

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

A Fluorescent Switch-based Computing Platform in Defending Information Risk

Wei Sun, Can Zhou, Chun-Hu Xu, Chen-Jie Fang, Chao Zhang, Zhan-Xian Li, and Chun-Hua Yan*

Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications & PKU-HKU Joint Lab in Rare Earth Materials and Bioinorganic Chemistry Peking University Beijing 100871 (China) Supporting Information for

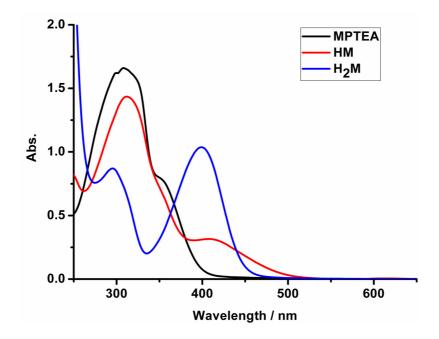
A Fluorescent Switch-based Computing Platform in Defending

Information Risk

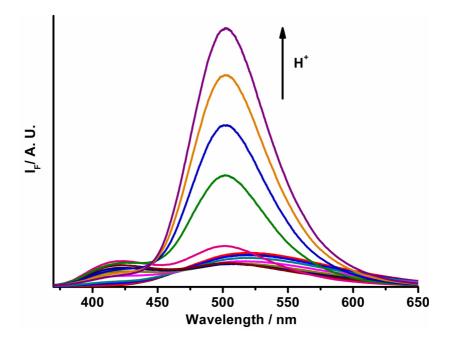
Wei Sun, Can Zhou, Chun-Hu Xu, Chen-Jie Fang, Chao Zhang, Zhan-Xian Li, and Chun-Hua Yan*

- I. Photophysical properties of MPTEA and its derivatives.
- **II.** Additional notes for authentication process.
- III. Additional schemes for the operations of secured molecular platform.

I. Photophysical properties of MPTEA and its derivatives.


All the spectral characterizations were carried out in acetonitrile (HPLC grade) solution at room temperature with a 10 mm quartz cell. The concentration is listed in the footnote of each figure. The UV-vis absorption spectra were measured with a Shimadzu UV-3100 spectrometer, and the fluorescence emission spectra were recorded upon the excitation at 350 nm on a Hitachi F-4500 fluorescence spectrometer. The quantum yield was measured at room temperature with the excitation at 350 nm (Xe lamp in the F-4500 spectrometer). Quinine sulfate dihydrate in dilute sulfuric acid solution ($\Phi_{fr} = 0.546$) is selected as the reference. The calculation of quantum yield is according to the equation 1.¹

$$\Phi = \Phi_{fr} \times \frac{1 - 10^{-ArLr}}{1 - 10^{-AL}} \times \frac{N^2}{N_r^2} \times \frac{D}{D_r}$$
(Equation 1)


(1) J. N. Demas, G. A. Grosby, J. Phys. Chem. 1971, 75, 991-1024.

	λ_{abs} / nm	log (ε _{max} / mol ⁻¹ ·L·cm ⁻¹)	λ _{em} / nm	Φ	τ / ns
МРТЕА	355, 307	4.2, 4.6	525	0.025	1.25
Ad	355, 307	4.2, 4.5	435	0.028	2.89
H_2M	400, 300	4.3, 4.2	500	0.194	0.29

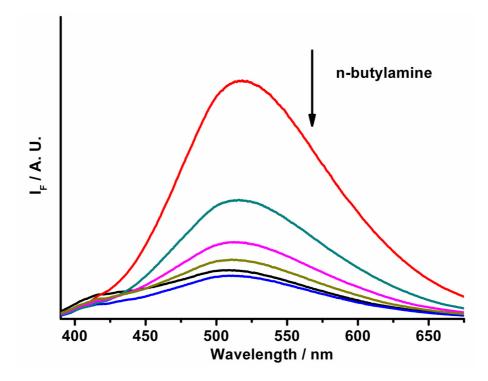

Table S1. Photophysical properties of MPTEA, Ad, and H₂M in acetonitrile.

Figure S1. The absorption spectra of MPTEA (black line), HM (red line) and H_2M (blue line) in acetonitrile solution (concentration of each compound is 0.02 mmol·L⁻¹).

Figure S2. Fluorescent spectra of MPTEA (0.02 mM) in acetonitrile solution upon addition of different concentration trifluoroacetic acid (from 0, 1×10^{-4} , 1×10^{-3} , 2×10^{-3} , 4×10^{-3} , 6×10^{-3} , 8×10^{-3} , 1×10^{-2} , 2×10^{-2} , 4×10^{-2} , 6×10^{-2} , and 8×10^{-2} to 0.1 mol·L⁻¹).

