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Abstract: As an important branch of wearable electronics, highly flexible and wearable sensors
are gaining huge attention due to their emerging applications. In recent years, the participation of
wearable devices in sports has revolutionized the way to capture the kinematical and physiological
status of athletes. This review focuses on the rapid development of flexible and wearable sensor
technologies for sports. We identify and discuss the indicators that reveal the performance and
physical condition of players. The kinematical indicators are mentioned according to the relevant body
parts, and the physiological indicators are classified into vital signs and metabolisms. Additionally,
the available wearable devices and their significant applications in monitoring these kinematical and
physiological parameters are described with emphasis. The potential challenges and prospects for
the future developments of wearable sensors in sports are discussed comprehensively. This review
paper will assist both athletic individuals and researchers to have a comprehensive glimpse of the
wearable techniques applied in different sports.
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1. Introduction

The everlasting pursuit of the “Faster, Higher, Stronger” spirit in sports propels
the ceaseless advances of exercise and sports sciences. The continuous breakthrough of
human beings in competitive sports is not only due to the advanced training concept but
also strongly supported by the high-end instruments for sports monitoring, analysis and
evaluation. Many commercially available systems, e.g., video motion capture systems,
BSXinsigh, Polar sports tester, Keiser fitness equipment, Xsens 3D motion trackers, etc.,
have been utilized during exercise to detect and analyze the posture and trajectory of
the body and measure the physical information of respiration, heart rate, blood oxygen,
blood lactate [1]. The obtained results, acting as a golden standard, can provide data
support for formulating scientific plans and preventing fatigue or injuries. However, these
existing technologies also have certain shortcomings. For example, the video technology
cannot quantitatively analyze the force-generating process, and the common physiological
monitoring systems often suffer from their poor wearing comfort, low sensitivity and weak
capacity in real-time monitoring [2,3].

In the past decade, wearable sensors have taken the predominant role in seamlessly in-
terfacing individual states and monitoring/analyzing systems due to their inherent features
(flexibility, ultrathinness, stretchability and lightweight) and high sensing performances
(sensitivity, response time and multifunction) [4]. Huge advances have been achieved in de-
veloping versatile. flexible and wearable devices to monitor the motion and gesture of the
human body, detect the imposed tactile, force and pressure, and measure the parameters of
physical conditions [5–11]. These superiorities contribute a lot to the numerous intriguing
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practical applications in healthcare, the medical industry, smart homes, internet of things
and many other fields of interest. In the meantime, the realization of such promising appli-
cations requires sensors that are capable of acquiring abundant physical and biochemical
parameters from the human body, such as strain, force, pressure, temperature, amounts and
concentrations of metabolites [12–18]. Motivated by the great potential of wearable sensors,
these bendable and flexible devices have also been conformably attached to the body of an
athlete and succeeded in detecting a great deal of signals for competitive performances and
physical conditions in different sports, such as swimming, running, weightlifting, football,
volleyball, racquet sports, fitness actions and so on.

Many excellent reviews have summarized the progress in flexible, wearable sensors,
focusing on emerging materials, fabrications, promotion strategies and applications in
healthcare [19–24]. Additionally, a few reviewing works put their attention on the wearable
system in sports. The importance of accelerating the integration of wearable sensors into
recreation and competitive sports is discussed [3]. Wearable sensors used in consumer
sports and persons with disabilities are also systematically reviewed [25,26]. The devices
and analyzing techniques for several kinematical parameters, e.g., motions [27,28], biome-
chanics of the upper limbs [29] and shock impacts [30], are summarized. Many of these
reviews only focus on one aspect of applying wearable sensors in sports, and the mentioned
devices are mainly conventional inertial, force/pressure sensors, which lack technique
comprehensiveness and relevance to the latest wearable technology. This review, thus,
provides a holistic view of recent developments in flexible, wearable sensors in sports.
The main concerns of this paper can be found in Figure 1. A brief introduction of the
target indicators, from kinematics to physiologies, is described in Section 2. Commonly
used flexible sensors for monitoring kinematical and physiological signals are reviewed
in Sections 3 and 4, with an emphasis on the emerging applications of these devices in
monitoring the motions and physical conditions of athletes. In Section 5, multifunctional
devices for sports are simply introduced. Then, Section 6 briefly discusses the existing
challenges and promising solutions for practical researches. The conclusions are provided
in the final section.
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2. Indicators in Sports Monitoring

Using systematic, scientific monitoring systems to monitor performance indicators
has become a critical issue in modern sports, which can be very helpful in improving the
performances of athletes. The obtained results can be used to correct the motion/posture,
monitor the real-time response of people and update the training schedules in time. Conse-
quently, the optimized schemes can promote competitiveness, reduce excessive fatigue and
avoid unnecessary injuries. Generally, the monitored indicators in sports can be categorized
as follows: (1) kinematical indicators, including posture, motion, force and acceleration;
(2) physiological indicators, including vital signs (e.g., breath, pulse, ECG, heart beating,
blood pressure, temperature, SpO2, etc.) and metabolites during and after exercises (e.g.,
glucose, pH, electrolytes, lactic acid, etc.). The monitoring of many indicators has been
realized by using flexible, wearable sensors.

2.1. Kinematic Indicators

Kinematic indicators are a series of physical parameters that deal with the postures
and motions of objects. Firstly, posture, namely, the deformation of body parts, can
characterize the direction, amplitude and frequency of motions. Effective monitoring can
help with detecting posture defects, acquiring personal characteristics to meliorate the
training strategies and reducing injuries. For example, the movement of lower limbs can
show a runner’s stride frequency, step length and the joint angles of the knee/ankle, which
is valuable in analyzing, evaluating and then optimizing the strategies of gait, step and
stride frequency [40]. Secondly, the measurement of contact forces is also conducted in
kinematical monitoring. Plantar force shows the contact between the foot and the ground
during the exercise. The obtained results can indicate the gait and arch status of objects
and then be used to optimize striding habits and develop tailored shoes [41–44]. Moreover,
the contact status between hands and equipment is also important in many throwing (e.g.,
shot put) and racket sports (e.g., badminton). Finally, in confrontational sports, such as
soccer, basketball and American football, athletes often suffer from shock impacts and
proper monitoring can play an important role in improving sport wares and avoiding injury.
The following will introduce the indicators involved in exercise monitoring in different
body parts.

2.1.1. Hand and Foot

The hand is the most active part of our body, and its motions play an important role in
many sports. The throwing activities require a good combination of hand movements and
full-body movements, and the hand shape is also closely related to the hitting quality of
volleyball and handball. In addition, the monitoring of grip and exertion is also of great
significance for badminton, ping pong and tennis. The foot provides support for human
motions and inevitably sustains tremendous pressure for a long time. The variations in
the contact area and plantar pressure accurately indicate the gait and forcing process of
the lower limb. Thus, measurement and analysis of plantar parameters are crucial in
performance monitoring and injury prevention for athletes.

Hand monitoring mainly involves finger bending and hand contact. Monitoring the
bending of the finger/palm can be easily conducted by wearing flexible sensing strips
on target fingers, whose movement causes bending/stretching strains in the strips and
then induces a variation in their electrical parameters [45]. By carefully designing the
sensing mechanism and structural configuration, the finger curvatures can be felicitously
converted into electrical variations. However, the directly mounted single strips may
induce uncomfortableness to the covered skin, and the suspended electrical wires for
power and signals will also become a mess and unreliable if several strips are adhered.
Thus, several glove-like devices have been developed to improve the wearability and
comfortableness [46]. A larger substrate is utilized to integrate the sensing strips, electrical
wires and connectors, which offers an easier and more reliable way to wear the device.
With the help of these sensing devices, abundant finger motions have been measured, such
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as clenching, gesticulating, wheeling a computer mouse and so on. More recently, several
self-powered sensors have been proposed to monitor the bending of the finger/palm.
An elegant example is a wearable motion sensor for monitoring the spiking gesture of
volleyball athletes [38]. Flexible piezoelectric polyvinylidene difluoride (PVDF) film is
utilized to convert the mechanical energy of athletes into electricity, generating a voltage
signal corresponding to bending angles. As shown in Figure 2a, different angles of the
palm are recognized from output voltages. Combining a wirelessly transmitting system
and a big sports data platform, the generated signal can be used to real-timely monitor the
posture and provide guidance for volleyball players’ daily training (Figure 2b).

As for hand contact, efficient monitoring can be realized by setting sensitive units in
the regions that participate in touching or gripping. Similarly, the units can be arranged
in an individual form at various interesting points or integrated into a sensing array to
obtain the distribution of tactile forces. The latter scheme is relatively more popular, and
many flexible, customizable smart gloves have been designed to obtain tactile information
from the entire hand. A typical example is a low-cost, scalable tactile glove that covers the
full hand with an array of tactile sensors [47]. As shown in Figure 2c, the 548-unit sensing
array is assembled onto the surface of a knitted glove, and used to generate unique tactile
maps when grasping different objects such as Coke cans, balls, batteries, erasers and etc.
The obtained normal forces of grasping motion fall into the range of 30 mN to 0.5 and
can be used to form tactile videos with a frame rate of about 7.3 Hz. Wearable pressure
monitoring has also been applied in the measurement and analysis of comprehensive
punch parameters in boxing [37,48]. The developed piezoresistive pressure sensing system
is integrated into a 12-ounce boxing glove certified by the International Amateur Boxing
Association to measure the punch forces, and a Kistler force plate is used for verification
(Figure 2d). The results show good consistency both in force and pressure center between
the values obtained from the sensing system and force plate.

The monitoring of plantar pressure has attracted great interest for many years, and
several commercialized devices have been taken into markets. Relevant devices include
mat devices (e.g., Sports Balance Analyzer™, Footprint Plus™ and Emed®-systems, etc.)
and in-shoe devices (e.g., F-Scan™ system and Pedar®). For example, Amaro et al. used
the Pedar® system to evaluate the plantar pressure of players in five different basketball
motions [49]. The results showed that no significant statistical differences were found
between the two seasons, but a slight decrease was observed throughout the sporting season.
These commercialized products feature high resolution, great accuracy, excellent reliability
and mature algorithms for performance evaluation, and have been widely used in the
evaluation of gait. Meanwhile, the mat devices cannot maintain long-length monitoring for
walking or running, and the in-shoe devices often suffer from insufficient integration with
professional sneakers. Moreover, the relatively higher cost also prevents this equipment
from having large-scale applications in national sports. Thus, the academic researches on
wearable plantar pressure measuring systems mainly focuses on improving wearability,
integration and comfort, and decreasing the fabrication cost, structural complexity and
operative difficulty. Soft materials are made into insoles to realize the monitoring in a
wearable, comfortable and integrated way without the high price or complex composition.
Corresponding to the desired parameter, the sensing elements, usually force and pressure
sensors, can be individually arranged in certain areas of the sole (e.g., great toe, midfoot,
metatarsal and heel), or assembled into an array to cover the entire sole. For example, Yang
et al. put seven sensing elements into a printed insole to monitor the plantar pressure
distribution of the human body and distinct different motions. As shown in Figure 2e,
the obtained pressure distributions differ significantly in the motions of walking, running,
tiptoeing and jumping [50].



