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Abstract

A1T-diimensionalfluid theory of ~~Lanaiid prhe ~Oerai -n fri n strong

magnetic fields is presented. Cross-field diffusion of ions both into and

out of the collection region is consistently accounted for. The results

differ from previous analyses, which did not account for outward diffusion,

by large factors, especially when parallel flow of the external plasma is

present. These results provide a more reliable basis for interpretation of

recent probe measurements.
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I. Introduction

The theory of Langmuir probe operation in strong magnetic fields is of

notorious difficulty [1-5]. However, the need for a reliable theory of

probe operation in strong fields has become more urgent recently in view of

the increased significance attributed to edge conditions in magnetically

-confined fusion-research-plasmas and -the-accompanying proliferation of-probe

measurements of these edge plasmas [6]. When the ion gyroradius, pi, is

substantially smaller than the probe radius, a, ion collection across the

field is diffusive even if the parallel flow is dominated by inertial

effects. As a result, the quasi-neutral presheath region, in which

acceleration of the ions occurs into the sheath, becomes highly elongated

along the field, until the cross-field diffusion is able to balance the

parallel collection flow.

Since the perpendicular momentum is unimportant in this process, it

appears attractive to attempt to simplify the problem by treating the

presheath as effectively one-dimensional. One can then seek solutions

satisfying Poisson's equation and the equations of motion self-consistently

in the parallel direction, treating the perpendicular diffusion equation as

a source term in the parallel equations. Stangeby [7,8] has championed this

approach recently in applications which have adopted either a fluid or a

particle description of the plasma.

The approximations adopted in the 1-dimensional model are that the ion

density, ni, velocity, vi, and plasma potential * at any parallel position,

x, can be regarded as given by single functions of x, representing some kind

of mean value of the parameter over the perpendicular extent of the

collection region. The radius of the collection region is taken as equal to

the probe radius, a. The cross-field diffusion of ions into the collection
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region may be represented by a source, S, in the ion equations which

determine the parallel extent of the collection region. (Without sources a

one dimensional presheath would expand to infinity because the quasi

neutrality equation would then imply f - constant [9]).

Stangeby and others, in applying this model, have adopted forms of the

ion source rate corresponding to 'birth of -- sdf ~~thfi--the -ollection

region. The resulting equations are then identical to those governing a 1-

dimensional plasma discharge, sustained by ionization within the plasma

region, between parallel plates. This latter problem has been studied from

a kinetic theory plasma viewpoint by Tonks and Langmuir [10] for zero birth

velocity and later by Harrison and Thompson [11] who demonstrated that the

sheath edge potential and current density are independent of the spatial

variation of S. More recently Emmert, et al, [12] have extended these

results to the case of finite temperature Maxwellian birth velocity.

These kinetic cases are not easily generalized to the experimentally

important situation of a plasma with parallel flow, in which presumably

birth with an appropriate flow velocity should be used. Therefore, Stangeby

has given a fluid treatment [8] which proves (like the previously mentioned

cases) to be analytically integrable, providing compact formulae for ion

density and current.

It is, in part, the purpose of the present work to point out that all

of these analyses are fatally flawed; that, despite the validity of the

theories in treating the 1-dimensional plasma discharge, they cannot be

validly applied to treating strong magnetic field probe analysis. The

reason lies in the form of the source function adopted. That source is to

model the cross field diffusion of ions. As such, it must allow ions not

only to diffuse into the collection region, but also to diffuse out. In

i4



other words, a diffusion process consists of the exchange of particles

between the collection region and the outer plasma. This means that the

sources in the equations should model not only outer particles entering the

collection region but also (a perhaps smaller number of) particles, which

may have spent some time in the collection region, leaving it.

From ~the point of vi of ineAn- isit alrifnare--qua1, so

allowance for ion loss merely causes the source to vary according to the

difference between the inside and outside densities. Of itself this would

make no difference to the collection current (though it would change the

collection region extent) because, as mentioned above, the source rate

variation does not affect the current. However, from the point of view of

velocity, all ions are not equal. Loss of ions which have already been

accelerated in the presheath is not the same as gaining fewer ions at the

outer plasma velocity (e.g., at rest). Therefore, to allow the source of

ions to be characteristic only of the external velocity, models correctly

only the incoming particles not the outgoing. That is, it accounts for

'birth' only, not for 'death' of particles in the collection region.

