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We consider an infinite buffer fluid queue receiving its input from the output of a

Markovian queue with finite or infinite waiting room. The input is characterized by

a Markov modulated rate process. We derive a new approach for the computation of

the stationary buffer content. This approach leads to a numerically stable algorithm

for which the precision of the result can be given in advance.

Keywords: Fluid queue, Markovian queue, Markov process

AMS Subject classification: Primary 60K25; Secondary 68M20, 65U05

1. Introduction

In performance evaluation of telecommunication and computer systems, flu-
id queues models with Markov modulated input rates have been widely used
in many papers, see among others [3,4,6,1,5]. The traffic arriving to a network
queue has already traversed parts of the network and has been modified along its
traversal. In such cases, it is the output from a queue which forms the input to
the next network element.

In the most important part of the literature on this subject, see for instance
[3,4] and the references therein, the state space of the Markov process that mod-
ulates the input rate in the fluid queue is supposed to be finite. The case where
this state space is infinite has been analysed in [6] and [1] for the M/M/1 queue
and in [5] for a birth and death process.

In this paper, we generalize the problem to an infinite buffer fluid queue
driven by a Markovian queue. The only requirement needed on the Markov
process that modulates the input and output rates is that it has a single state
such that the input rate is smaller than the output rate of the fluid queue and that
∗ Corresponding author.
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it has a uniform infinitesimal generator, that is, the suppremum of the output
rates of the states is bounded. These Markov processes include not only the well-
known M/M/1/L, M/M/K/L, M/PH/1/L and M/PH/K/L queues with finite
(L < ∞) or infinite (L = ∞) waiting room but also the superposition of on-off
sources with exponential off periods and phase-type on periods. Nevertheless,
our method can not be used if the Markov process that modulates the input
and output rates in the fluid queue has more than one state with a negative
effective input rate. This is the case if the Markovian queue is for instance the
PH/PH/K queue with non Poisson arrivals. In this queue the number of states
corresponding to 0 customer in the queue is equal to the number of phases of
the arrival process and this number is at least equal to 2 if we suppose that the
arrival process in not a Poisson process.

The method used here to obtain the distribution of the stationary buffer
content is neither based on spectral analysis nor on the use of Bessel functions
as done in [6], [1] and [5], but a direct approach is used which leads to simple
recursions. This method is particularly interesting by the fact that it uses only
additions and multiplications of positive numbers bounded by one. Thus we
obtain a stable algorithm which moreover gives the result with a precision that
can be specified in advance.

The rest of the paper is organized as follows. In the next section, we present
the model and we obtain the solution in terms of recurrence relations whose
behavior is studied. In Section 3 we present the algorithm and numerical illus-
trations are given in Section 4.

2. Model and Solution

We describe in this section a fluid model with an infinite buffer for which
the input and output rates are controlled by a homogeneous Markov process
{Xt, t ≥ 0} on the state space S with infinitesimal generator denoted by A and
stationary probability distribution denoted by π.

Let ri be the input rate and ci be the output rate when the Markov process
{Xt} is in state i. We denote by θi the effective input rate of state i, that is
θi = ri − ci. We suppose that for every i ∈ S we have θi 6= 0. It is shown in the
Appendix that the case where θi = 0 for some i can be reduced to this one.

We assume in this paper that the state space S contains only one state
with negative effective input rate. This state is denoted by 0 and thus we have
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S = {0}⋃ S+ with θ0 < 0 and θi > 0 for i ∈ S+. It is moreover assumed that
inf{θi|θi > 0} > 0.

We suppose that the stability condition is satisfied, that is

ρ =

∑
i∈S

riπi

∑
i∈S

ciπi

< 1,

where ρ is the traffic intensity, so that the limiting behavior exists. We denote
by X the stationary state of the Markov process {Xt} and by Q the stationary
amount of fluid in the buffer.

Let Fj(x) = Pr{X = j,Q ≤ x}. We then have the following differential
equations, see for instance [3], for all j ∈ S

θj
dFj(x)

dx
=
∑
i∈S

Fi(x)A(i, j), (1)

with initial condition given by Fj(0) = 0 for every j ∈ S+. We then have
F0(0) = Pr{Q = 0}. We assume that sup{−A(i, i) : i ∈ S} is finite and we
denote by P the transition probability matrix of the uniformized Markov chain [7]
with respect to the uniformization rate λ which verifies λ ≥ sup{−A(i, i), i ∈ S}.
The matrix P is then related to A by P = I + A/λ, where I denotes the identity
matrix. The following result, giving the stationary probability that the fluid
queue is empty, will be used in the sequel.