Micromachines 2022, 13, 1356 5 of 40

Micromachines 2022, 13, x FOR PEER REVIEW 5 of 46 
 

 

Figure 2e, the obtained pressure distributions differ significantly in the motions of walk-
ing, running, tiptoeing and jumping [50]. 

 
Figure 2. The kinematic indicators in hand and foot: (a) the three bending state (i-iii) of hand in 
volleyball and the corresponding monitoring results; (b) the alarming system for hand gesture mon-
itoring [38]; (c) tactile maps in grasp generated by the knitted glove [47]; (d) the punch forces in 
boxing measured by a piezoresistive pressure sensing system and verified by a Kistler force plate 
[37,48]; (e) the plantar pressure distribution measured by a printed insole to distinct motions [50]. 
Reproduced with permissions from Springer Nature (2019)[47]. Reproduced with permissions from 
Springer Nature (2022)[50]. 

2.1.2. Trunk and Limb 
The motions of the trunk and limbs are the main power sources for various sports, 

which can provide speed or acceleration for movements and control their magnitudes. 
The information on the speed/ acceleration and magnitude is a very important domain for 
evaluating the performances of athletes. The reciprocating bending deformation of the 
waist, shoulder, elbow, hip and knee undertakes the most work in generating these ad-
mired motions. Flexible sensors can be installed at these joints to real-timely monitor the 
bending and then indicate the motion parameters. Xu et al. mounted a multifunctional 

Figure 2. The kinematic indicators in hand and foot: (a) the three bending state (i–iii) of hand
in volleyball and the corresponding monitoring results; (b) the alarming system for hand gesture
monitoring [38]; (c) tactile maps in grasp generated by the knitted glove [47]; (d) the punch forces
in boxing measured by a piezoresistive pressure sensing system and verified by a Kistler force
plate [37,48]; (e) the plantar pressure distribution measured by a printed insole to distinct motions [50].
Reproduced with permissions from Springer Nature (2019) [47]. Reproduced with permissions from
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2.1.2. Trunk and Limb

The motions of the trunk and limbs are the main power sources for various sports,
which can provide speed or acceleration for movements and control their magnitudes.
The information on the speed/ acceleration and magnitude is a very important domain
for evaluating the performances of athletes. The reciprocating bending deformation of
the waist, shoulder, elbow, hip and knee undertakes the most work in generating these
admired motions. Flexible sensors can be installed at these joints to real-timely monitor
the bending and then indicate the motion parameters. Xu et al. mounted a multifunctional
epidermal sensor on the lower back of a volunteer to monitor the strain in the waist region
when lifting a heavy load. The obtained signals can distinguish the motions of bending-
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standing and squatting-standing [51]. Combined with synchronous EMG signals, the
captured information can be very helpful in preventing excessive muscle exertion caused
by improper lifting acrobatics. The bending angles of the elbow in volleyball are also
measured by the flexible output piezoelectric sensor (Figure 3a) [38]. The athlete’s straight
arm helps to rise the hitting point and increase the hitting power, making it easier to break
through the opponent’s block defense. By capturing the voltage of the sensor (Figure 3b),
a positive correlation with the bending angle of the elbow can be derived and used to
evaluate the posture of different players. A similar strategy can also be found in measuring
the bending angles of the wrist and knee during different spots.

The monitoring of acceleration or magnitude of sporting motions is often realized by
wearing inertial measurement units (IMUs) on the wrist/hand and shank/foot. As a faster,
more reliable and cost-efficient strategy for activity and motion analysis, wearable IMUs
benefit a lot from the significant reduction in sensor volume and price and are playing a
more and more important role in the field of sports analytics. Commonly, an IMU consists
of an accelerometer for measuring linear acceleration, a gyroscope for angular acceleration
and sometimes a magnetometer for a magnetic field. Moreover, three-dimensional sensors
are favorable due to their ability to capture parameters along the three axes and provide de-
tailed and useful component data for orientation and kinematics studies. The combination
of multifarious sensors ensures the system robustness and accuracy of captured data and
then improves the validity and reliability of activity detection and analysis. The analysis of
motion sequences in several sports (e.g., tennis, swimming, football, running, etc.) has been
conducted in the past few years with the help of commercialized devices from different
companies, such as Zepp, Actofit, Kinexon, Garmin and Motus [27]. In the meantime,
researchers also use the tailored system to get more abundant information on sport mo-
tions [52–54]. For example, stroke detection and recognition of tennis can be realized by
IMU sensors worn on the dominant arm or wrist [55,56]. In [57], two IMUs worn on the
right arm and right leg of the player are used to detect the main events of breaststroke
swimming. More recently, a pair of IMUs on the athletes’ lower back and hands are used to
capture the acceleration and rotational speed signals in the motions of karate (Figure 3c) [58].
Relation analyses are conducted between the reverse punch temporal structure and the
maximal hand velocity achieved by competitors. The performance evaluation in swimming
phases, namely, wall push-off, glide, stroke preparation and swimming, of elite swimmers
in different techniques (e.g., front crawl, breaststroke, butterfly and backstroke), is also
realized by wearing an IMU on the waist (Figure 3d) [59]. However, most of the used
sensors are developed using Micro-Electro-Mechanical System (MEMS) techniques. The
miniaturization of MEMS sensors ensures the wearability, but the inherent rigidity and
fragility of sensor chips inevitably damage the flexibility. Great efforts are still needed to
develop these flexible inertial sensors.

Shock impacts acting on the player are also an important issue in sports monitoring.
A large impact beyond the tolerance threshold may cause damage to muscles, bones, soft
tissues and inner organs. At present, impact detection in the sports domain mainly depends
on the accelerometer, which interprets peak acceleration as a proxy for impact. Generally,
the following two kinds of shocks often happen in sports: shock from own movements
and impacts generated in confrontations [30,60]. Foot strikes in running and landing are
the main form in single sports and have been monitored by the IMUs on the ankle or foot.
Few studies also introduce plantar pressure sensors into the shock impact. In invasion and
team sports such as football, lacrosse, rugby and soccer, the impacts on the head, body and
limbs are much more acute, which is also monitored by the wearable IMUs. Due to the
short-term and large amplitude of shock impacts, MEMS sensors play the dominant role in
this field and the application of flexible accelerometers has become much rarer.
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2.2. Physiological Indicators

Physiological indicators are very important parameters when evaluating the somatic
function of athletes. According to the type of signal, the indicators can be divided into
the following two categories: vital signs and metabolism parameters [24]. The former
mainly includes heartbeat, breath, blood pressure, electrophysiological signals and body
temperature, indicating the responses to exercise load, fatigue state and recovery level. The
latter represents the changes in various biochemical indicators in the body. By monitoring
the electrolytes and metabolites in body fluids, the physiological information of athletes,
such as functional changes and energy metabolism can be well portrayed [61,62]. Nowa-
days, the real-time monitoring of vital signs and metabolism parameters has been greatly
revolutionized by booming wearable electronics.

2.2.1. Vital Signs

• Heartbeat and breath

Heartbeat and breath are the two most important activities of human life. Breath
is the only way for the body to get oxygen, and the heartbeat drives the nutrients and
oxygen throughout the body. For breath monitoring, many efforts have been devoted
to developing devices for sensing the airflow near the nostrils or mouth and the cavity
volume variation in the chest/abdomen. Blood oxygen saturation, namely, SpO2, is a more
effective and convenient to assess the body load and breathing efficiency of athletes during
training or competition. SpO2 shows the proportion of oxyhemoglobin in blood hemoglobin
and can be measured by the different light absorption capacities of oxyhemoglobin and
deoxyhemoglobin. Many commercialized smartwatches have implanted the function of
monitoring blood oxygen. To further improve the accuracy and comfort level, several
flexible patches with organic light-emitting diodes (OLED) and photodiodes are also
implemented by researchers. For a heartbeat, heart rate and its variability (HR and HRV) are
two key values that provide clinical information about the health status of athletes [63–65].
The pulse flow of arterial blood induces a variation in the absorption of green-yellow light
(wavelength about 500 nm) and then generates an AC signal synchronized with the systolic
and diastolic activity of the heart. This phenomenon has been widely utilized to measure
HR and HRV with the help of photoplethysmography (PPG) [66]. Comparatively, HRV is
more helpful in improving an athlete’s cardiopulmonary function, especially in endurance
training. A large HRV often indicates that the potential has not been fully exploited, while
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a small value may be associated with excessive fatigue. Properly adjusting the training
schedule according to HR/HRV can effectively enhance the endurance of athletes.

• Electrophysiological signal

An electrophysiological signal refers to the sum of the electrical potentials generated by
the cells and tissues in the human body. Common signals include electromyography (EMG),
electrocardiogram (ECG) and electroencephalogram (EEG) [67–70]. EMG is produced
by the contraction of muscles during exercise and can be used to evaluate the strength
exerted by muscle tissues. The obtained information will be a very important basis for the
optimization of training patterns and diagnosis or rehabilitation after injury. ECG contains
information about heart functioning, from which unusual states can be detected in time,
avoiding sudden cardiogenic attacks for athletes. EEG is from the electrophysiological
activities of nerve cells in the brain and can be used to analyze emotion and sleep state.
Currently, EMG is the most commonly used indicator in sports monitoring, especially in
events with great explosiveness such as sprinting, jumping and gymnastics. The acquisition
of electrophysiological signals is usually based on the needle or surface electrodes in specific
regions, and the electrical signals are then transmitted to a collecting and analyzing system
through wires or wireless communication. However, signal reliability is often affected by
interference from intense exercises, which brings great difficulties in developing wearable
monitoring systems with high precision and real-time capability.

• Body temperature

Body temperature is a key sign for human healthcare, and a too high or too low
body temperature can be life-threatening. The changes in ambient temperature can lower
the body’s thermoregulating function, which may cause a large deviation in the body’s
core temperature and then weaken the athlete’s output power and endurance. These
unfavorable factors can lead to a drop in sports performance, especially in events requiring
endurance and team cooperation. By introducing the measuring units, the real-time
monitoring of body temperature and its variation can provide an important reference for
evaluating the thermal comfort level and effectiveness of acclimatization training before an
event. Conventional thermometry methods cannot realize the continuous monitoring and
temperature mapping ability, and some newly developed epidermal sensing arrays can be
a proper solution to high-performance thermometry in sports [71–74].