It might be thought that this distinction is mere quibbling about the

details of a model which is already admittedly rather approximate. However,

in the following sections we will see that the quantitative differences

between the model we propose here, which does correctly account for particle

exchange, and the models discussed above, are in many cases very large,

especially when finite ion velocity in the outer plasma is accounted for.

It turns out that the simplest kinetic treatment mentioned above, based on

the zero ion birth velocity solution of Harrison and Thompson Ell] agrees

fairly well with the collection current we shall calculate. However, the

results based on finite ion temperature lead to the plainly unphysical
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result that for Ti Te the ions are collected at twice the free gas result

(1/4 niv,), a problem which has been alluded to elsewhere [13]. And when

ion drift velocity is allowed, Stangeby's fluid model can be as much as a

factor of 4 wrong for Mach numbers up to 1.

It turns out, too, that the equations correctly accounting for particle

exchange appear not to be -suse-ptible~"to -exact e anat- ytIc~solutTon

Therefore, in order to minimize the computational effort and focus on

obtaining applicable results, we shall treat a simple fluid model parallel

to Stangeby's. That will provide us with a direct comparison which will

illustrate the differences.

In Section II we briefly derive the equations; then in Section III a

simple approximate analytic solution of the presheath is given, together

with an exact numerical integration of the equations for outer drift

velocities up to the sound speed. These results provide the data with which

probe measurements to determine ion density and drift velocity can be

interpreted. Section IV gives a brief discussion and conclusion.

II. The Model

The presheath is modeled as a 1-dimensional, two-fluid plasma, which is

quasi-neutral. Thus, Poisson's equation is replaced by the quasi-neutrality

equation, Zni-ne (Z is the ion charge). Also, we restrict attention to

cases in which the majority of electrons are reflected because the probe is

sufficiently negative. Then the electron density can be taken as given by a

Boltzmann factor,

n - Zn, exp(e$/T ) . (1)

Subscript - here denotes quantities in the outer plasma, far from the

collection region, where we take the potential 0-0, to be zero. The

6



electron temperature, Te, is in energy units.

The diffusive exchange of ions between the collection region and the

outer plasma we suppose to take place at a rate 9. That is, the rate of

loss of particles per unit length is Qnfi(x) and the rate of gain is an.. We

can regard a as being approximated by D1/a2, the diffusive inverse time

.constant -of_ the-collection _regionfor perpendicular diffusion coefficient

Ds. However , the collection current proves to be independent of D and

indeed of the spatial variation of D1 . Thus a determines only the length of

the collection region.

The 1-dimensional continuity equation in steady state is therefore

d (n v )- (n-n) . (2)
Ui _x

The exchange of momentum between the collection region and the outer plasma

is caused by the particles leaving with characteristic momentum mivi and

entering with mivw. Therefore, the momentum equation is

dvi dpi
n. v vi + M v u(n -n )-n ZeE - di+ m n(n~v.-n v )(3)
nimiv. dx ii dx ifln-~~ (3)

where Ze and pi are the ion charge and pressure respectively, and E = -

d$/dx is the electric field. By substituting for d /dx from Eq. (1) this

becomes

dv. 2 dn.
niv = - cs + A n (v - v ) ()

In obtaining this equation we have ignored a term dTi/dx arising from

dpi/dx. Thus, we are adopting a closure of the fluid equations

corresponding to isothermal ions. This is hardly justified a priori, and so

should be regarded as a simplifying approximation only. The sound speed,

c5 , corresponding to this approximation is given by
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2 ZT +T
Ca m (5)

Equations (2) and (4) are now the plasma presheath equations we require to

solve. It should be noted that they differ from those of Stangeby [8] only

in the final term of equation (2) ( i.e. gni) which is absent in his model.

We now make the following non-dimensionalizing transformations

n - n /n.

M -v/c 
(6)

y fx L dx'
O s

These bring the equations into a form

Mdn + dMM-+ n- -1 -ndy dy()

+ nM - - M.

