λk ≤ 0.
(3.19)

Note that it is necessary to assign the boundary value f h
b,k =

f h
−1,k only for positive velocities. A first order in space up-

wind approximation is chosen:

Dh

m− 1
2 ,k

= Dh

m+ 1
2 ,k

= ξk = |λk|
�t

�x

and in that case (3.19) is well defined even for m = 0.

The transport part can be approximated by a second order

scheme as follows. Starting from f h
m,k we build a piecewise

linear function:

f̄ h
m,k(x) = f h

m,k + (x − xm)σ h
m,k, x ∈ (x

m− 1
2
, x

m+ 1
2
),

where σ h
m,k are limited slopes and we solve exactly the trans-

port equations on [th, tn+1]. Projecting the solution on the

set of piecewise constant functions on the cells, we obtain

the explicit expression for Dh

m+ 1
2 ,k

:

Dh

m+ 1
2 ,k

= ξk

(

1 + sgn(λk)�x
(1 − ξk)

2

(σ h
m+1,k − σ h

m,k)

�f h

m+ 1
2 ,k

)

,

(3.20)
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with the convention that if �f h

m+ 1
2 ,k

= 0, then Dh

m+ 1
2 ,k

=

ξk = |λk|
�t
�x

. Note that if λk > 0 (3.20) is defined for m ≥

−1, in the other cases is available for m ≥ 0. The slopes σ h
m,k

for m ≥ 1 are:

σ h
m,k = minmod

(�f h

m+ 1
2 ,k

�x
,

�f h

m− 1
2 ,k

�x

)

,

with �f h

m+ 1
2 ,k

= f h
m+1,k − f h

m,k and minmod(a, b) =

min(|a|, |b|)
sgn(a)+sgn(b)

2
. For the convergence results see

[1]. The time step restriction for both cases is

max
1≤k≤K

|λk|�t ≤ �x. (3.21)

Then we use the solution obtained from the previous scheme

as the initial condition for collision system. Under the com-

patibility conditions (3.16) we find the exact solution of the

system, that for ǫ → 0 is

f h+1
m,k = Mk(u

h+ 1
2

m ) = Mk(u
h+1
m ), m ≥ 0, n ≥ 1 (3.22)

and the identity holds

uh+1
m =

∑

k

f
h+ 1

2

m,k = u
h+ 1

2
m . (3.23)

Assuming that the Maxwellian functions are MND, we have

the usual CFL condition

max
u

|F ′(u)|�t ≤ �x

and, from the transport part of the scheme, we have to im-

pose the time step restriction in (3.21).

3.3 Boundary Conditions and Conditions at Junctions

Here we impose boundary conditions for roads with one of

the endpoints not connected to any junction: in that case we

impose at the boundary the given boundary datum or a Neu-

mann condition (only for outgoing roads).

We also assign boundary conditions for roads with end-

points connected to junctions: we impose at the boundary

the boundary datum determined by interactions which is

computed by a simplex-type linear programming algorithm.

3.3.1 Godunov Scheme

Boundary Conditions Suppose to assign a condition at the

incoming boundary x = 0:

u(t,0) = ρinc
b (t), t > 0

and study equation only for x > 0. Now we are considering

the initial-boundary value problem (3.10–3.11–3.12) with

u0 ∈ C1(R+), ub(t) ∈ C1((0, T )), F ∈ C1(R). It is not easy

to find a function u that satisfies (3.12) in a classical sense,

because, in general, the boundary data cannot be assumed.

One seeks a condition which is to be effective only in the

inflow part of the boundary. Following [4] the rigorous way

of assigning the boundary condition is:

max
k∈I (u(t,0),ρinc

b (t))

{

sgn(u(t,0) − ρinc
b (t))[F(u(t,0)) − F(k)]

}

= 0. (3.24)

We practically proceed by inserting a ghost cell and defining

vh+1
0 = vh

0 −
�t

�x

(

gG(vh
0 , vh

1 ) − gG(uh
(inc), v

h
0 )

)

, (3.25)

where

uh
(inc) =

1

�t

∫ th+1

th

ρinc
b (t)dt

takes the place of vh
−1.

An outgoing boundary can be treated analogously. Let

x < xL. Then the discretization reads:

vh+1
L = vh

L −
�t

�x

(

gG(vh
L, uh

(out)) − gG(vh
L−1, v

h
L)

)

, (3.26)

where

uh
(out) =

1

�t

∫ th+1

th

ρout
b (t)dt

takes the place of vh
L+1, that is a ghost cell value.