2.2.2. Metabolism

• Sweating loss

Monitoring the sweat rate (SR) or sweat loss (SL) of an athlete can provide information
on sweat fluid to help optimize fluid replacement and minimize the problems related
to body fluid imbalances during and after training/competition [75,76]. The planned
amount of fluid for replacement should be customized based on the state of sweat loss.
Meanwhile, fully monitoring SR is also critical for re-establishing euhydration, which needs
a proper estimation of electrolyte losses. SR can be simply measured by the body mass
changes over time, but this imprecise, belated method may not detect the appearance of
fluid imbalances in time, which greatly affects the performance and even the health of
players [77,78]. Moreover, the volume of sweat fluid varies considerably within athletes and
can be affected by many factors, such as the following: climate, ventilation status, sporting
equipment, the intensity and duration of exercises, etc. Therefore, many standardized
sweat patch techniques are employed. A conventional patch consists of an absorbent
pad and an adhesive dressing for occlusion. Before patching, the skin in the sampling
region should be cleaned with deionized water and dried with gauze or paper. During
exercise, the patch is infiltrated by sweat and removed before complete saturation. Then,
the volume of sweat fluid was tested in a laboratory with the help of a centrifugal machine
or syringe. This strategy improves the measuring accuracy, but the real-time capability is
still limited. Recently, several flexible patches have been developed with microfluidics for
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sweat collection and colorimetric elements for sweat sensing. Some patches also deploy
wireless transmission for long-distance, real-time monitoring [12,13,78–81].

• Metabolites and electrolytes

As an essential for life, the balance of biochemical metabolites and ions in body fluids
plays a great role in keeping the body functioning properly. Variation in the concentrations
of each physiological indicator can reflect the specific state of metabolism, energy supply
and endurance. Generally, the common metabolites in sport monitoring include lactic
acid and glucose. Lactic acid is the final product of anaerobic glycolysis, which originates
from the insufficient oxygen supply during exercise [77,82–85]. The accumulation of lactic
acid in the body can lead to muscle fatigue, pains and even lactic acidosis. Thus, the
lactic acid level is an important indicator to evaluate the sport ability under anaerobic
conditions and the intensity of training or competition. Glucose is an important energy
supply for athletes under high-intensity exercises, and the glycogen-storing level in the
body is a determining factor for athletes to perform high-intensity or prolonged exercises.
By monitoring the changes in glucose concentration, the physical state of athletes can
be evaluated in real-time and a rational training load-performance strategy can be built.
Meanwhile, the balance of ions in the fluid also has detrimental effects on the functions
of body tissues and organs. The excess loss of ions will affect the normal function of the
human body and then decrease the sport performances. For instance, the lack of potassium
ions may influence the heartbeat, and the excess loss of sodium ions can cause fatigue
and cramps in muscles. Conventionally, the measurement of free ions and metabolites is
conducted through blood sampling, which is invasive, time-consuming and suffering. The
obtained results can only express the states before and after exercise, not the real-time and
continuous data. With the progress of wearable devices, many non-invasive continuous
monitoring approaches have been implemented to detect a variety of metabolites and
electrolytes. Sweat, saliva and tears have been collected for evaluating the concentrations of
glucose, lactic acid, uric acid and ions (e.g., Ca2+, Na+, K+, Cl−). Well-designed selectivity
capacitates the multi-functionalization in some wearable flexible electrochemical sensors,
making these platforms more powerful when simultaneously testing different electrolytes
and metabolites.

3. Devices for Kinematics

As mentioned above, the detected kinematical indicators include body deformations
and the velocity, acceleration and force accompanying these deformations. Correspondingly,
the available devices mainly target measuring the strains induced by different deformations,
associated pressure and inertial parameters. Subsequently, the sensors for monitoring these
kinematical indicators are introduced in detail.

3.1. Strain Sensors

Most movements in sports are realized by the deformation of joints, muscles and
bones. These physical activities are bound to generate local strains, which can be detected
by strain sensors to characterize the performances of players. Figure 4 shows common
sensing mechanisms for strain sensors. Generally, the strain sensor mainly relies on the
piezoresistive mechanism to transform the captured strain into the resistance change of the
functional element. In addition, capacitive and piezoelectric mechanisms are also used by
several devices to output capacitance and voltage signals when triggered by strains.

The resistance change of conventional elements in piezoresistive strain sensors is
mainly due to changes in the shape or material resistivity [86]. The former is the dominant
mechanism for metal strain gauges, and the latter is commonly used in silicon-based MEMS
piezoresistive sensors. For flexible piezoresistive sensors, it is not easy to define which
factor dominates the resistance variation due to the joint participation of microparticles
and macroscopic deformable materials in many devices. However, it is a shared goal
in developing different kinds of sensors that pursue a great sensitivity coexisting in the
wide-range device. Especially for sports with large strains, measuring range is a critical
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factor that must be considered. With the emerging progress of structural engineering and
fabrication techniques, many ingenious schemes are utilized to improve both measurement
sensitivity and range for flexible strain sensors.
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Micro-scale margins for deformation are reserved to meet the requirements of large-
range tests. Serpentines, micro-wrinkles, overlapped structures and micro-porousness
have proved their significant efficacy in increasing the sensing range. These special con-
figurations can increase the stretchability and reduce the deformation resistance of the
structure, allowing the sensor to withstand a larger strain range without being damaged.
Most engineered strain sensors can capture strains at around 100%. A porously structured
device by Zhou et al. has realized a test range up to 950% with a favorable gauge factor
(GF) of 364.5 [87]. Although the tunneling effect of many polymer-filler composites already
provides favorable sensitivity, the participation of sophisticated structures is also required
to further improve the GF. Taking the crack-based sensor in Figure 5a as an example, the
opening and closing motions of crack scarps on thin conductive films will change the
cross-sectional area of the conductive path and then affect the resistance of the whole film,
allowing the sensors to detect subtle strain stimulus [88]. Moreover, when the separated
scarps are on the nanometer scale, the tunneling effect may also exist, giving the electrons
a probability to flow across the gap. A nonlinear input-output relationship can be found
in most of the crack-based strain sensors. When the strain continues to grow (often larger
than 1%), all cracks may be fully opened and the sensing performance also degrades until
it disappears. A structurally engineered substrate with strain concentration structures can
control the location of the crack and accelerate its propagation, which further improves
the sensitivity. For example, abrasive paper pieces have been utilized as a substrate for
depositing Au film to form flexible bending strain sensors (Figure 5b) [89]. Some more
sophisticated microscale concentration structures, e.g., the tailored V-notches on poly-
dimethylsiloxane (PDMS) film in Figure 5c, can give the strain sensor a GF of 5888.59 at a
strain of about 2% [90]. However, it is not easy work to realize a wide-ranged, highly sensi-
tive strain sensor based on only one enhancing method due to the contradiction between
the two parameters. Therefore, the hierarchical structures were developed for the improve-
ment of both sensitivity and sensing range. More recently, Li and co-workers introduced
both wrinkles and cracks into a strain-sensitive fiber by exploiting a new strain-sensing
bilayer consisting of a pre-wrinkled rGO/PMDS layer and a highly susceptible AgNPs
layer (Figure 5d) [91]. The robust rGO interlayer cracks the Ag film at wrinkling troughs,
and the stress-relief wrinkling characteristic offers the bilayer excellent stretchability. The
obtained strain sensor features a large test range (about 210%) and unprecedented GF both
in subtle and large strain ranges (0–2%, GF: 420; 110–125%, GF: 1.1 × 109).
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Inspired by the excellent sensing features, strain sensors have played a very important
role in monitoring body motions. Generally, human motion depends on the combined
action of skeletal muscles, bones and joints. Joint bending usually induces large strains on
the corresponding epidermis, which has been successfully tested by a group of piezoresis-
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tive strain sensors (Figure 6a) [92]. The distinguished activities include dynamic bending
movements in the forefinger, elbow, wrist and knee; making a fist in hand and postures of
standing, walking and jumping. In addition to these palpable bendings, many subtle varia-
tions induced by muscles also receive excellent monitoring. For instance, the vibrations of
the vocal cords in the larynx are accurately perceived when speaking the words “How are
you” and “Where are you from”. Muscle contractions are an inevitable part of the exertion
in sports and only lead to subtle stretching or contracting strains in the corresponding epi-
dermis. Benefitting from the high sensitivity and high resolution of many elaborate strain
sensors, these varied, subtle muscle activities can be easily detected by mounting these
strips on skins. As shown in Figure 6b, a kind of fiber-junction bending sensor by Li et al.
has completed this task with high quality [93]. The sensor on the epidermis corresponding
to calf muscles can identify the magnitude and direction of epidermis strains in three sets
of fitness actions, including standing heel lifts, squats and leg extensions (Figure 6b(i–iii)).
Based on the captured electrical signal, the squat led to a more significant deformation than
the other two fitness actions. Squatting generates a contract strain in the calf muscles and
a stretch strain appears when heel lifting and leg extensions are performed, which is the
same as the phenomenon observed in real-time videos. Moreover, multichannel monitoring
of contractions in different muscles is also investigated (Figure 6b(iv–vii)). Three sensors
were attached near the bicep, tricep and deltoid muscles and then simultaneously detected
the muscle contractions caused by standing dumbbell curls, side lateral raises, push-ups
and shoulder presses. During strain-based monitoring, the crosstalk from external pres-
sure/force may influence the accuracy of obtained results. It is possible to locate the devices
in the region that is free from interference, but the limited candidates cannot fulfill the
whole monitoring work. A more potential method is making the sensor insensitive to the
external undesirable pressure/force. Recently, Xu et al. reported a novel flexible tensile
strain sensor that could decouple the simultaneously loaded pressure and was insensitive
to the external load-induced off-axis deformations [94]. This integrated sensor patch has
successfully detected the activities of fingers and wrists.
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Figure 6. The applications of strain sensors in sport monitoring: (a) monitoring the joint bending of
different parts of body [92]; (b) monitoring the muscle contractions during extensions of standing
heel lifts (i), squats (ii) and leg (iii) and the state of biceps, triceps and deltoid during standing
dumbbell curls (iv), side lateral raise (v), push-ups (vi), and shoulder press (vii) [93]. Reproduced
with permissions from The Royal Society of Chemistry (2020) [92].



Micromachines 2022, 13, 1356 13 of 40

3.2. Pressure Sensors

Pressure can reflect the contact state between an athlete and the outside, and the
available measuring device is a flexible pressure sensor for testing the contact area and
contact force. The sensing principle of a flexible pressure sensor is similar to that of the
aforementioned strain sensor, mainly including piezoresistive, capacitive and piezoelectric.
In addition, some new mechanisms, such as triboelectric, are also being applied. Generally,
a pressure sensor consists of an electrode layer to transmit signals and an active layer that
deforms under pressure and dictates changes in output signals. In order to promote the
performance parameters, such as sensitivity, range and limit of detection, response and
relaxation speed, microengineered structures are often introduced.