Lemma 1.

F0(0) =

∑
j∈S

θjπj

θ0
= (1 − ρ)

∑
j∈S

cjπj

−θ0
.

Proof. Consider equation (1). By integrating from 0 to ∞ and summing over
index j, we get

∑
j∈S

θj(Fj(∞) − Fj(0)) = 0. Now since Fj(∞) = πj and Fj(0) = 0

for j ∈ S+, we obtain the first equality. the second equality follows immediately
from the definition of ρ.

The main result of this paper, which is the distribution of the pair (X,Q)
is given by the following theorem.
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Theorem 2. For every j ∈ S, we have

Fj(x) =
∞∑

n=0

e−
λx
θ

(λx
θ )n

n!
bj(n) (2)

where θ = inf{θi|θi > 0} and the coefficients bj(n) are given by the following
recursive expression

b0(0) = F0(0) and bj(0) = 0 for j ∈ S+,

and for n ≥ 1 and j ∈ S,

bj(n) = (1 − θ

θj
)bj(n − 1) +

θ

θj

∑
i∈S

bi(n − 1)P (i, j). (3)

Proof. We replace Fj(x) by the expression (2) in equation (1). Thus

θje
−λx/θ λ

θ

[ ∞∑
n=1

(λx/θ)n−1

(n − 1)!
bj(n) −

∞∑
n=0

(λx/θ)n

n!
bj(n)

]

= e−λx/θ
∞∑

n=0

(λx/θ)n

n!

∑
i∈S

bi(n)A(i, j),

which can be reduced to

θj
λ

θ

∞∑
n=0

(λx/θ)n

n!
(bj(n + 1) − bj(n)) =

∞∑
n=0

(λx/θ)n

n!

∑
i∈S

bi(n)A(i, j).

We then have for every n ≥ 0

θj
λ

θ
(bj(n + 1) − bj(n)) =

∑
i∈S

bi(n)A(i, j).

Using A = λ(P − I), we obtain relation (3).
For x = 0, we have Fj(0) = bj(0) for every j ∈ S from equation (2), which

completes the proof.

We give now some properties of the numbers bj(n) which will be used in the
next section in order to develop a precise and stable algorithm to compute the
distribution of the buffer content.
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Proposition 3. For every n ≥ 0, we have

b0(n) = F0(0) +

∑
j∈S+

θjbj(n)

−θ0
. (4)

Proof. Consider relation (3). By multiplying both sides by θj and by summing
over index j, we obtain for n ≥ 1,

∑
j∈S

θjbj(n) =
∑
j∈S

θjbj(n − 1). It follows that

for every n ≥ 0 we have
∑
j∈S

θjbj(n) =
∑
j∈S

θjbj(0) = θ0F0(0), which is equivalent

to relation (4).

Proposition 4. For every j ∈ S and n ≥ 0, we have 0 ≤ bj(n) ≤ πj .

Proof. We proceed by induction. By definition of Fj(x), we have 0 ≤ Fj(x) ≤ πj

for every x ≥ 0 and j ∈ S. Since Fj(0) = bj(0) for every j ∈ S, we have
0 ≤ bj(0) ≤ πj. Suppose now that we have 0 ≤ bj(n − 1) ≤ πj .

For j ∈ S+, we have θ/θj ∈ (0, 1), so we easily obtain from relation (3), by
using the relation πP = π, that 0 ≤ bj(n) ≤ πj.

For j = 0, since θ0 < 0, θj > 0 and bj(n) ≥ 0 for j ∈ S+, we obtain from
relation (4) that b0(n) ≥ 0 and

b0(n) = F0(0) +

∑
j∈S+

θjbj(n)

−θ0

≤F0(0) +

∑
j∈S+

θjπj

−θ0

= F0(0) +

∑
j∈S

θjπj

−θ0
+ π0

= π0 from Lemma 1,

and the result follows.

Proposition 5. For every j ∈ S, the sequence bj(n) increases and converges to
πj .
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Proof. We have, for j ∈ S+, bj(1) ≥ 0 = bj(0) and

b0(1) = F0(0) +

∑
j∈S+

θjbj(1)

−θ0
≥ F0(0) = b0(0).