Conditions at a Junction For roads connected to a junction

at the right endpoint we set

vh+1
L = vh

L −
�t

�x

(

γ̂i − gG(vh
L−1, v

h
L)

)

,

while for roads connected to a junction at the right endpoint

we have

vh+1
0 = vh

0 −
�t

�x

(

gG(vh
0 , vh

1 ) − γ̂j

)

,

where γ̂i, γ̂j are the maximized fluxes described in Sect. 2.

Remark 3.2 For Godunov scheme there is no need to invert

the flux f to put it in the scheme, as the Godunov flux coin-

cides with the Riemann flux. In this case it suffices to insert

the computed maximized fluxes directly in the scheme.

3.3.2 Kinetic Schemes

Boundary Conditions For m = 0 we take for the boundary
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Fig. 11 Density when the light

is red, h = 0.0125, T = 0.5

Fig. 12 Density after the light

turns green, h = 0.0125,

T = 1.1

σ h
−1,k = 0.

In this case, the slope σ h
0,k can be defined as

• For λk > 0:

σ h
0,k = minmod

(

f h
1,k − f h

0,k

�x
,2

f h
0,k − Mk(u

h
b)

�x

)

,

where uh
b is the boundary condition;

• For λk < 0:

σ h
0,k =

f h
1,k − f h

0,k

�x
.

When m = L the scheme for λk < 0 requires the values

f h
L+1,k, f

h
L+2,k , that can be obtained, for instance, by im-

posing a Neumann condition.
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Fig. 13 The light is again red,

high density at x = 1,

h = 0.0125, T = 2.0

Fig. 14 High density at the

entrance (x = 0),

�g = �r = 1.0, h = 0.0125,

T = 3.8

Conditions at a Junction As usual, in order to impose the

boundary condition at a junction we need to examine the

links between the roads. At the right boundary (m = L) of

roads linked to the junction on the right endpoint one has:

f
h+ 1

2

L,k = f h
L,k(1 − Dh

L+ 1
2 ,k

) + Dh

L+ 1
2 ,k

f h
L+1,k, for λk < 0,

with

f h
L+1,k = Mk(f

−1(γ̂i)).

Moreover we use the Neumann condition f h
L+2,k = f h

L+1,k

for roads which are not linked to the junction on the right.

At the left boundary (m = 0) of roads linked to the junction

on the left endpoint the scheme in case λk > 0 reads:

f
h+ 1

2

0,k = f h
0,k(1 − Dh

− 1
2 ,k

) + Dh

− 1
2 ,k

f h
−1,k,

with

f h
−1,k = Mk(f

−1(γ̂j )).
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Table 1 Convergence order γ , defined in (4.1), and errors of the approximation schemes Godunov (G), 3 velocities Kinetic methods of first order

(3V K1) and of second order (3V K2) for data 4.5, �g = �r = 1.0, T = 2

G 3V K1 3V K2

h γ L1 Error γ L1 Error γ L1 Error

0.1 1.074739 0.048958 1.098426 0.050723 1.518485 0.026815

0.05 0.717578 0.023243 0.740926 0.023689 1.584962 0.009360

0.025 0.732966 0.014135 0.738094 0.014174 1.608739 0.003120

0.0125 0.743919 0.008504 0.741168 0.008498 1.584962 0.001057

0.00625 0.779725 0.005078 0.764019 0.005084 1.560714 0.000341

0.003125 0.840073 0.002958 0.829557 0.002994 1.580145 0.000114

Table 2 Orders and errors of the approximation schemes Godunov (G), Kinetic of first order (3V K1) and of second order (3V K2) for data (4.6),