In piezoresistive pressure sensors, micropatterned structures, porous layers and mul-
tilayered structures have proved their superiority in improving the sensitivity and re-
sponding speed [95]. As shown in Figure 7a [96], the deformation of the micropatterned
active layer under pressure can more distinctly change the contact area between it and the
electrode, which inevitably varies the whole resistance of the device and then improves
the sensitivity. Pyramids, domes and semi-cylinders have been widely used for micropat-
terning the active layer. The semi-cylinder lines can generate a significantly higher rate
of increase in contact area than the other two microstructures within the pressure range
of 0–2 kPa. When compressed by higher pressure, the deformation of the microstructure
tends to saturate, resulting in a decrease in sensitivity. The multilayered structure can be
realized by layering conductive microspheres, in which the variation of contact area can
be attributed to the deformation between the microspheres and electrodes (Figure 7b) [97].
The porous layer strategy can change the modulus of the active layer (Figure 7c) [98]. Due
to the air voids among these microstructures, the active layer tends to deform and recover
more easily. A larger pore can improve the sensitivity, but the more deformable active layer
can induce a decrease in the dynamic range of sensors. This phenomenon improves the
response and recovery time of sensors and lowers the detection limit. However, it is worth
noting that there is no universal optimal design for all piezoresistive pressure sensors, and
it may be a tailored process to develop a sensor for certain applications.
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In capacitive pressure sensors, manipulating the geometry of pressure-sensitive mate-
rials is also a practical method to enhance performance [99]. Generally, the compressibility
of the dielectric layer is increased by adding voids through microengineering. The inter-
electrode distance and the dielectric constant of the media can then be changed more easily
under a given applied pressure. The micropatterned and porous structures in dielectric
layer are two often used approaches [100,101]. Micropatterns decrease the stiffness of
the dielectric film due to the added air voids, facilitating the reduction of interelectrode
distance and then improving the sensing performance. Moreover, the compressing process
can extrude air (whose dielectric constant is lower than elastomer) from the device and
further increase the sensitivity. Similar circumstances also happen in the dielectric layer
with porous structures [102]. The increased compressibility and varied dielectric constant
induced by the 1–1000 µm air voids bring a larger capacitance variation (consequently
sensitivity), faster response and a smaller detection limit [99]. The approaches combining
micropatterns and porosity in the dielectric layer are also proposed to further improve
sensitivity. An accompanied consequence of micropatterns and porous structures is the
decrease in measurement range, which may be overcome by using a thicker dielectric layer
or tailored materials/structures that stiffen at higher pressures.

Piezoelectric and triboelectric pressure sensors also benefit from the enhancement of
microengineering. For instance, the micropatterned PVDF film can improve the output
power by about 500% compared to that of the device with a flat film when a 15 kPa pressure
is applied [103]. Meanwhile, the roles of micropatterns in triboelectric pressure sensors
have not been largely explored, but several recent works have demonstrated their potential.

The most popular application of pressure sensors is monitoring the plantar pressure
during sports by directly integrating it into a shoe insole. Firstly, monitoring the plantar
pressure is a very important path to evaluating the gait of athletes. Several gait variables
during sports have been obtained, including peak/mean pressure, reaction force, the center
of pressure (COP), the distance between COP and the contact region/area. Zhao et al.
used an insole-shaped flexible sensor matrix film with 16 piezoresistive sensing cells to
detect and analyze the plantar pressure (Figure 8a) [104]. The measured total static pressure
forces (455 N) of the right (232 N) and left feet (223 N) were similar to those while standing
on one foot for the right foot (450.7 N) or left foot (456.7 N) when the subject was in a
natural upright standing position. The variation profiles of the plantar pressure force
during a dynamic gait cycle were also measured, including the stages of heel strike, foot
flat, midstance, heel off and toe off midswing (Figure 8b). Barratt et al. measured the
plantar pressure and reaction force of two commercial sensing insoles while participants
were rowing on a Concept2 ergometer (Figure 8c) [105]. The results showed that the
Moticon and Pedar-x insoles had moderate-excellent test–retest reliability, but the former
was not suitable for accurately measuring pressure and force variables over time due to its
overestimation. Recently, Jeong et al. proposed an ultra-wide range pressure sensor based
on a piezoresistive microstructured nanocomposite. The wide pressure range, favorable
sensitivity and high durability made the developed sensor suitable for monitoring the
pressure distribution in the hands and feet during powerlifting workouts (Figure 8d) [31].
Wrong poses, including the imbalance between left and right hands, unstable dynamics
induced by perturbation between right and left feet, and imbalance in hand and foot
motions caused by pelvic deflection, were successfully discovered and confirmed by a
certified personal trainer (Figure 8e). Similarly, a textile-based wireless pressure sensor was
integrated into an insole to monitor the pressure distribution when the participants were
doing yoga postures (Figure 8f) [106]. In the meantime, the data measured by pressure
sensors can also represent the contact between facilities and hands, and the involved
devices are often referred to as artificial electronic skin that mimics the tactile pressure
sensitivity of human skin. One typical prototype is the e-skin-based prosthetic hand
demonstrated by Kim et al. The integrated piezoresistive pressure sensors can reliably
transduce signals from typing and grasping the baseball and then transfer them to the
nervous system by connecting the sensors with the nerve. Yang et al. also used a flexible
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triboelectric nanogenerator in skiing [50]. The nanogenerator can be easily manufactured
in different shapes or structures and applied to the insole or ski pole sleeve to monitor the
pressure distribution.
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3.3. Inertial Sensors

Generally, inertial sensors for kinematics monitoring in sports often work as an inertial
measurement unit (IMU), which measures linear acceleration, angular acceleration and
sometimes magnetic field. The accelerometer measures the time derivative of velocity
(namely, linear acceleration) so that they can be used for kinematics study and orientation
using acceleration components in 3D space; the gyroscope measures angular acceleration
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about a certain axis and can be used to determine orientation in the angular coordinate
system; the magnetometer measures magnetic field strength. The combination of the
three sensors can produce a measuring system for activity detection and analysis. As
for now, inherently flexible accelerometers and gyroscopes are not as common as the
abovementioned devices. Only a few prototypes are reported, whose performances are
quite far away from those of commercialized MEMS devices. Thus, most wearable IMUs
use flexible substrates to integrate the miniaturized solid sensors into flexible systems with
wearability. Herein, the involved inertial sensors may be individual units with only one
function and monolithic integrated systems with multiple measuring capacities. Moreover,
an MCU is fused into some high-performance systems to enhance signal transmission and
processing capability. These approaches provide a strong base for monitoring the inertial
kinematics parameters in sports. A mass of commercialized wearable IMUs have appeared
on the market and more information can be found in [27].

As for the applications of wearable IMUs in sports, the target information focuses on
posture/motion and impact [107–109]. The former can be a very important assistant for a
coach to classify the movements and conduct skill evaluation and acquisition for players.
For example, in some racquet sports, e.g., tennis and badminton, IMUs have been mounted
on the forearm, wrist or bottom of racquets to acquire data for recognizing the strokes and
classifying them into serve, backhand and forehand. As shown in Figure 9a,b, the authors
of [36] use six IMUs worn on shanks, wrists, sacrum and head to analyze the swimming
phases of swimmers from wall to wall (namely, wall push-off, glide, stroke preparation,
swimming and turn). The results proved that the sacrum is the most appropriate location
for implementing a single sensor analysis system, which is verified by a further performance
evaluation using a single IMU in the main swimming postures [59]. With the obtained data,
a coaching assistance system, “Smartswim” is proposed to quantitatively assess swimmers’
performance and lead to more efficient training (Figure 9c) [110]. The identification of
running asymmetry is another practical domain for wearable IMUs. The participation
of IMU in monitoring running posture and identifying asymmetry has been evaluated
and verified. Moran et al. used a wearable IMU sensing system to identify the running
asymmetry of 21 participants with an artificially induced asymmetry [40]. Moreover,
multiple IMUs are mounted on different parts of the body to get the optimal location. Many
works have proved that the IMUs on lower limbs, such as the foot, heel, knee and hip, can
realize better performance in capturing kinematical parameters. In invasion sports (e.g.,
soccer, football, rugby and basketball), the skilled motions and high-level impacts should
be equally monitored [111]. The motions can be recorded by the IMUs mounted on the
body [112–116], and the adversarial impact is usually captured by accelerometers. The
accelerometers can be directly worn by players and to capture trunk collisions, and some
instrumented equipment, such as helmets, headgear and mouthguards, is also utilized to
investigate the head impacts in these contact, collision and combat sports [60].
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4. Devices for Physiologies
4.1. Devices for Vital Signs
4.1.1. Heart Beating/Pulse

The monitoring of heartbeat and pulse can be implemented by measuring the ac-
companying physical parameters caused by these activities, which can be detected by
highly sensitive strain or pressure sensors. Pulse detection methods can be categorized
according to the location of the mounted sensor. The commonly used ones include CA
(carotid artery), DA (digital artery), RA (radial artery), BA (brachial artery) and DPA (dor-
salis pedis artery). Based on the structure of pine trees and needles in nature, Yu et al.
proposed a self-powered piezoresistive sensor with zinc oxide nanorod arrays on graphene-
treated cotton [117]. When worn on the wrist (RA), the sensor can successfully indicate
the pulse by the occurrence of generated current peaks with an acceptable deviation in
heart rate between the sensor and a commercial smartwatch. When further refining the
heart rate-current response, the P/T/D waves are also detected (Figure 10a). The variation
of pulse rate before and during exercises are detected by the highly sensitive graphene
strain sensor on the wrist [118]. Chen et al. proposed a pressure sensor based on a piece
of carbonized crepe paper [119]. As can be seen in the obtained waveforms (Figure 10b),
the pulse rates rise in a normal state and after exercise are approximately 63 and 83 bpm,
respectively. Moreover, the pressure sensor can also distinguish characteristic peaks of
the pulse waveform, which are assigned to the P (percussion) wave, T (tidal) wave and
D (diastolic) wave. Nassar et al. also successfully illustrated the detection of the heart
rate rising from 62 bpm to 95 bpm after a 10-min run by a paper-based capacitive sensor
when worn on the chest near heart (Figure 10c) [120]. As long as the performance meets
the monitoring requirements, the sensor can be mounted on different positions of the body
to detect the pulse. The self-powered pressure sensor proposed by Prof. Zhong Lin Wang’s
group has been directly worn at the fingertip, wrist, ear and ankle, respectively, to continu-
ously monitor the heartbeat signals (Figure 10d) [121]. Several consecutive period pulse
waveforms were captured in different segments of a day, including deep sleeping, working,
at lunch and night writing (Figure 10e). Based on the waveforms, the heart rate and K value
are successfully calculated, and the measured heart rates from different positions show a
favorable consistency. Moreover, the K value reflects the change in the characteristics and
the area of the pulse transit map, which renders the degree of vascular sclerosis and then
the cardiovascular physiology and pathology. Further on, a user-friendly system has been
developed with the capability of signal processing, sampling and Bluetooth-based wireless
communication. The real-time data can be received and displayed on a mobile phone APP.
This is of great significance for the low-cost, real-time assessment of athletes’ heart status
and the prevention of cardiac problems such as sudden arrests in sports.