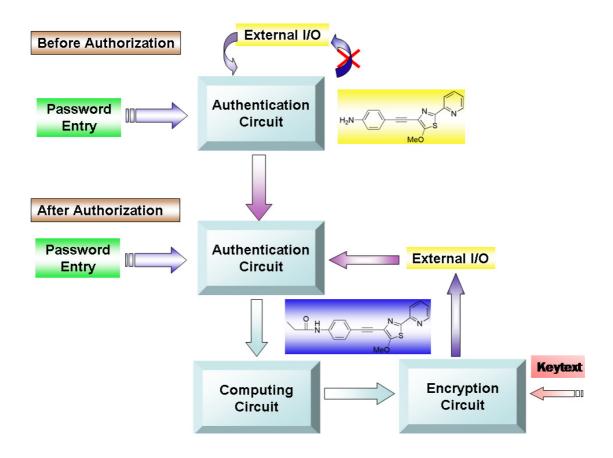
Figure S3. Fluorescent spectra of MPTEA (0.02 mmol·L⁻¹) in acetonitrile solution upon addition of different concentrations of *n*-butylamine.

II. Additional notes for authentication and encryption processes.

•

Number	1111	1121	1131	1141	1211	1221	1231	1241
string								
MPTEA	MPTEA	MPTEA	MPTEA	MPTEA	MPTEA	MPTEA	MPTEA	MPTEA
form	WII I LA	MITIEA	MITLA	MITEA	WII I LA	WII TEA	WII I EA	WII I LA
Number	1311	1321	1331	1341	1411	1421	1431	1441
string	1311	1321	1551	1341	1411	1421	1431	1441
MPTEA	MPTEA	MPTEA H	H ₂ M	Cu-Ad	MPTEA	MPTEA	MPTEA-Cu	MPTEA
form	IVII IEA	WII IEA	H ₂ IVI	Cu-Au				

Table S2. MPTEA binding forms of the 16 selected possibilities in Figure 2b.


Table S3. MPTEA binding forms of the 27 selected possibilities in Figure 2c.

Number String	2221	2231	2241	2321	2331	2341	2421	2431	2441
MPTEA form	MPTEA	MPTEA	MPTEA	MPTEA	MPTEA	MPTEA	MPTEA	MPTEA	MPTEA
Number String	3221	3231	3241	3321	3331	3341	3421	3431	3441
MPTEA form	MPTEA	MPTEA	MPTEA	MPTEA	H_2M	MPTEA- Cu	Ad	Ad-Cu	Ad-Cu
Number String	4221	4231	4241	4321	4331	4341	4421	4431	4441
MPTEA form	MPTEA	MPTEA	MPTEA	MPTEA	Ad-Cu	Ad-Cu	MPTEA	MPTEA- Cu	MPTEA

Introduction of different keytexts can tune protonation forms of MPTEA binding states, which produce optical ciphertext. The binding forms of encryption processes in Table 1 are listed as follows. Based on the acidobasic properties of keytexts, the encrypted arithmetic results can be decrypted.

Operation	Binding Forms for	Keytext	Encrypted Output	Binding Forms for
	Original Output	Ксуюл	Enerypted Output	Encrypted Output
			10-10-10-10-01	Ad-Cu, Ad-Cu,
00-10-01-00-10-01	Ad, Ad-Cu, HAd,	ANBANN		Ad-Cu, Ad-Cu,
	Ad, Ad-Cu, HAd.			Ad-Cu, HAd.
	Ad-Cu, Ad-Cu,		10-10-10-10-01	Ad-Cu, Ad-Cu,
10-10-01-00-10-01	HAd, Ad, Ad-Cu,	NNBANN		Ad-Cu, Ad-Cu,
	HAd.			Ad-Cu, HAd.
	Ad-Cu, Ad-Cu,			Ad-Cu, Ad-Cu,
10-01-01-00-10-01	HAd, Ad, Ad-Cu,	NBBANN	10-10-10-10-01	Ad-Cu, Ad-Cu,
	HAd.			Ad-Cu, HAd.
	Ad-Cu, Ad-Cu,			Ad-Cu, Ad-Cu,
10-01-00-00-10-01	Ad, Ad, Ad-Cu,	NBAANN	10-10-10-10-01	Ad-Cu, Ad-Cu,
	HAd.			Ad-Cu, HAd.

 Table S4. Binding forms of plaintexts and ciphertexts in Table 1.

III. Additional scheme for the operations of secured molecular platform.

Scheme S1. Illustration of the molecular secured platform converting from the unauthorized stand-by state to the authorized user 2's operation state.