T = 0.5

G 3V K1 3V K2

h γ L1 Error γ L1 Error γ L1 Error

0.1 1.51554 3.347e−002 1.14981 2.886e−002 1.19519 2.931e−002

0.05 0.89752 1.170e−002 0.83645 1.301e−002 0.92098 1.280e−002

0.025 0.58367 6.285e−003 0.85088 7.284e−003 0.75549 6.761e−003

0.0125 1.22648 4.194e−003 1.16427 4.038e−003 1.29260 4.005e−003

0.00625 0.65763 1.792e−003 0.83753 1.802e−003 0.73386 1.635e−003

0.003125 1.50268 1.136e−003 1.12176 1.008e−003 1.50429 9.830e−004

Table 3 Errors of the approximation schemes Godunov (G), Kinetic

of first order (3V K1) and of second order (3V K2) for data (4.6),

T = 1.0

G 3V K1 3V K2

h L1 Error L1 Error L1 Error

0.1 2.07651e−002 2.19038e−002 2.41712e−002

0.05 1.25376e−002 1.45365e−002 1.35243e−002

0.025 8.38778e−003 8.07708e−003 8.00970e−003

0.0125 3.58458e−003 3.60392e−003 3.26967e−003

0.00625 2.27234e−003 2.01675e−003 1.96603e−003

0.003125 8.01899e−004 9.26764e−004 8.49835e−004

Notice that γ̂i, γ̂j are the maximized incoming and outgo-

ing fluxes obtained with the procedure described in Sect. 2,

where the inversion of the flux function f follows the rules

below.

• For roads entering the junction:

– If uh
L ∈ [0, σ ] and γ̂i < F(uh

L) then F−1(γ̂i) ∈

[τ(uh
L),1),

– If uh
L ∈ [0, σ ] and γ̂i = F(uh

L) then F−1(γ̂i) = uh
L,

– If uh
L ∈ [σ,1] then F−1(γ̂i) ∈ [σ,1],

with i = 1,2;

• For roads coming out of the junction:

– If uh
0 ∈ [σ,1] and γ̂j < F(uh

0) then F−1(γ̂j ) ∈

[0, τ (uh
0)),

– If uh
0 ∈ [σ,1] and γ̂j = F(uh

0) then F−1(γ̂j ) = uh
0 ,

– If uh
0 ∈ [0, σ ] then F−1(γ̂j ) ∈ [0, σ ],

with j = 1,2.

Recall that uh
m indicates a macroscopic variable and it rep-

resents a density.

3.3.3 Conditions at Traffic Light

In order to deal with traffic lights we introduce some suit-

able boundary conditions for numerical schemes in the point

where traffic light is placed along the road, namely xL. Let

m = mL be the node of the numerical mesh of the discretiza-

tion corresponding to the traffic light position.

Consider first Godunov method. For the space node on

the left of the traffic light we set

vh+1
mL−1 = vh

mL−1 −
�t

�x

(

gG(vh
mL−1,1)

− gG(vh
mL−2, v

h
mL−1)

)

, (3.27)

while for the node on the right we have

vh+1
mL

= vh
mL

−
�t

�x

(

gG(vh
mL

, vh
mL+1) − gG(0, vh

mL
)
)

. (3.28)
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Fig. 15 Traffic can still enter

on the left, h = 0.0125,

�g = 1.5, �r = 0.5, T = 3.8

Fig. 16 Evolution in time for

data (4.6) computed by 3V K2

scheme, h = 0.0125

Notice that for the relaxation scheme written in the macro-

scopic variables the conditions at the traffic lights coincide

with the conditions written for the Godunov method.

Let us now turn to the kinetic scheme written in the mi-

croscopic variables. At the left boundary respect to the traf-

fic light (m = mL − 1) the scheme reads:

f
h+ 1

2

mL−1,k = f h
mL−1,k(1 − Dh

mL−1+ 1
2 ,k

) + Dh

mL−1+ 1
2 ,k

f h
mL,k,

for λk ≤ 0, (3.29)

where we impose

f h
mL,k = Mk(1).
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Fig. 17 Evolution in time for

data (4.7) computed by 3V K2

scheme, h = 0.0125

Fig. 18 Initial configuration of

data (4.10) with ρ1 = 0.4 = ρ1,b

at time T = 0, with h = 0.025

Fig. 19 Situation after the

interaction, T = 25, h = 0.025
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Fig. 20 Final configuration,

T = 470, h = 0.025

Table 4 Orders and errors of the approximation schemes Godunov (G), Kinetic of first order (3V K1) and of second order (3V K2) for data (4.7),