Moreover, from relations (3) and (4), we have for j ∈ S+

bj(n + 1) − bj(n) = (1 − θ

θj
)(bj(n) − bj(n − 1))

+
θ

θj

∑
i∈S

(bi(n) − bi(n − 1))P (i, j)

and

b0(n + 1) − b0(n) =

∑
j∈S+

θj(bj(n + 1) − bj(n))

−θ0
.

Since, for j ∈ S+, we have θ/θj ∈ (0, 1) and θ0 < 0 we deduce by induction
that for every j ∈ S the sequence bj(n) is increasing. It then converges by using
Proposition 4.

For every j ∈ S, we denote by lj the limit of bj(n) when n goes to infinity.
We then have

Fj(x) =
∞∑

n=0

e−
λx
θ

(λx
θ )n

n!
bj(n) −→ lj when x −→ ∞.

Thus, since Fj(x) = Pr{X = j,Q ≤ x} tends to πj when x tends to ∞, we have
lj = πj.

3. Algorithmical Aspects

We suppose in this section that the infinitesimal generator of the process X

has the following block tridiagonal structure.

A =




A0,0 A0,1

A1,0 A1,1 A1,2

A2,1 A2,2 A2,3

A3,2 . .

. . Ak−1,k

Ak,k−1 Ak,k Ak,k+1

. . .
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where A0,0 is the output rate from state 0. Such a structure leads to the infinites-
imal generators of Markovian queues such as the M/M/1/L, the M/M/K/L, the
M/PH/1/L and the M/PH/K/L queues with finite (L < ∞) or infinite (L = ∞)
waiting room [8].

To compute the probability distribution Pr{Q ≤ x} of the buffer content
we use relations (2), (3) and (4) together with Proposition 4 and Proposition 5.
Relation (3) is used only for j ∈ S+, and for j = 0 we use Relation (4). These
relations are particularly interesting from a computational point of view. Indeed,
the fact that only additions and multiplications of positive and bounded numbers
are used in their recurrences is a very important property for what concerns the
numerical stability of the computation. Proposition 4 and Proposition 5 will be
used as a criterion to stop the computation in the case where the sequence of the
bj(n) is close to its limit πj .

We denote by ni the dimension of the square matrix Ai,i. Note that n0 =
1. The transition probability matrix of the uniformized Markov chain has the
same block tridiagonal structure than the matrix A. The blocks of matrix P

are denoted by Pi,j and we have, since P = I + A/λ, Pi,i = I + Ai,i/λ and
Pi,j = Ai,j/λ for i 6= j where I is in this case the identity matrix of dimension ni.

We also consider the infinite row vector containing the bj(n) for j ∈ S. This
infinite row vector can be rearranged according to the structure of matrix P to
be written as

(b[0](n), b[1](n), b[2](n), . . .),

where b[0](n) is the scalar b0(n) and for j ≥ 1, b[j](n) is a row vector of dimension
nj. This consists in rearranging the state space S as S = {0}⋃ S1

⋃
S2
⋃ · · ·,

where for j ≥ 1, Sj contains nj states with the same effective input rate equal to
θj. With this notation, relation (3) can be written, for j ≥ 1 and n ≥ 1 as

b[j](n) = (1 − θ

θj
)b[j](n − 1)

+
θ

θj

(
b[j−1](n − 1)Pj−1,j + b[j](n − 1)Pj,j + b[j+1](n − 1)Pj+1,j

)
. (5)

Using this recursion, it can be easily checked that, since b[j](0) = 0 for j ≥ 1, we
have

b[j](n) = 0 for n ≥ 0 and j ≥ n + 1.
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Relation (4) can then be written as

b[0](n) = F0(0) +

n∑
j=1

θjb
[j](n)1l

−θ0
, (6)

where 1l is a column vector with all the entries equal to 1, its dimension being
given by the context. Denoting by F (x) the probability distribution function of
the buffer content Q, that is F (x) = Pr{Q ≤ x}, we finally get

F (x) =
∑
j∈S

Fj(x) =
∞∑

n=0

e−
λx
θ

(λx
θ )n

n!
b(n), (7)

where b(n) =
∑
j∈S

bj(n) =
n∑

j=0

b[j](n)1l.

From Proposition 5 and from the dominated convergence theorem, we obtain
that the sequence b(n) is an increasing sequence that converges to 1 when n goes
to infinity.