By elimination we then obtain

dn (1-n)M-(M,-M)

dy M2 _1

(8)

dM (MH-M)M-(1-n)

n(M 21)

and hence

dn (1-n)M- (M-M)
=n (M,-M)M-(1-n)

Notice that Eqs. (8) give singularities at M-±1. Taking the positive

sign to denote flow towards the probe, M-+1 is simply the equivalent of the

Bohm criterion [1] for sheath formation, and is the required boundary

condition at the probe (y-0). In view of the other singularity at M=-1,

there is no regular solution satisfying M=-+1 at y-O with, M,<-1. This is a
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manifestation of the fact that shocks will form in the presheath for

supersonic flow. We, therefore, restrict our attention to MI<1, since

this simple model cannot be expected to give an adequate description for

supersonic flow. The boundary condition at infinity is n-1, M-M,.

Il.Solutions - -

The most convenient method of solution is to integrate Eq. (9) to

obtain n as a function of M. To do so requires attention to the condition

at M-M, (corresponding to y--), because both numerator and denominator tend

to zero there. A proper treatment of this limit shows that the required

derivative at M-M,, n-1 is

n - ± 1 . (10)

For 1M.1<1 we expect M to be increasing and n to be decreasing towards the

probe; therefore, -1 is the appropriate choice.

An exact analytic solution seems not to be possible in closed form for

Eq. (9). However, an approximate solution may be obtained by substituting

an appropriate value for n(M) into the fraction on the right hand side and

then integrating the equation. If we take n-1-(M-M,), as indicated by the

boundary condition and perform this integration we get straightforwardly

n - exp(M, - M) (11)

A somewhat better approximation is obtained by seeking an expansion for n to

second order in (M-M.) which makes the appropriate order terms in Eq. (9)

zero. This gives n-1-(M-M.)+[(1+M.)/(3+M.)](M-M.) 2 , which when substituted

into the fraction in Eq. (9) leads to a solution

n - pa exp(-q) (12)

where
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1 - (M3 3M +7M,+5) (M +1 ) (M,+5)

2(M-M)
p - 1 + (MW+1)(M +3) (13)

q- (M + 3M. + 7M + 9)(M-M) + (M+1)(M-M )2]

The obvious cumbersomeness of such solutions discourages one from pursuing

them further. Instead, numerical integration of Eq. (9) has been performed

for specified M.. The results are shown in Fig. 1.

Since ions flow into the probe sheath at the sound speed the ion

current drawn by the probe is proportional to the sheath edge density, i.e.,

the density at M-1. Figure 2 shows a plot of this density versus the flow

Mach number M. Also shown are the results obtained from the approximation

Eq. (12) and the corresponding results of Stangeby's model [8]. Notice that

the approximate solution is accurate for all but the most negative Mach

numbers. Notice also how different the values obtained from Stangeby's

model are from our more physically appropriate model.

A simple Langmuir probe will draw ion current to both upsteam and

downstream sides. On the other hand a divided (or 'Janus') probe can

measure separately the upstream and downstream collection currents.

Therefore, for a particular Mach number of flow the two quantities most

useful for diagnosis are the mean collection current and the ratio of the

collection currents for ±M.. These quantities, obtained from the numerical

solution, are plotted (in terms of sheath-edge densities) in Fig. 3. The

flow Mach number may be deduced from the ratio and the density from the mean

of the ion saturation currents to either side.

Finally we may return to the spatial equations (8) and perform the

integration to obtain y as a function of M (and hence n(y)) giving the

(nondimensionalized) spatial variation for the presheath density. This is
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shown in Fig. 4. The presheath potential is then given by Eq. (1).

Although the Iresheath parallel length, which is a few times cea2/D,

does not enter directly into the ion current deduced, it is important in

determining the applicability of the analysis. If the presheath length is

greater than the parallel distance to the plasma edge or than the ion-

electron CQlliziQn mean free _path,_thenless . ion current will-be -collected

and our treatment will break down. To determine whether or not this occurs

requires an estimate of D1 , but provided the presheath length is small

enough our results will be independent of D1.

IV. Discussion

The ratio of upstream to downstream ion current deduced from our model

has a value of about 12 at M.-1 and a slope of 2.1 at M=O. This should be

compared with Stangeby's result of 3 at M,-1 and a slope of 1 at M,=O.