The heartbeat can also be recorded by phonocardiogram (PCG) and ECG. PCG devices
record the mechanical heart sound signal to render the valve function and hemodynamics
in the heart. By now, several electronic stethoscopes have been developed. The available
devices guarantee the miniaturization of the system, and flexibility can be achieved with the
help of flexible substrates. As shown in Figure 11a, the group of Wendong Zhang proposed
a double-beam-block microstructure to combine the piezoresistive sensor with the natural
frequency response of the heart sound (20~600 Hz) [122]. Compared with a commercial
electronic stethoscope, the MEMS electronic heart sound sensor shows competitive sensitiv-
ity and a significantly higher signal-to-noise ratio (SNR). The MEMS heart sound sensor can
provide the first and second heart sounds, containing more abundant information about the
lesion. Meantime, the bat shape beam, T-type and crossbeam structures with a rigid plastic
cylinder at the layout center that imitates the fish cilium are designed to detect the heart
sounds with better sensitivity (Figure 11b) [123–127]. Except for the piezoresistive principle,
some piezoelectric devices are also involved in this task. Ning et al. reported a triangular
cantilever piezoelectric bimorph MEMS transducer to monitor the PCG [128]. The results
show that the SNR of the MEMS stethoscope is 17 dB, approximately 10 dB higher than that
of the commercial stethoscope, which can be further improved if an application-specific
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integrated circuit is integrated. Similarly, a PZT-based sensor with a two-stage amplifier is
used to assess the heart states of pneumonia patients and successfully tracks the recovery
course of the discharged pneumonia patients (Figure 11c) [129]. However, these devices
are all made of a silicon wafer, inevitably resulting in inherent rigidity for these chips. To
achieve the desired flexibility or wearability, some assisted components, e.g., bonds or
fabrics, are needed to provide a substrate for integration. As for the devices with inherent
flexibility, there are only a few works that conform to this characteristic. As a leading
pioneer, Takao Someya’s team produced a piezoelectric mechanical acoustic sensor based
on PVDF nanofibers by an electrospinning process (Figure 11d) [130]. The high SNR of
40.9 dB ensures the measuring accuracy and the lightweight (about 5 mg), excellent gas
permeability (12.4 kg·m−2·d−1) and mechanically robust against repetitive bending (more
than 1000 cycles) ensure comfort in long-term wearing.Micromachines 2022, 13, x FOR PEER REVIEW 21 of 46 
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Figure 10. The wearable sensors and corresponding applications in monitoring heartbeat or pulse:
(a) the pulse curve captured from wrist and P/T/D waves [117]; (b) the captured pulse signal and
P/T/D waves before and after exercise [119]; (c) the captured heartbeat curve and heart rate captured
from chest before and after a10-min running [120]; (d) the self-powered pressure sensors worn on
different parts of body (i–iv) for monitoring heartbeat signals and the (e) captured voltage (up),
heart rate (middle) and K value (down) in different segments of a day [121]. Reproduced with
permissions from American Chemical Society (2022) [117]. Reproduced with permissions from
American Chemical Society (2018) [119]. Reproduced with permissions from Wiley (2017) [120].
Reproduced with permissions from Wiley (2018) [121].
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Figure 11. The PPG devices and their applications in monitoring heartbeat: (a) the double-beam-block
microstructure(left), sensor photo (middle) and comparison of obtained curves (right) between this
sensor (yellow) and commercial product (blue) [122]; (b) fish cilium structures for PPG sensors [126];
(c) the PZT-based sensor with a two-stage amplifier [129]; (d) the sensor based PVDF nanofibers [130].
Reproduced with permissions from Elsevier (2022) [126]. Reproduced with permissions from The
National Academy of Sciences (2020) [130].

An ECG is another typical signal for assessing the heart state. The research of available
wearable devices mainly focuses on pursuing flexible, dry electrodes that can reliably
acquire ECG without conductive glue [131]. Numerous high-conductivity nanomaterials,
such as metals, carbons and polymers, are processed to guarantee reliable contact between
electrodes and skin in various environments. In the beginning, the efforts were devoted
to finding candidates to replace the conventional Ag/AgCl electrode. Pencil lead and
liquid metal ink are utilized to provide drawability and simplified installation to ECG
electrodes [132,133]. The results even prove that the pencil lead-based electrodes could
acquire better ECG signals when used under freshwater or saltwater. Then, more and more
functional materials are participating in the flexible electrodes to provide favorable features.
Gan et al. prepared a super-stretchable, conductive and adhesive hydrogel by incorporating
the PSGO-PEDOT nanosheets into a polyacrylamide hydrogel network. Due to the mussel-
inspired redox environment inside the hydrogel networks, the obtained electrodes feature
a long-term and repeatable adhesiveness, which significantly simplifies the ECG tests
(Figure 12a) [70]. Bao’s group compounded a new flexible self-healing material with carbon
nanotubes (CNTs) or Ag nanowires (NWs) to obtain a flexible conductive electrode with
self-healing capability, possessing great potential in high-viable ECG electrodes [134]. To
improve the permeability, porousness is introduced into the electrode geometries [130,135].
Zhou et al. employed a breath figure method to generate the porous skeleton before
AgNWs are dip-coated, and the resulting film had a transmittance of 61%, the sheet
resistance of 7.3 Ω/sq and water vapor permeability of 23 mg/(cm2·h) [136]. The ultrathin
electrode forms a conformal contact with the skin and successfully captures the ECG
signals (Figure 12b). Some other researchers are trying their best to extend the application
range of flexible electrodes. As shown in Figure 12c, Warnecke et al. attached the printed
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flexible ECG electrodes to the steering wheel to continuously monitor heart health during
driving in different situations, such as rest, city, highway and rural [137]. To maintain
functionality underwater, many groups have introduced waterproof capacity into flexible
electronics [32,138–140]. For instance, Wu’s group prepared an ionogel by a facile one-
step polymerization and used it as water-resistant electrodes [141]. The stretchability,
conductivity, underwater self-heal ability, underwater adhesiveness and biocompatibility
make the ionogel possible to be used as bioelectrodes for underwater ECG monitoring.
When the electrodes are continuously shaken underwater with a human forearm, the
commercial gel electrode loses the ECG signal within 10 min, but the ionogel electrode is
able to record ECG signals continuously for 30 min underwater (Figure 12d). Moreover, the
ionogel electrode can maintain its conductivity and mechanical properties and effectively
detect ECG signals even after 14 days of immersion in water. Similarly, Ji et al. reported
a water-resistant conformal hybrid electrode for aquatic endurable ECG monitoring and
achieved the real-time recording of ECG signals during swimming (Figure 12e) [32].
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Figure 12. The wearable ECG devices and their applications in sport monitoring: (a) the electrodes with
long-term and repeatable adhesiveness (left) and the electrodes worn on forearms (middle) to capture
ECG signals (left) [70]; (b) the electrodes with porousness for excellent permeability (up) and the captured
ECG signals (down) [136]; (c) the steering wheel with flexible ECG electrodes [137]; (d) the water-resistant
electrodes and the long-term reliability underwater [141]; (e) the water-resistant conformal hybrid electrode
for aquatic endurable ECG monitoring during swimming [32]. Reproduced with permissions from Wiley
(2020) [32]. Reproduced with permissions from Wiley (2019) [70]. Reproduced with permissions from
American Chemical Society (2020) [136]. Reproduced with permissions from Wiley (2021) [141].

4.1.2. Respiration

The monitoring of breath is mainly based on the following four approaches: (i) mea-
suring the variation of humidity near the nostril or mouth; (ii) detecting the deformation of
the thorax; (iii) monitoring the air pressure near the nostril or mouth; (iv) measuring the
blood oxygen to assess the efficiency of respiration.

The transient difference of moisture in inhaled and exhaled air can induce an obvious
humidity variation, which can be detected by highly sensitive humidity sensors [142,143].
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Whitesides’ group proposed a paper-based capacitive moisture sensor that uses the hy-
groscopic character of paper cellulose to measure the respiration patterns and rate by
digitally printing graphite ink on a paper sheet (Figure 13a) [144]. The paper sensor can
be embedded into a face mask and its outputs are processed and transmitted to recognize
different breath patterns such as normal breathing (1), taking a deep breath (2), pausing (3)
and randomly breathing (4). Similarly, Simić et al. proposed a textile capacitive facemask
sensor with interdigitated electrodes to measure the humidity variation by testing the
permittivity change due to the humidity [145]. The interdigitated electrodes are directly
embroidered onto the inner or outer sides of the medical mask, which greatly improves the
system integration and portability.

The middle two routes mainly focus on the physical parameters induced by breath.
Takao Someya’s team proposed a smart face mask based on a self-powered ultrathin
pressure sensor for wirelessly monitoring breath (Figure 13b) [33]. The sensor consists of
two Au/parylene/Teflon AF films and works based on the mechanism of the electrostatic
induction effect. The sensor possesses the thinnest thickness of about 5.5 µm and the
lightest weight of about 4.5 mg and can achieve a peak open-circuit voltage of up to about
10 V when stimulated by the airflow of breath. With the help of a measuring circuit,
different breathing conditions, including normal breathing, fast breathing, coughing and
breath-holding, are recognized. More recently, Karita et al. developed a wearable sensor
for respiration monitoring during 6-min walk by sensing the variation in the capacitance
of abdominal skin [146]. The conductive cloth electrodes are sewn inside the belly band,
and two configurations of left-right layout and coaxial layout are utilized to capture the
capacitive signals.