The computation of F (x) can then be done as follows. For a given error
tolerance ε, we define integer N as

N = min

{
n ∈ IN

∣∣∣∣∣
n∑

i=0

e−
λx
θ

(λx
θ )i

i!
≥ 1 − ε

}
(8)

and we denote by F (N,x) the sum of the N +1 first terms of relation (7), that is

F (N,x) =
N∑

n=0

e−
λx
θ

(λx
θ )n

n!
b(n).

We then have

F (x) = F (N,x) + e(N),

where the rest e(N) of the series satisfies

e(N) =
∞∑

n=N+1

e−
λx
θ

(λx
θ )n

n!
b(n) ≤

∞∑
n=N+1

e−
λx
θ

(λx
θ )n

n!
= 1 −

N∑
n=0

e−
λx
θ

(λx
θ )n

n!
≤ ε.

We also consider integer N ′ defined by

N ′ = min {n ∈ IN | b(n) ≥ 1 − ε} .
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Since the sequence b(n) is increasing and converges to 1, we have b(n) ≥ 1 − ε

for every n ≥ N ′. So we get

F (x) = F (N ′, x) +
∞∑

n=N ′+1

e−
λx
θ

(λx
θ )n

n!
b(n)

= F (N ′, x) + 1 −
N ′∑

n=0

e−
λx
θ

(λx
θ )n

n!
− e′(N ′),

where the rest e′(N ′) satisfies

e′(N ′) =
∞∑

n=N ′+1

e−
λx
θ

(λx
θ )n

n!
(1 − b(n)) ≤ ε.

The integer N ′ is not known a priori so we will first compute the integer N

and start the computation of F (N,x). This computation will be then stopped
in the case where N ′ < N . Note also that the integer N , defined in (8), is an
increasing function of x, say N(x). So if the function F (x) has to be evaluated at
M points, say x1 < . . . < xM , we only need to evaluate the values of b(n) for n =
0, 1, . . . , N(xM ) since these values are independent of the values of x1, . . . , xM .

The pseudocode of the algorithm is given below.

input : x1 < · · · < xM , ε

output : Pr{Q ≤ x1}, . . . ,Pr{Q ≤ xM}
Compute N from relation (8) with x = xM

N ′ = N

b[0](0) = F0(0) computed using Lemma 1
n = 0
while [ n < N ′ ] do

n = n + 1
for j = 1 to n do Compute b[j](n) from relation (5) endfor
Compute b[0](n) from relation (6)

b(n) =
n∑

j=0

b[j](n)1l

if (b(n) ≥ 1 − ε) then
N ′ = n

endif
endwhile
if (N ′ = N) then
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for i = 1 to M do Compute F (N,xi) endfor
else

for i = 1 to M do Compute 1 −
N ′∑

n=0

e−
λxi
θ

(λxi
θ )n

n!
+ F (N ′, xi) endfor

endif

The method that we have developped leads to a simple algorithm which
gives very accurate results with a high precision that can be specified in advance.
It can be applied to a wide class of Markovian queues; the only requirement being
that only one state of the Markov process, that modulates the input and output
rates of the fluid queue, must have a negative effective input rate. These results
generalize those obtained in [6] and [1] for the M/M/1 queue where the solution
is obtained by means of an integral representation. In [5], the authors consider a
fluid queue driven by a birth and death process. Their results are based on the
study of polynomials and, as said by the authors, the main problem in concrete
examples is to find a signed measure with respect to which these polynomials are
orthogonal. Our method can also be applied to a birth and death process if it
has only one state with a negative effective input rate and if it has a uniform
infinitesimal generator.

4. Numerical Results

We have shown that the algorithm described in the previous section applies
to a large class of block tridiagonal infinitesimal generator A with a single state
having a negative effective input rate. Such a structure for the infinitesimal
generator includes the following Markovian systems:

• The M/M/1 queue with arrival rate β and service rate γ. Take A0,0 = −β,
A0,1 = β and for i ≥ 1, Ai,i+1 = β, Ai,i−1 = γ and so Ai,i = −(β + γ).

• The M/M/K queue with arrival rate β and service rate per server γ. Take
A0,0 = −β, A0,1 = β and for i ≥ 1, Ai,i+1 = β, Ai,i−1 = min(i,K)γ and so
Ai,i = −(β + min(i,K)γ).