T = 1

G 3V K1 3V K2

h γ L1 Error γ L1 Error γ L1 Error

0.1 0.65705 1.841e−002 0.65705 1.841e−002 0.81414 1.2733e−002

0.05 0.67659 1.167e−002 0.67659 1.168e−002 0.82570 7.2418e−003

0.025 0.70677 7.305e−003 0.70676 7.306e−003 0.84143 4.0859e−003

0.0125 0.73821 4.476e−003 0.73821 4.476e−003 0.85393 2.2803e−003

0.00625 0.76816 2.683e−003 0.76816 2.683e−003 0.86470 1.2616e−004

0.003125 0.79447 1.575e−003 0.79447 1.575e−003 0.87441 6.9283e−004

Table 5 Errors of the approximation schemes Godunov (G), Kinetic

of first order (3V K1) and of second order (3V K2) for data (4.7), T = 4

G 3V K1 3V K2

h L1 Error L1 Error L1 Error

0.1 2.16316e−002 2.18455e−002 1.69308e−002

0.05 7.10040e−003 1.09717e−002 1.09403e−002

0.025 4.70270e−003 5.44031e−003 3.70921e−003

0.0125 2.48223e−003 2.61377e−003 2.61455e−003

0.00625 1.09907e−003 8.57023e−004 7.89821e−004

0.003125 5.80967e−004 3.61744e−004 2.75442e−004

For λk ≤ 0 we have

σ h
mL−1,k

= minmod

(

2
f h

mL,k − f h
mL−1,k

�x
,
f h

mL−1,k − f h
mL−2,k

�x

)

,

σ h
mL,k = 0,

and in the case λk > 0 we set

σ h
mL−1,k = f h

mL−1,k − f h
mL−2,k.

At the right boundary (m = mL) the scheme is

f
h+ 1

2

mL,k = f h
mL,k(1 − Dh

mL− 1
2 ,k

) + Dh

mL− 1
2 ,k

f h
mL−1,k,

for λk > 0, (3.30)

where we impose

f h
mL−1,k = Mk(0).

For λk > 0 we have

σ h
mL−1,k = 0,

σ h
mL,k = minmod

(

f h
mL+1,k − f h

mL,k

�x
,2

f h
mL,k − f h

mL−1,k

�x

)

,

and in the case λk <= 0 we have

σ h
mL,k = f h

mL+1,k − f h
mL,k.

4 Tests

In this section we present some numerical tests performed

with the schemes previously introduced, such as the Go-

dunov scheme (G), the three-velocities Kinetic scheme of

first order (3V K1) and the three-velocities Kinetic method

of second order (3V K2) with λ3 = −λ1 = 1.0 and λ2 = 0.

In general, the three-velocities kinetic models work better

than the two-velocities ones. We introduce the formal order

of convergence γ of a numerical method as an average on
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Table 6 Convergence order γ and errors of the approximation schemes Godunov (G), kinetic 3-velocities of first order (3V K1) and second order

(3V K2), for T = 1

G 3V K1 3V K2

h γ L1 Error γ L1 Error γ L1 Error

0.2 1.4 6.01235e−003 1.4 6.00949e−003 1.9 6.72896e−003

0.1 0.88 2.27825e−003 0.88 2.27511e−003 0.94 1.82122e−003

0.05 0.93 1.23890e−003 0.93 1.23605e−003 0.98 9.49608e−004

0.025 0.97 6.51197e−004 0.98 6.48354e−004 0.99 4.81271e−004

0.0125 0.98 3.32129e−004 0.99 3.29293e−004 0.99 2.41161e−004

0.00625 0.98 1.67647e−004 1.0 1.65002e−004 1.0 1.20602e−004

Table 7 L1-errors of the approximation schemes Godunov (G), ki-

netic 3-velocities of first order (3V K1) and second order (3V K2) ob-

tained using the exact solution at time T = 20

G 3V K1 3V K2

h L1 Error L1 Error L1 Error

0.2 1.11248e−001 5.58553e−002 5.53875e−002

0.1 4.56467e−002 2.24683e−002 2.07874e−002

0.05 1.21337e−002 9.74289e−003 6.93735e−003

0.025 1.17982e−002 5.76965e−003 5.41827e−003

0.0125 1.16302e−002 8.02476e−003 8.04770e−003

0.00625 7.44115e−003 5.62481e−003 5.63628e−003

the set of roads N , where N is the total amount of roads in

the network:

γ =
1

N

N
∑

i=1

γi, (4.1)

where

γi = log2

(

ei(1)

ei(2)

)

, i = 1, . . . ,N, (4.2)

with i the index of roads composing the network. The L1-

error on each road is

ei(p) =
�x

p

∑

l=0,...,pL

∣

∣

∣

∣

w
pM

l

(

�x

p

)

− w
pM

2l

(

�x

2p

)
∣

∣

∣

∣

,

p = 1,2, i = 1, . . . ,N, (4.3)

where wM
m (�x) denotes the numerical solution obtained

with the space step discretization equal to �x, computed

in xm at the final time tM = T . The total L1-error is

TOTerr =

N
∑

i=1

ei(1). (4.4)

For some animations, see [6].