Blood oxygen is often measured by optoelectronic devices based on the PPG method [147].
Li et al. prepared an epidermal inorganic optoelectronic device by integrating III–V group
emitting elements, a Si-based photodetector and interconnects (Figure 13c) [148]. Because of the
superior flexibility/stretchability, this device can be conformably mounted to skin and keeps
the constant light transmission between emitting element and photodetector. When attached to
the forefinger or wrist, the SpO2 and pulse rate are successfully measured. Moreover, Chen et al.
proposed a flexible blood oxygen monitor with a power source of a triboelectric nanogenerator,
which provided the potential for battery-free wearable electronics [149].
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Figure 13. The wearable respiration sensors: (a) the face mask with a paper capacitive moisture
sensor and corresponding circuit for recognizing breath patterns [144]; (b) smart face mask based
on a self-powered ultrathin pressure sensor for wirelessly monitoring breath. (i) is the ultrathin
sensor twining one a finger; (ii) and (iii) are the front and back sides of the smart face mask [33];
(c) epidermal inorganic optoelectronic SpO2 sensor and results measured from fingertip (i) and wrist
(ii) [148]. Reproduced with permissions from Wiley (2022) [33]. Reproduced with permissions from
Wiley (2016) [144]. Reproduced with permissions from Wiley (2017) [148].
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4.1.3. EMG and EEG

The utilized electrodes in the detection of EMG and EEG are similar to ECG. Therefore,
the special requirements of electrodes are also similar to those of ECG, such as flexibility,
water resistance and durability, etc. For instance, Giminiani et al. showed a fabric-based thigh-
wearable EMG sensor for monitoring quadriceps activity during strength and endurance
exercises (Figure 14a) [150]. Compared with the “gold standard” instrumentation, the pro-
posed wearable electronic garment system features a favorable validity and agreement, which
suggests the potential of using such a device to monitor strength and endurance exercises
in vivo. Then, a microneedle array electrode-based wearable EMG system is proposed to
detect the driver’s drowsiness when griping the steering wheel (Figure 14b) [151]. The results
indicated that during driving, participants’ drowsiness levels increased while the activity
of the muscles involved in the steering wheel grip decreased concurrently over time. The
capturing of EEG is often limited by the very small signal amplitude of 50–100 µV, and the
researchers mainly devote their efforts to developing high-precision electrodes to improve
the quality of collected EEG signals. Shin et al. designed an earbud-like wireless EEG device
(e-EEGd) that is composed of tattoo-like electrodes, connectors and a wireless EEG earbud.
The tattoo-like electrodes and connectors show a good ability in decreasing direct noise from
motion artifacts (2–4 Hz) and indirect noise (0–2 Hz). (Figure 14c) [152].

4.1.4. Body Temperature

The development of body temperature sensors has been pursuing the features of
wearability, high sensitivity, good accuracy, portability, an array with a large area and
real-time monitoring capacity. The reported flexible temperature sensor mainly uses ther-
mosensitive materials to transduce the temperature change into corresponding electrical
signals. Generally, temperature sensing is achieved by thermal resistance, thermocouples
and thermistors. Yu et al. presented a flexible thermal-resistance sensor made by sandwich-
ing a PEDOT:PSS sensing film between two PDMS substrates [153]. Stable microcracks
are engineered in the sensing by pre-stretching the sensor to bestow high sensitivity and
linearity. The sensor successfully distinguishes the small rise (from 27.5 ◦C to 28.5 ◦C) of
skin temperature before and after a 5-min running exercise and shows good consistency
with commercialized IR thermograms (Figure 14d). Prof. Zhuangde Jiang’s team recently
developed a thin thermocouple film with a combination of platinum and indium oxide
(Figure 14e) [39]. Benefiting from the ultrathin characteristics, small heat capacity and fast
response characteristics, the sensor can realize real-time monitoring of breath temperature.
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Figure 14. The EMG, EEG and temperature sensors for sport monitoring: (a) the EMG sensor to monitor
the strength and endurance exercises in vivo [150]; (b) the microneedle array electrode-based wearable
EMG system to detect the driver drowsiness. (i) is the SEM photo of one single needle; (ii) is the photo of the
microneedle array electrode; (iii) is the wearable EMG system; (iv,v) are the system worn on forearm and
driving [151]; (c) the earbud-like wireless EEG device (up) show a good ability in decreasing direct noise
(down) [152]; (d) the wearable temperature sensor (up) and the measured small rise of skin temperature
before and after a 5-min running exercise (down) [153]; (e) thin thermocouples film [39]. Reproduced with
permissions from American Chemical Society (2020) [153].
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4.2. Devices for Metabolism

Metabolism monitoring aims at the physical conditions of humans, and the involved
parameters include the excretion volume of body fluids and the concentration of metabolites
in these body fluids. Measuring the excretion volume mainly lies in the effective collection
of fluids and high-accuracy volume characterization, which often requires help from
microfluidics. The concentration of several biochemical metabolic markers, e.g., glucose,
lactate and electrolytes (Na+, Ca2+, K+, Cl−), are evaluated by electrochemical sensors.
Sweat, saliva, tears and interstitial fluid (ISF) have been used as samples, and sweat is the
most common one. In the following part, the available devices for metabolism monitoring
will be sequentially introduced according to the targeted samples.

4.2.1. Devices for Sweat Analysis

The first concern of sweat analysis in sports is sweat loss (SL). There are two types of
human sweat under normal conditions, namely, sensible sweat in the form of liquid and
insensible sweat in the form of vapor. Typically, the human sweat rate is in the range of
10–2000 g/(m2·h), where 90–2000 and 10–90 g/(m2·h) represent sensible and insensible
sweat, respectively. Athletes often need measuring devices with a larger measurement
range due to their prominent thermoregulatory sweating. Conventional sweat loss mea-
suring devices (SLMD) often use a patch or capsule to collect and indicate the value by
hygrometry and gravimetry [77]. Though many of these methods exhibit high reliability,
the lack of real-time performance may lead to a lag in the evaluation. The recently emerging
progress in wearable sweat loss measuring devices (W-SLMD) gives this field a booming de-
velopment. In accordance with the used principle, the available devices can be categorized
into hygrometer-based, absorbent-material-based and microfluidics-based ones [154].

Similar to conventional devices, hygrometer-based W-SLMD also integrates humidity
sensors into the system, but the wearable and flexible characteristics are pursued [155].
Wearability is the main target for the research of W-SLMD. For example, Salvo et al.
developed a wearable sensor for the real-time measurement of sweat rate in localized areas
of the human body to monitor athletes’ hydration status during training and improve their
performances [78]. Two commercial humidity and temperature sensor chips (SHT25) are
inserted into a wristband to capture the SL signal. The sensor has a working range of up
to 400 g/(m2·h), and the obtained results from thirteen football players prove that this
sensor is comparable to the medical device (Dermalab) that is used as a gold standard. Sim
et al. put a capacitive humidity sensor into a humidity chamber and integrated them with
batteries and a thermopneumatic actuator into a watch type W-SLMD [80]. The proposed
sensor has a sensitivity (capacitance rising rate) of 0.039 (pF/s)/(g/m2·h) and linearity
of 97.9% in the human sweat rate range. These devices have competitive performance
when compared with gold-standard medical devices, but the rigid components and large
volumes still give the users extra uncomfortableness.

Different from the patch in the conventional gravimetry method, the absorbent-
material-based W-SLMDs possess functional components to transduce the SL signal into
readable signals in real-time. Paper, fabric, hydrogel and sponge have been utilized as
absorbent materials to efficiently collect sweat. Electrical and colorimetric signals are the
main forms of readable signals. Due to the hygroscopic expansion of cellulose, which
increases the distance between each CNTs, the CNT-doped conductive paper will produce
an increment in its electrical resistance when it is moisturized by sweat (Figure 15a) [156].
After a necessary calibration, this device can be used to monitor the SL during cycling
sports (Figure 15b) [156]. The swelling of hydrogel under sweat also generates an obvious
strain and changes the resistance of embedded strain-sensing fabric. Insensitive to body
movement and interferences in daily life, this sensor features good reliability and comple-
tive performance compared with conventional gravimetric analysis [84]. When changing
the flexible electronics into colorimetric materials, the SL value can be assessed by more
readable color signals. The following two technical routes are often used: the former stores
functional colorants in a pre-prepared reservoir and releases them upon sweat absorbance,
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and the SL is estimated by measuring the length of the stained substrate; the latter uses
paths with different distances between the sweat absorber and colorimetric material, and
the color change induced by the full saturation of each path indicates a certain sweat
volume. Obviously, the first scheme can obtain a continuous and quantitative measurement
of SL, but a careful gauge is needed (Figure 15c) [157]; the latter has a flaw in showing
continuous values, but it can provide a direct and easy way to evaluate whether the SL
reaches a pre-set value or not (Figure 15d) [158].

The microfluidics-based W-SLMDs refer to the devices that use microfluidics as the
core component for collecting, transferring or storing sweat [12]. The SL value captured by
microfluidics-based W-SLMD is also indicated by electrical or colorimetric signals, but the
participation of winded microfluidics brings better flexibility, higher integration and smaller
size/weight. For colorimetric dives, the functional dyes are arranged near the inlet or filled
in the channels, and the length of the stained or color-changed channel is corresponding to
the level of SL. As a pioneer, the group of Prof. Rogers has proposed a series of colorimetric
microfluidics-based W-SLMDs [159–161]. The microchannels are usually made of flexible
polymers, e.g., PDMS, polyurethane and superior geometries are proposed to render the
devices with specific characteristics, such as waterproof and being resettable. As for the
electrical W-SLMDs, microfluidics is often used as an intermediary to correlate the electrical
signals to the level of SL. For example, Choi et al. proposed a microfluidics-based capacitive
sweat rate sensor for continuous and real-time monitoring of sweat loss (Figure 15e) [162].
As illustrated in Figure 15f, the microfluidic layer is sandwiched between two conductive
plates, forming a plane-parallel capacitor. During perspiration, sweat enters through
the inlet hole and the microfluidic channel is progressively filled. Due to the significant
difference in permittivity between empty (filled by air) and filled channels, the sensor will
output a variation in its capacitance. The sensor can be used to monitor exercise-induced
sweating under different intensities, and the results prove a favorable consistency with the
Macroduct collection device (Figure 15g,h).
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Another core target of sweat analysis is obtaining the concentration of typical metabo-
lites. As there is a correlation between the concentration of metabolites in sweat and blood
plasma, non-invasive monitoring of sweat can be used to assess the metabolism of athletes.
Electrolytes (e.g., Na+, Ca2+, K+, Cl−) and biomolecules (e.g., glucose, lactate and uric acid)
have been tested by several wearable devices through electrochemical and colorimetric
sensing principles. Potentiometry is an often-used method to measure the concentration of
ions, which transduces the ion activity into an electrical potential by following the Nernst
equation. Facing the concurrence of multiple ions, ion selectivity is a key feature for the
sweat sensor to accurately represent the parameters of every kind of ion. Therefore, an
ion-selective electrode (ISE) is often constructed by hybridizing an ionophore and conduc-
tive patterns. Each ionophore only responds to a certain ion, which is the core element
for achieving high ion selectivity. The ISE acts as the working electrode and a reference
electrode is required. Biomolecules are often measured by the amperometric method with
the help of enzyme recognition elements. Similar to ion sensing, enzymes undertake the
molecule selectivity task and act as the working electrode to catalyze a redox reaction
to initiate an electron transfer process between the redox center of the enzyme and the
working electrode.