• The M/PH/1 queue with arrival rate β and (α, T ) as phase-type representa-
tion of the service time distribution [8]. In this case, we must take A0,0 = −β,
A0,1 = αβ, A1,0 = −T1l, and for i ≥ 1, Ai,i+1 = βI, Ai,i = T − βI,
Ai+1,i = −αT1l
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• The M/PH/K queue with arrival rate β and (α, T ) as phase-type representa-
tion of the service time distribution per server. The blocks Ai,j of its infinites-
imal generator can be obtained using tensor algebra as done in [9].

• All these Markovian queues can also be considered when their waiting room is
finite since in this case the infinitesimal generator A is a finite block tridiagonal
matrix.

• The superposition of a finite number of independent on-off sources where the
off periods are exponentially distributed and the on periods have a phase-type
distribution.

In order to illustrate our algorithm, we consider the M/M/K queue with
arrival rate β and service rate γ per server. The input rate in the fluid queue
when the M/M/K queue is in state i is then given by ri = min(i,K)r for every
i ≥ 0, where r is the input rate per server in the fluid queue. We suppose that
the output rate of the fluid queue is constant equal to c, that is ci = c for every
i ≥ 0 and such that r > c. We then obtain that the effective input rate in the
fluid queue is given by θi = min(i,K)r − c. We suppose that β < Kγ so that the

πi exists and that ρ =
βr

γc
< 1, which implies that the limiting behavior of the

buffer contents exists.
Figure 1 shows the complementary cumulative distribution function of the

buffer content of a fluid queue driven by an M/M/K for K = 1 and K = 10. In
both cases, the arrival rate is β = 0.8, the service rate per server is γ = 1, the
input rate per server in the fluid queue is r = 1.2 and the output rate is constant
c = 1. In this example we have taken ε = 10−5.

The same function, but for larger values of x, is shown in Figure 2 for
β = 0.4, γ = 1, r = 2 and c = 1. In this figure, the vertical axis is in logarithmic
scale and we have taken ε = 10−10.

Appendix

We consider here that the state space S∗ of process {Xt}, that we suppose
irreducible, contains a finite number of zero effective input rates.

We write S∗ = S ∪ S0 where S (resp. S0) is the set of states with non-zero
(resp. zero) effective input rates.
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Figure 1. From top to the bottom : Pr{Q > x} versus x for the M/M/10 and the M/M/1

queues as input queues with arrival rate β = 0.8, service rate γ = 1 per server, input rate r = 1.2

per server and constant output rate c = 1, which gives ρ = 0.96.

The infinitesimal generator A∗ of the process {Xt} and the diagonal matrix
D∗ of the effective input rates can then be written in the obvious notation as

A∗ =

(
ASS ASS0

AS0S AS0S0

)
and D∗ =

(
D 0
0 0

)
.

In the same way, we denote by FS(x) and FS0(x) the row vectors containing the
Fj(x) for j ∈ S and j ∈ S0 respectively.

The differential equations (1) can then be written as{
dFS(x)

dx D = FS(x)ASS + FS0(x)AS0S

0 = FS(x)ASS0 + FS0(x)AS0S0 .
(9)

As A∗ is irreducible, −AS0S0 is a non-singular M-matrix [2], so AS0S0 is invertible.
Let (π∗

i )i∈S∗ be the stationary distribution of {Xt}. We have:

Proposition {
FS0(x) =−FS(x)ASS0A−1

S0S0

dFS(x)
dx D = FS(x)A

(10)
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Figure 2. From top to the bottom : Pr{Q > x} versus x for the M/M/10 and the M/M/1

queues as input queues with arrival rate β = 0.4, service rate γ = 1 per server, input rate r = 2

per server and constant output rate c = 1, which gives ρ = 0.8.

where

A = ASS − ASS0A−1
S0S0AS0S .

The results given by Theorem 2 can then be used to obtain the solution in the
following way: from the solution G(x) of Section 2 for dG

dx (x)D = G(x)A we
obtain FS(x) = (

∑
i∈S π∗

i )G(x) and then FS0(x) is given from (10).

Proof. Equations (10) follow immediately from (9). It is well-known that A is an
infinitesimal generator and that the stationary probability measure πS = (πi)i∈S

of the Markov process with infinitesimal generator A is given for every i ∈ S

by πi = π∗
i /(
∑

j∈S π∗
j ). Section 2 then gives for equation dG

dx (x)D = G(x)A a
solution G(x) which tends to πS as x → +∞. Given that the solution of this
equation is unique up to a multiplicative constant, and given that FS(x) tends
to π∗

S = (π∗
i )i∈S as x → +∞, we obtain FS(x) = G(x)

∑
j∈S π∗

j .
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