4.1 Traffic Light

At t = 0 the light is assumed to be red and, for simplicity,

we fix �g = �r = 1.0 (recall the definitions of Sect. 2.4.1).

Let us assume on the road the following initial and

boundary data:

ρ(x,0) = 0.3, ρb(t) = 0.5. (4.5)

Approximate solutions are computed by three meth-

ods, such as Godunov scheme (G), three velocities kinetic

method of first order (3V K1) and three velocities kinetic

method of second order (3V K2).

At t = 0 the light is red, thus the density becomes high

at x = 1.0, where the traffic light is placed and there is the

generation of a shock propagating backwards, see Fig. 11.

After the light turns green, cars can go and this corre-

sponds to the creation of a rarefaction wave in the direc-

tion of traffic flow, as showed in Fig. 12. When the light be-

comes red, a shock is again produced in correspondence of

the point where is placed the traffic light, see Fig. 13, and af-

ter a short time we can observe a big value of the car density

at the entrance of the road, as depicted in Fig. 14. Consider-

ing again the data (4.5) and taking �g = 1.5 and �r = 0.5,

thus meaning that the time of green is three times the time

of red, one can see that at time T = 3.8 the value of density

is much lower than in precedence, as showed by Fig. 15.

In Table 1 are reported order and errors for the approx-

imate solution computed with the following methods, such

as the Godunov scheme (G), three velocities Kinetic method

of first order (3V K1) and three velocities Kinetic method

of second order (3V K2). The initial and boundary data are

(4.5) and we set �g = �r = 1.0.

From this simple example it is easy to see that tuning the

values �g,�r it is possible to control traffic.

4.2 Bottleneck

Now we want to present some numerical approximations

to (2.1) with fluxes (2.15) and (2.16). Tables 2–5 provide a
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Table 8 Convergence order γ , defined in (4.1), and errors of the approximation schemes Godunov (G), 3 velocities Kinetic methods of first order

(3V K1) and of second order (3V K2) for data 4.11, q = 0.25, T = 1

G 3V K1 3V K2

h γ L1 Error γ L1 Error γ L1 Error

0.1 0.738593 0.009851 0.792745 0.009130 1.458312 0.009001

0.05 0.839375 0.005904 0.879531 0.005270 1.560714 0.003214

0.025 0.895055 0.003300 0.936022 0.002865 1.581739 0.000812

0.0125 0.929770 0.001774 0.968897 0.001497 1.524962 0.000473

0.00625 0.952295 0.000931 0.985818 0.000765 1.572714 0.000101

0.003125 0.983923 0.000481 0.9972134 0.000386 1.560145 0.000072

Fig. 21 1 outgoing and 2

incoming roads with q = 0.5,

h = 0.0125, T = 0

comparison between the three methods in terms of L1-error

(4.3) and order of convergence (4.1).

Here we deal with a road of length 2 parametrized by the

interval [0,2] with the separation point placed in the middle

of the road, namely x = 1. The numerical schemes used to

provide the approximate solution are Godunov scheme (G),

three-velocities Kinetic scheme of first order (3V K1) and

second order (3V K2) with the following velocities: λ3 =

−λ1 = 1.0 and λ2 = 0.

Test B1 Let us take the following initial and boundary data

ρ1(0, x) = 0.66, ρ2(0, x) = 0.66,

ρ1(t,0) = ρ1,b(t) = 0.25.
(4.6)

Since the initial value 0.66 is very close to the maximum

value that can be absorbed by road 2, after a short time,

namely T = 2, the formation of a traffic jam can be ob-

served, see Fig. 16. Orders and errors are given in Tables 2

and 3.

Test B2 Let us assume the road is initially empty and take

the following initial and boundary data

ρ1(0, x) = ρ2(0, x) = 0, ρ1,b(t) = 0.4. (4.7)

Since ρ1,b > ρ̄ ≃ 0.21, even in this case there is a jam for-

mation, as explained in Sect. 2.4.2, see Fig. 17. Orders and

errors are given in Tables 4 and 5.
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Fig. 22 1 outgoing and 2

incoming roads with q = 0.5,

h = 0.0125, T = 10

Fig. 23 1 outgoing and 2

incoming roads with q = 0.25,

h = 0.0125, T = 10

From the analysis of the previous tables we can see that

both 3V K1 and 3V K2 perform better than the Godunov

scheme. In fact, the kinetic schemes show a good stability

even after the interaction at the junction.