Obviously, it is the core task for ion and biomolecule sensors to find the proper
material for the working electrode to achieve high selectivity. Meanwhile, benefiting
from the high selectivity, the capacity of wearable sweat sensors has gradually developed
from focusing on a single analyte (e.g., pH [163], Na+ [164], Cl− [165], NH4+ [166] or
glucose [167]) to simultaneously measuring multiple targets. Wei Gao’s group has reported
a fully integrated wearable sensor array for simultaneously and selectively analyzing four
different parameters in sweat, including glucose, lactate, Na+ and K+ (Figure 16a) [35].
The sensor array can be packaged into a wristband or headband to monitor perspiration
during stationary leg cycling. The accuracy of in situ measurements is verified through
the comparison of on-body sensor readings from the forehead with ex situ (off-body)
measurements from collected sweat samples (Figure 16b). Similarly, Hao et al. also reported
a sensor array for simultaneously detecting glucose, lactate, Na+ and K+ in sweat and the
captured values during fitness exercises were verified by ex situ devices (Figure 16c) [34].
The flexible CNT electrode array is fabricated by a simple, low-cost and eco-friendly
vacuum filtration–transfer printing method, and the strategy can be easily expanded to the
economical manufacturing of other flexible electronic devices (Figure 16d). The detection of
six biomarkers is achieved by carbonizing a silk fabric textile (Figure 16e) [168]. The highly
conductive textile features a hierarchical woven, porous structure and can be directly used
or combined with other compounds to serve as the working electrode. Six biomarkers,
namely, glucose, lactate, ascorbic acid, uric acid, Na+ and K+, are simultaneously detected
with high sensitivity, good selectivity and long-term stability.

Further integration is realized by combining the SL sensor and biomarker sensors [13,169].
Hashimoto et al. used a microfluidic sensor to simultaneously monitor the SL and electrolyte
concentration [81]. As shown in Figure 16f, the SL is assessed from the time for the droplet to
appear and the droplet volume, and the concentration in each droplet is indicated by the peak
value in the obtained current. Similarly, a flexible microfluidic sweat sensing patch for real-time
electrochemical sensing and sweat rate analysis is presented [170]. As illustrated in Figure 16g,
this device contains the following four layers: a spiral-patterned microfluidic component for
transporting sweat, a pair of parallel Au electrodes for electrical impedance-based sweat rate
sensing, a parylene-C layer for insulation and an ion-selective layer for measuring electrolyte
concentration. By properly modifying the number of electrodes (N = 3 or 4), two or three sweat
analytes are detected, in addition to sweat rate (Figure 16h).
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4.2.2. Devices for Saliva, Tear and ISF Analysis

The saliva-based physiological monitoring, namely, salivaomics, is conducted by
integrating the devices into mouthguards (MG), pacifiers and teeth. The main targets of
salivaomics are the biomolecules related to human metabolisms, such as lactate, uric acid
and glucose. For example, a 3-electrode system with a PPD-LOx enzyme working electrode
is attached to the inner side of an MG for salivary lactate monitoring (Figure 17a) [171].
Similarly, a sensing system with Prussian-blue-graphite electrodes is used to detect the uric
acid, and the obtained signals can be wirelessly transmitted through BLE by the integrated
amperometric circuit board (Figure 17b) [172]. Then, the monitoring of saliva glucose is
realized by Arakawa et al., and the signals are also transmitted with the help of a BLE-based
circuit (Figure 17c) [173]. Meanwhile, the intraoral sensors can also be used to monitor
food intake, which is also an important concern for athletes in daily life. For example,
Lee et al. reported intraoral hybrid electronics for the real-time quantification of sodium
intake (Figure 17d) [174]. The sensing system has a multi-layered structure, containing
a microstructured ion-selective sodium sensor, signal filtering/amplification, Bluetooth
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low-energy wireless telemetry, an antenna and a miniaturized microcoin battery. When
mounted in the mouth by a custom-fit retainer, the sensor shows a high sensitivity to
sodium intake.

The wearable tear sampling techniques can be implemented by putting a tear sensor
into the eye or integrating it with a soft contact lens (SCL). The former requires a minimized
size to maintain comfortableness. For example, a tear sensor made of micron-sized Pt/Ir
coils, enzyme and UV curable glue is put into the lower eyelid to wirelessly monitor the
tear glucose (Figure 17e) [175]. The latter SCL-based scheme is more popular. The group
headed by Dr. Parviz has developed a serial of SCL-based tear sensors for monitoring
lactate and glucose [176]. As shown in Figure 17f [177], the two/three-electrode biomarker
sensor is integrated into the SLC to assess lactate or glucose, and then the coils are used to
achieve wireless communication and receive the microwave energy to power the system.

ISF steadily exists in the dermis, salivary glands and sweat glands, making it a favor-
able candidate for continuous physiological monitoring. The concentration of ISF glucose,
having a good consistency with that of plasma, has been measured by different technical
routes. In the first route, reverse iontophoresis is conducted by driving the biomolecules in
the ISF towards the skin surface with a mild electric current [178]. Chen et al. used a paper
battery to generate subcutaneous electrochemical twin channels. Along with the hyaluronic
acid penetration into ISF (anode channel), the glucose also reverses iontophoresis to the skin
surface (cathode channel) (Figure 17g) [179]. Though many efforts have been devoted to
decreasing the loaded current, skin discomfort and pain still exist. Therefore, another route
based on microneedles (MNs) has been developed. For example, a PVA-based double-layer
microneedle patch is prepared to achieve both in situ dermal sample collection and instant
color display [180]. Glucose oxidase is packaged in the MNs to selectively convert glucose
into gluconic acid and H2O2. The lowered local pH and the presence of hydrogen peroxide
cause a color change in the immobilized upper layer (Figure 17h). This colorimetric sensor
successfully achieves minimally invasive extraction of the interstitial fluid from mice and
converts glucose level to a visible color change promptly (Figure 17i).
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5. Multifunctional Flexible Sensors for Sports

As illustrated in the above sections, the great progress in flexible, wearable sensors
endows sports with plenty of tools to monitor the exercise process, moving actions and
athlete status. Several kinematical and physiological parameters have been captured by
high-performance wearable devices. Moreover, the power of the monitoring system is still
being driven to further advancement. In order to reach the ambitious goal of “All-in-One”,
the multi-functionality of wearable monitoring systems becomes a core pursuit in this
domain to acquire diverse signals of motion, vital signs and metabolism with only a single
device. The multi-functionality mainly deals with the following two issues: i) introducing
more sensing capacities into the system and ii) constructing more auxiliary components.
The available ways for integrating these different elements include building the whole
system with inherent flexible materials and flexing the whole system by combining the
minimized IC chips with flexible substrates.

The introduction of different sensing elements into a single patch is of great impor-
tance to simultaneously monitor multiple parameters during sports. The main challenge
in multifunctional flexible sensors is the possible interference between multiple obtained
signals, which may be subducted by proper sensor configuration and decoupling of sens-
ing mechanisms. In the last two decades, many researchers have devoted great effort to
blending different kinds of sensors into one flexible system. For example, a temperature
sensor has been integrated with a pressure sensor to synchronously map the pressure and
temperature distributions, and the excellent isolation of each sensor leads to more accurate
sensing (Figure 18a) [181]. Moreover, the temperature sensor can be an important reliance
for compensating the temperature influence in several electrochemical sensors. As for the
sweat sensor in [35], a temperature sensor is also integrated into the device to monitor the
skin temperature and to eliminate the influence of temperature variation in the readings of
the chemical sensors through the built-in signal processor. Then, the variety of integrated
devices is increasingly expanded. Gao et al. produced a forehead EEG-sweat rate multi-
function sensor by packaging an ST20 humidity-sensitive capacitance and a conductive
fabric electrode [155]. A microporous film of PDMS above the fabric electrode provides a
path for the generated sweat. The test results prove that the EEG electrode has a quite small
contact impedance and similar performance compared with the conventional Ag/AgCl wet
electrode, and that the measured sweat rate is also very close to the average sweat rate from
the weighing method. Furthermore, with the advances in patterning techniques, more and
more sensing elements are arrayed on one layer. Sun et al. patterned electrophysiological
sensors, hydration sensors and temperature sensors/joule-heating elements on the surface
of a silicone elastomer sponge with the help of a CO2 laser (Figure 18b) [182]. Skin hydration
is indicated by the measured skin impedance and temperature is evaluated by measuring
the resistance variation of the sensing element. Simultaneously, the laser-induced graphene
is conductive and is used as electrodes for capturing EEG, ECG and EMG signals. Similarly,
Gong et al. reported a single-material multifunctional sensor through a local-cracking
technique [183]. Localized cracks with tunable sizes, shapes, and orientations are utilized
to form strain/pressure sensors, anisotropic orientation-specific sensors, strain-insensitive
stretchable interconnects, temperature sensors, glucose sensors and lactate sensors without
the need for soldering or gluing, which enables the convenient monitoring of athlete’s body
health status, such as sweat composition detection, motion monitoring and heat regulation.
More recently, a very interesting work was reported on the pencil–paper on-skin electronics
(Figure 18c) [184]. By using widely accessible pencils and office paper as tools, a variety of
cost-effective and disposable devices are produced, ranging from biophysical sensors and
sweat biochemical sensors to thermal stimulators, humidity energy harvesters, transdermal
drug-delivery systems and antenna circuits. Some efforts are also devoted to developing
multifunctional sensors for simultaneously monitoring kinematical to physiological signals.
A representative device is a proof-of-concept, multifunctional flexible device reported by
Yamamoto et al. As shown in Figure 18d [185], the realized devices included a printed three-
axis acceleration sensor for motion detection, a group of CNT electrodes for ECG sensor, a
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CNT temperature sensor and an environmental ultraviolet sensor, and flexible field-effect
transistors for the switching of sensors. The device is attached directly to the skin of the
chest and the motion, skin temperature, ECG and UV exposure are successfully monitored.