These differences are far outside the typical uncertainties inherent in

probe measurements and so indicate that use of Stangeby's model will give

deduced flow velocities which are in error by a large factor.

It is interesting to note that for example Harbour and Proudfoot [14]

found ratios up to about 12 in their measurements of scrape-off flows.

Using Stangeby's analysis these results indicate supersonic flow, but using

a naive particle model Harbour and Proudfoot offered an alternative subsonic

interpretation. Our present results indicate that their highest flow

velocities correspond within experimental uncertainties to Mach 1.

The differences in mean ion saturation current between our result and

that of Stangeby are less dramatic but still significant. We obtain a

particle current density at the sheath edge (for M,=O)
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ri - 0.35 nec3

whereas Stangeby gets a coefficient of 1/2. It is often stated that the

Bohm formula for ion current is approximately 1/2nc,, from which viewpoint

Stangeby's result appears more conventional. Actually this is fallacious.

The correct (and original) formula is 1/ 2n.,/(ZTe/mi) which Bohm showed [1]

had little dependence on ion energy when Ti<ZTe, for spherical probes in the

absence of magnetic field or collisions. Since our definition of c

includes an ion temperature term we must have some estimate of Ti before we

can relate our current to n.V(ZTe/mi).

It is clear physically that if the outer plasma ion temperature is much

smaller than Te it must nevertheless be a bad approximation to take Ti-0 in

the c5 definition. The reason is that the most important place to obtain es

correctly is at the sheath edge. However, there the spread of ion particle

velocities is from zero to V(-Ze$/mi) corresponding to ions which enter the

collection region near or far from the sheath edge respectively. Now the

sheath edge potential is (Te/e)ln(0.35) - -Te/e. Therefore, the ion energy

spread at the sheath edge is -ZTe even when Ti=0 outside the collection

region. This spread will be increased only a small amount by non-zero

external Ti. Therefore, the most appropriate value to use is

s f /(2ZTe/mi) for Ti < ZTe.

We conclude, therefore, that the ion current deduced from our model is

approximately 0.35x/2 - 0.49 times n,/(ZTe/mi), for Ti<ZTe, recovering a

Bohm formula, whereas Stangeby's analysis would give a value about /2

higher.

The reason why Stangeby's formulation always gives a density (and hence

current) which is too high, as illustrated for example by Fig. 2, is that

loss of momentum from the accelerated presheath flow has been ignored. In
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our formulation this loss is properly accounted for, with the result that

the sheath edge potential must be more negative in order for the mean ion

velocity to reach the sound speed.

Other qualitative differences exist between our solutions and those of

Stangeby. We may mention first that our M(y) and n(y) tend smoothly to the

external values as ye., whereas Stangeby's have discontinuous derivatives at

the point where M-M,, n-1, (at finite y) in an obviously unphysical way.

Another point is that our results give monotonic variation of n and M with

y, whereas Stangeby finds that there is a density (and hence potential)

maximu on the downstream side, i.e. for M. < 0.

In conclusion, a 1-dimensional fluid model has been presented of ion

collection by probes in strong magnetic fields, correctly accounting for

diffusion out of, as well as into , the presheath. The results show that

previous formulations are in error by large factors, particularly when there

is parallel plasma flow velocity. The present results make it possible to

diagnose these flows using divided (Janus) probes.
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Figure Captions

Fig. 1 Solutions for the normalized density as a function of ion Mach

number, in the presheath. Various cases are shown, for which the

external plasma flow velocity is equal to the Mach number when

n-1.

Fig. 2 The normalized sheath-edge density as a function of external flow

Mach number. The curves are: 'Exact' numerical integrations of

Eq. (9); 'Approx.', the approximate analytical formula, Eq. (12);

'Stangeby' the result of using the equations of Ref. [8].

Fig. 3 The ratio and mean value of the sheath-edge density for the side

of the probe facing upstream and downstream. The ion saturation

current density is equal to c. times the sheath-edge density.

Fig. 4 Variation of density with non-dimensional distance in the

presheath. This can be related to physical distance via Eq. (6).
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