4.3 Two Incoming–Two Outgoing Roads

Recall definitions of Sect. 2.4 of junction J with two incom-

ing roads and two outgoing roads all parametrized with the

interval [0,1]. Here we refer to the situation described in
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Fig. 24 1 outgoing and 2

incoming roads with q = 0.75,

h = 0.0125, T = 10

Appendix of [9], where the coefficients of the distribution

matrix A are such that 0 < α32 < α31 < 1/2. We set

α31 = α1, α32 = α2, α41 = 1 − α1,

α42 = 1 − α2

and we introduce the notation

ρ1(0, x) = ρ1,0, ρ2(0, x) = ρ2,0, ρ3(0, x) = ρ3,0,

ρ4(0, x) = ρ4,0.

The flux function is taken as in (3.2) and the distribution

matrix is fixed as

A =

(

0.4 0.3

0.6 0.7

)

(4.8)

We assume the following constant initial and boundary data

ρ1,0 = ρ4,0 = σ,

ρ2,0 = ρ3,0 = f −1

(

α1

1 − α2
f (σ )

)

= 0.82732683535,

ρ1,b(t) = σ,

ρ2,b(t) = f −1

(

α1

1 − α2
f (σ )

)

= 0.82732683535.

(4.9)

Remark 4.1 Notice that the boundary condition is imposed

only on the incoming roads, as for the outgoing ones we use

a Neumann condition at the final endpoint.

Let us introduce a perturbation on the initial data of

road 1

ρ1(0, x) =

{

ρ1,0 = σ if 0 ≤ x ≤ 0.5,

ρ1 if x ≥ 0.5,
(4.10)

and ρ1, ρ1,0, ρ2,0, ρ3,0, ρ4,0 be as in (4.9), so that (ρ1,0,

ρ2,0, ρ3,0, ρ4,0) is an equilibrium configuration.

In (4.10) assume to have a small perturbation, repre-

sented by ρ1 = 0.4, and let the boundary data on road 1

be ρ1,b = 0.4. The initial and boundary data on the other

roads are taken as in (4.9). After a certain time (t ∼ 8) the

wave (ρ1, ρ1,0) interacts with the junction thus determining

a shock wave travelling on road 3. At time T = 470 a new

equilibrium configuration is reached: the value of density

on road 4 remains constant and on road 2 the final density

is very close the initial value ρ2,0. In Figs. 18–20 we de-

scribe the evolution in time of road 1 and road 3, where

numerical solutions were produced by the 3V K2 scheme.

Tables 6 and 7 report orders and L1-errors of the schemes,

defined by (4.1), respectively before and after the interaction

at the junction. Looking at Table 7 one can observe that the

accuracy of kinetic methods is higher respect to Godunov

scheme. This reveals that Godunov scheme is more diffu-

sive. Notice that in this case for 3V K2 scheme we used the

boundary condition σ h
0,k = 0 for λk < 0.
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Fig. 25 Traffic circle with q1 = q2 = 0.25
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Fig. 26 Traffic circle with q1 = q2 = 0.5
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Fig. 27 Traffic circle with q1 = q2 = 0.75
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Fig. 28 Re di Roma

4.4 Junction with 2 Incoming and 1 Outgoing Roads

Recall rule (C) of Sect. 2. Consider a crossing with two in-

coming roads and one outgoing road all parametrized by

[0,1] and fix a right of way parameter q ∈ ]0,1[.

ρ1,0 = 0.25, ρ2,0 = 0.4, ρ3,0 = 0.5,

ρ1,b(0, t) = 0.25, ρ2,b(0, t) = 0.4.
(4.11)

In Figs. 21–24 we represent road 3 in the upper graph,

road 1 on the lower left graph and road 2 on the lower right

one. The numerical solutions have been generated by Go-

dunov method.

The initial data is depicted in Fig. 21.

First we take q = 0.5 (see Fig. 22). Both the incoming

roads have the same right of way parameter: the density in-

creases on road 1 and road 2 and becomes considerably high,

while the density on road 3 remains constant.

Then assume q = 0.25 and observe the situation de-

scribed in Fig. 23. In the case represented in Fig. 23 road

2 has the right of way parameter equal to 1 − q = 0.75. It

is easy to see that the density becomes very high on road 1,

since road 2 has the priority to pass; the density is high on

road 2 and remains the same on road 3.

Now take q = 0.75. Figure 24 shows that road 1 pre-

serves its value of density, together with road 3, while road

2 reaches a very high value of density, due to the fact that its

right of way parameter is 1 − q = 0.25.

In Table 8 are reported orders and errors for data (4.11).