Some other works integrate more auxiliary components into a flexible substrate to
enrich the capacities of wearable devices. Commonly, the hybrid integration of flexible
PCB (FPCB) is realized to guarantee wearability. Firstly, the inherent flexible electronics,
by now, cannot process captured signals as well as conventional ICs. Therefore, many
reported works realize their wearable system by combining the prepared flexible sensors
and the FPCBs with IC chips. For example, some of the abovementioned sweat sensing
systems, shown in Figure 16a,c, use many IC chips to transduce the signals, process the
values and transmit the results. Secondly, the properties of some flexible sensors cannot
accurately measure the target parameters. The accelerometer is a kind of device that suffers
from this problem. Though some flexible prototypes have been reported, their sensitivity,
accuracy and linearity are all far away from the commercial MEMS accelerometers. So,
the MEMS chips are also involved in the hybrid FPCBs. For instance, Zhao et al. reported
a hybrid FPCB for simultaneously measuring ECG and body motions that integrated a
MEMS accelerometer (ADXL345), an ECG chip (AD8232), an MCU chip (CC2640R2F), a
voltage regulator (TPS61070) and a button battery (CR1220) [186]. The collected ECG and
acceleration data are wirelessly transmitted and displayed in real-time on a mobile phone
application through Bluetooth communication. Lastly, the power sources for wearable
systems should also be considered. Conventional power sources and energy storages are
usually bulky with circuital connections and demand frequent charging and replacement,
which strongly restricts the practical applications of wearable devices in sports. However,
external stimulations are not only triggering signals for sensing but also an important
driver for electric power generation. Developing self-powered systems is a promising
alternative strategy to solve the issue of energy supply. Flexible triboelectric nanogenerators
(TENGs), firstly reported by Prof. Zhonglin Wang [187], convert the mechanical energy
in body motions into electrical energy, which has been a very emerging breakthrough
for self-powered wearable monitoring systems in sports. Shi et al. developed an all-
fiber TENG-based electronic skin to monitor the reception pressure on arms in volleyball
(Figure 18e) [188]. The two 2 × 3 integrated E-skin arrays are worn on both arms, and the
waveform and amplitude of their output voltages are utilized to do the statistical analyses.
The obtained motion sensing, position monitoring and distribution statistics are helpful to
athletes and coaches in training and formulating competition strategies. By mimicking the
structure of ion channels on the cytomembrane of electrocyte in an electric eel, Prof. Wang’s
team proposed a stretchable nanogenerator for underwater sensing and energy harvesting
(Figure 18f) [189]. Combining the effects of triboelectrification caused by flowing liquid and
principles of an electrostatic induction, the bionic stretchable nanogenerator can harvest
mechanical energy from human motion underwater and output an open-circuit voltage
of over 10 V (Figure 18g). A wireless system for monitoring body motions underwater is
constructed, and the motion signals of different parts of the human body are recorded when
the volunteer swims in different styles. Meanwhile, some other flexible energy sources are
being researched, and the available schemes include photovoltaic solar cells [190], biofuel
cells that capture energy from body fluids [191] and thermoelectric generators [192].
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sensor and obtained distribution maps [181]; (b) the wearable device containing electrophysiological
sensors, skin hydration sensors, temperature sensors/joule-heating elements and the obtained results
of Alpha rhythm (2),center of Alpha rhythm (3), ECG signals (4), refined P,Q,T waves of ECG (5),
EMG signals from the forearm (6) and EMG signals when the volunteer clenched the jaw (7), nodded
the head (8), and bent a finger (9) [182]; (c) the pencil–paper on-skin multifunctional electronics [184];
(d) the multifunctional sensor for three-axis acceleration, ECG, temperature and UV [185]; (e) the
TENG-based electronic skin to monitor the reception pressure in volleyball [188]; (f) the stretchable
nanogenerator for underwater sensing and energy harvesting and (g) its working mechanism [189].
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6. Challenges and Prospects

The past decade has witnessed remarkable advances in flexible, wearable sensor
devices, from working mechanisms, functional materials and fabrications to imaginative
applications. Sports monitoring also benefits a lot from this booming research field, and
many of the body signals during exercise, from kinematics to physiologies, have been
detected by wearable sensing devices. However, the flexible sensors in sports monitoring
with high sensitivity and stability are still in their infancy. Many challenges are still
existing on the development road, such as the maturity, long-term reliability under various
conditions, long-distance transmission of obtained signals, high-efficiency signal processing
methods, wearable display to show the results in real-time and the possible adverse effects
on athletes. In the following parts, these challenges are discussed, accompanied by the
prospects of possible solutions.

Firstly, better maturity calls for more distinguish works that apply the wearable sensors
in real sport activities. Currently, most of the reported devices are validated at the research
stage, and the monitoring results are obtained from the simulated environments in the
laboratory. The lack of actual combat assessment undermines the viability of monitoring
results and then influences the adoption by athletes and coaches. The experimental results
from actual combat should be compared with the “gold-standard” equipment to verify
the confidence level of these newly developed wearable systems. For example, the motion
recording data from wearable systems can be verified by the multiple camera-based video
motion capture system, and the ECG/EMG signals can be a good challenger for the ones
from conventional wet electrodes. Though basic verifications have been conducted in
several works, but their depth, breadth and duration are far away from the requirements of
commercial products. Therefore, the better maturity of wearable sensors should be achieved
through more systematic, comprehensive practical verification, especially focusing on the
comparisons between the results and the widely accepted gold-standard approaches.

The long-term stability and reliability under the sport conditions are another concern.
The surrounding environments on sport fields is complex and varied. The temperature and
humidity may induce a great deviation in the measuring characteristics of the sensor. Then,
the mechanical impact and external abrasion during sporting may decrease the device’s
functions and the whole device may even be damaged. It has been proved that many
piezoresistive, capacitive and electrochemical flexible sensors have a great temperature
coefficient in their sensing features, which will bring out significant deviations in the
measured results without necessary compensations [193,194]. Temperature sensors have
been integrated into many sensing systems to get rid of the dispreferred effects when a
subsequent compensation algorithm is added. Humidity is also a critical parameter in this
field, and its influence can also be subducted by compensation methods. Moreover, the
high performance of the device in swimming and hyperhidrosis should be achieved by
the excellent water resistance of devices, and the practical methods include introducing
hydrophobic chemical groups or generating surface nanostructures [195–197]. The me-
chanical impact or abrasion can exfoliate the functional layers of sensors and even break
the whole sensor structure. There are the following two feasible paths to solve this issue:
improving the packaging strategy to promote the device viability and pursuing self-healing
ability for the devices.

The transmission and processing of signals are also challenging. Wire transmission of
obtained signals has been abandoned in many sports due to its limited distance and extra
burden for athletes. However, the common wireless techniques (e.g., NFC, BLE and Wi-Fi)
often suffer from the operating distance when they appear on the sports fields. A more
practical scheme is constructing a relay station, which captures the signals through near-
distance communication and transmits them to the cloud by long-haul communication
(e.g., NB-IoT, LTE and 5G). As shown in Figure 19, the kinematical and physiological
signals are sensed by the wearable systems and transmitted to the cloud by the joint
communication channel. Then, the data can be processed and analyzed to produce a
training or competing report for the athletes or coaches. As for the signal process, the
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massive data, multiple parameters and diverse analyzing targets make this work a task that
requires huge efforts and calculations. Recently, several intelligent methods are proposed
to classify and recognize the motions during sports. The implemented algorithms include
artificial neural network (ANN), convolutional neural network (CNN), long short-term
memory (LSTM) network, k-nearest neighbor (KNN), decision tree and support vector
machine (SVM), etc. [198–202]. A large number of sports have been treated in the classifying
work, such as golf, racquet sports, swimming, running, race-walking and so on [27]. Few
works aim at evaluating the physical condition of athletes, and fewer papers focus on
assessing athleticism through obtained monitoring data [201]. In the future, the continuous
advances in artificial intelligence may provide more powerful tools for coaches and athletes
to accurately assess competing performance and physical conditions.

Micromachines 2022, 13, x FOR PEER REVIEW 37 of 46 
 

 

more practical scheme is constructing a relay station, which captures the signals through 
near-distance communication and transmits them to the cloud by long-haul communica-
tion (e.g., NB-IoT, LTE and 5G). As shown in Figure 19, the kinematical and physiological 
signals are sensed by the wearable systems and transmitted to the cloud by the joint com-
munication channel. Then, the data can be processed and analyzed to produce a training 
or competing report for the athletes or coaches. As for the signal process, the massive data, 
multiple parameters and diverse analyzing targets make this work a task that requires 
huge efforts and calculations. Recently, several intelligent methods are proposed to clas-
sify and recognize the motions during sports. The implemented algorithms include artifi-
cial neural network (ANN), convolutional neural network (CNN), long short-term 
memory (LSTM) network, k-nearest neighbor (KNN), decision tree and support vector 
machine (SVM), etc. [198–202]. A large number of sports have been treated in the classify-
ing work, such as golf, racquet sports, swimming, running, race-walking and so on [27]. 
Few works aim at evaluating the physical condition of athletes, and fewer papers focus 
on assessing athleticism through obtained monitoring data [201]. In the future, the contin-
uous advances in artificial intelligence may provide more powerful tools for coaches and 
athletes to accurately assess competing performance and physical conditions. 

 
Figure 19. The capture, transmission and processing/analyzing of data in sports. 

The wearing comfort and fitness are important for professionals. The flexible devices 
have minimized the wearing discomfort by greatly improving skin compliance, reducing 
the device weight/size and introducing breathability. However, the safety of utilized ma-
terials, such as biocompatibility, non-toxic, nonirritant and unrelated with excitants, still 
needs further investigation, which may be addressed by the green technologies in material 
science and fabrication process.  

Last and probably the hardest, is the realization of intrinsically flexible, fully func-
tional wearable monitoring systems for sports, in which the signal collector, transmitter, 
processor and displayer are supposed to be flexible and self-powered. However, the en-
ergy density of flexible power suppliers is still limited; the calculating functions of flexible 
electronics are much weaker than conventional ICs; the wearable displayers are only pre-
liminarily verified. These issues require unremitting researches in basic mechanisms, ma-
terial science and manufacturing techniques in the future. 

7. Conclusions 
In the past few years, tremendous progress has been made in flexible and wearable 

sensors, and extensive applications have been realized in health monitoring, human–ma-
chine interaction, the Internet of Things, artificial intelligence and other fields. In this re-
view, we summarize the current developments in utilizing flexible and wearable sensors 
in monitoring the kinematical and physiological signals of sports. Some typical and rep-
resentative indicators for evaluating the performance and physical condition of athletes, 

Figure 19. The capture, transmission and processing/analyzing of data in sports.

The wearing comfort and fitness are important for professionals. The flexible devices
have minimized the wearing discomfort by greatly improving skin compliance, reducing
the device weight/size and introducing breathability. However, the safety of utilized
materials, such as biocompatibility, non-toxic, nonirritant and unrelated with excitants, still
needs further investigation, which may be addressed by the green technologies in material
science and fabrication process.

Last and probably the hardest, is the realization of intrinsically flexible, fully functional
wearable monitoring systems for sports, in which the signal collector, transmitter, processor
and displayer are supposed to be flexible and self-powered. However, the energy density
of flexible power suppliers is still limited; the calculating functions of flexible electronics
are much weaker than conventional ICs; the wearable displayers are only preliminarily
verified. These issues require unremitting researches in basic mechanisms, material science
and manufacturing techniques in the future.

7. Conclusions

In the past few years, tremendous progress has been made in flexible and wearable
sensors, and extensive applications have been realized in health monitoring, human–
machine interaction, the Internet of Things, artificial intelligence and other fields. In
this review, we summarize the current developments in utilizing flexible and wearable
sensors in monitoring the kinematical and physiological signals of sports. Some typical
and representative indicators for evaluating the performance and physical condition of
athletes, including motions of the body, force/pressure acting on the body, vital signs and
metabolizing parameters, are comprehensively illustrated. The available wearable devices
and their applications towards the related indicators, including strain sensor, pressure/force
sensor, IMU, electrophysiological electrode, sweat loss sensor and electrochemical sensor,
are emphatically presented. Despite the great progress made in this burgeoning topic,
challenges still exist for practical sports applications. The possible solutions rely on future
researches in basic mechanisms, material science and manufacturing techniques.
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