4.5 Traffic Circles

In the next pages we present some simulations reproducing

a simple traffic circle composed by 8 roads and 4 junctions.

The numerical solutions have been generated by the 3V K2

method for h = 0.025 and CFL = 0.5.

Consider the following initial and boundary data

ρ1(0, x) = 0.25, ρ2(0, x) = 0.4,

ρ3(0, x) = 0.5, ρ4(0, x) = 0.5,

ρ1R(0, x) = 0.5, ρ2R(0, x) = 0.5, (4.12)

ρ3R(0, x) = 0.5, ρ4R(0, x) = 0.5,

ρ1,b(t) = 0.25, ρ2,b(t) = 0.4.

The distribution coefficients, namely (α1R,3, α1R,2R, α3R,4,

α3R,4R), are assumed to be constant and are all equal to α =

0.5. Let us choose the following priority parameters, which

are q1 = q(1,4R,1R) = 0.25, q2 = q(2,2R,3R) = 0.25.

The fixed values imply that road 4R is the through street

respect to road 1 and road 2R is the through street respect

to 2. The evolution in time of traffic is reported in Fig. 25.

Observe that at time t = 5 shocks are generated on the en-

tering roads 1 and 2, while rarefaction waves in the direction

of traffic are created on roads 4R, 2R, 3, 4. Roads 1R and

3R do not change the level of the density. At t = 10 rar-

efaction waves travelling in the sense of traffic produce a

decrease in the car density on roads 4R, 3R, 3, 4. On enter-

ing roads 1 and 2 the effect of shocks travelling backwards

is a considerable increase of the density and, again, roads

1R and 3R have the same configuration, which corresponds

to the maximum flux. At time T = 40 the roads entering in

the circle have an high value of density as they wait at the

junctions, while densities of roads in the circle are lowered

due to the fact that traffic is flowing towards the outgoing

roads 3 and 4. We can observe that starting from the same

configuration (4.12) but setting differently the right of way

parameters, traffic within the circle is fluid and is distributed

between the outgoing roads.

Figure 26, obtained for data (4.12) and q1 = q2 = 0.5,

shows a situation quite similar to that in Fig. 25. The differ-

ence is represented by the values of density on the roads 2R

and 4R that reveal a shock formation with zero speed. As

a consequence, the time for covering the path of the circle

from road 1 to road 4 is higher than in the case depicted in

Fig. 25. In particular, let δ be the portion of road 2R at the

lowest value of density, i.e. 0.15, and 1 − δ the other portion

of the same road, we can estimate the time for covering the

path from road 1 to road 4. In the first case is

1

0.5
+

1

0.85
+

1

0.5
∼ 5.17

while here (with δ = 0.5) we get

1

0.5
+

δ

0.85
+

1 − δ

0.15
+

1

0.5
∼ 7.92

and the difference between the previous and the current case

is

�t =
1 − δ

0.15
−

1 − δ

0.85
= (1 − δ)

80

17
,
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Fig. 29 Re di Roma simulation,

t = 0.25, h = 0.01, cfl = 0.5

Fig. 30 Re di Roma simulation,

t = 6.25, h = 0.01, cfl = 0.5
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Fig. 31 Re di Roma simulation,

t = 9.25, h = 0.01, cfl = 0.5

Fig. 32 Re di Roma simulation,

t = 12.25, h = 0.01, cfl = 0.5
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Fig. 33 Re di Roma simulation,

t = 18.25, h = 0.01, cfl = 0.5

that is greater as δ → 0.

Let us set the right of way parameters as q1 =

q(1,4R,1R) = 0.75, q2 = q(2,2R,3R) = 0.75. This means

that road 1 is the through street respect to road 4R and road

2 is the through street respect to 2R. As before, the distrib-

ution coefficients are assumed to be constant and all equal

to α = 0.5. The evolution in time of traffic densities is de-

scribed in Fig. 27. One can observe that at time t = 1.5 the

chosen right of way parameters provoke shocks propagat-

ing backwards along roads 2R and 4R and consequently

a shock is created on road 2. Successively, the density on

roads 4R, 2R increases and shocks are propagating back-

wards on roads 1R and 3R. Roads 3 and 4 show a very

low density of cars. At T = 40 densities on the incoming

roads and within the circle (all equal to the maximum value

ρmax = 1), represent a situation of traffic jam, the so called

bumper-to-bumper traffic. This means that no cars can exit

the circle, as showed by the fact that roads 3 and 4 are empty.

Hence, in that case, the choice of the right of way parameter

determines a situation of completely blocked traffic.

Figures 25–27 show the evolution in time of the density

for the discussed cases with the following legend:

Fig. 34 Map of the Salerno junction on the A3 highway

Re di Roma Square Let us now take a portion of urban

network. In particular, we consider a crucial area for traffic

in the city of Rome, which is represented by the Square of

“Re di Roma”, showed in Fig. 28. Some animations can be

found on the web page [6].

Note that in this case we deal with a network composed

by 24 roads and 12 junctions. The next figures show some

simulations performed by the Godunov scheme with space

step h = 0.01, CFL 0.5, final time T = 20. The network

is initially empty and on each incoming road we put a low
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Fig. 35 The junction on the A3 highway

Fig. 36 Schematization of the junction on the A3 highway

Fig. 37 The entire network of the city

boundary density equal to ρb = 0.1. The right of way para-

meters, necessary for the junctions with only one outgoing

road, are fixed as q = 0.5, while the distribution coefficients

are chosen taking into account the different importance be-

tween the roads composing the circle. The evolution of den-

sities can be individuated through different colours along the

roads(light colours correspond to low density, dark colours

to high density).

Fig. 38 Viale del Muro Torto

Fig. 39 Measured flux-density diagram

Since at the beginning the network is initially empty, we

see that the value of density in the traffic circle for t = 0.25

is zero, as underlined by the white color. After a certain time,

the traffic on the roads within the circle is congested and the

traffic jam starts propagating backwards along the incoming

roads.

Salerno Network Some simulations were performed in the

area of Salerno on the junction of the A3 highway letting in

Via Capone (south direction). A map of the area is depicted

in Fig. 34, while in Figs. 35, 36 is represented a schematiza-

tion of the junction. In particular, if we refer to Fig. 35, the

sources are A,B,C while the destinations are D and E. The

distribution coefficients for junction 2, which is composed

by one incoming and two outgoing roads, are the following:

α =
fAE

fBD + fAE + fAD

,
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Fig. 40 Density at 6:00

Fig. 41 Density at 7:00

Fig. 42 Density at 8:00

Fig. 43 Density at 9:00

Fig. 44 Density at 10:00

Fig. 45 Density at 16:00
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Fig. 46 Density at 17:00

Fig. 47 Density at 18:00

Fig. 48 Density at 19:00

Fig. 49 Density at 20:00

1 − α =
fBD + fAD

fBD + fAE + fAD

with fAE, fBD, fAE the fluxes from the incoming roads

(sources) to the outgoing ones (destinations).

We were also able to apply our simulation tool to the en-

tire network of Salerno, represented as a graph composed by

about 1500 arcs, see Fig. 37.

Some animations are in [6].

Viale Muro Torto Let us consider another portion of urban

network of Rome, namely Viale del Muro Torto in the direc-

tion from Corso d’Italia towards Piazza del Popolo.

We compute approximate solutions starting from an

empty configuration and using as boundary data experimen-

tal data provided by the municipal society for traffic moni-

toring and control of Rome, namely ATAC S.p.A. Traffic is

observed through sensors, located along roads of some ar-

eas of the city, which acquire every minute traffic data such

as flux, velocity and occupation rate. Approximate solutions

of this portion of urban network are computed by Godunov

method with boundary conditions given by measured data.

In Fig. 39 we represent a diagram of measured flux dur-

ing an entire week. The first part of the graph, i.e. up to den-

sity ρ ∼ 50, represents the free phase of traffic, while the

second part reproduces the congested phase.

Here we show the evolution in time, starting by a net-

work initially empty, of car density within a day from 6:00 to

10:00, as depicted in Figs. 40–44, and from 16:00 to 20:00,

as showed by Figs. 45–49 at different hours. See [6] for an-

imations.

Figure 42 reveals the formation of a queue which enters

the road propagating backwards, as indicated by Figs. 43

and 44. Another shock propagating backwards along the

road can be observed in Figs. 47 and 48, which is later ab-

sorbed as showed by Fig. 49.
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5 Conclusions

An elaboration and an implementation of Godunov method

and of kinetic schemes even extended to second order pro-

vided numerical solutions to the problem of traffic flows on

road networks. Since along the roads the schemes present

the same features as for conservation laws, the new and

original aspect is given by the treatment of the solution at

junctions. Our tests show the effectiveness of the approxi-

mations, revealing that kinetic schemes of 3-velocities are

more accurate than Godunov scheme.
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