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Abstract: We introduce a new class of the slash distribution using folded
normal distribution. The proposed model defined on non-negative measure-
ments extends the slashed half normal distribution and has higher kurtosis
than the ordinary half normal distribution. We study the characterization
and properties involving moments and some measures based on moments of
this distribution. Finally, we illustrate the proposed model with a simulation
study and a real application.
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1. Introduction

The folded normal distribution, proposed by Leone et al. (1961), is often used
when the measurement system produces only non-negative measurements, from
an otherwise normally distributed process. Given a normally distributed random
variable W ∼ N (µ, σ) with mean µ and standard deviation σ, its absolute value
X = |W | has a folded normal distribution. The density function of the folded
normal distribution is given by, for x ≥ 0

f(x) =
1√
2πσ

[e−
(x+µ)2

2σ2 + e−
(x−µ)2

2σ2 ]. (1)

Replacing the parameters (µ, σ) by (θ, σ), where θ = µ/σ, the density can be
expressed as another version, denoted as FN (θ, σ), see Johnson (1962),

f(x) =

√
2

σ
√
π
e−

θ2

2 e−
x2

2σ2 cosh(
θx

σ
), x ≥ 0. (2)
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Such a case may be encountered if measurements are frequently recorded
without their algebraic sign. When µ = 0 (θ = 0), the folded normal random
variable reduces to the well known half normal random variable. The folded
normal |W | and truncated normal W |W > 0 are equivalent in this case. For
µ 6= 0, the folded normal and truncated normal are totally different since the
distribution of W is not symmetric at zero.

Leone et al. (1961) described methods for estimating the mean and standard
deviation of the normal distribution based on estimates of the mean and standard
deviation determined from the folded normal distribution. Elandt (1961) derived
the general formula for the moments of the folded normal distribution. Johnson
(1962) studied the accuracy of estimation of the parameters by maximum likeli-
hood. Lin (2005) proposed a generalized folded normal distribution and applied
it to the process capability measures.

On the other hand, a random variable S has a standard slash distribution
SL(q) with parameter q > 0 if S can be represented as

S =
Z

U
1
q

, (3)

where Z ∼ N (0, 1) and U ∼ U(0, 1) are independent. This distribution was
named by Rogers and Tukey (1972). It generalizes normality and has been much
studied in the statistical literature.

The SL(q) density function is given by

f(x) = q

∫ 1

0
uqφ(xu)du, −∞ < x <∞, (4)

where φ(t) = 1√
2π
e−t

2/2 denotes the standard normal density function.

For the limit case q → ∞, SL(q) yields the standard normal distribution Z.
Let q = 1, the canonical slash distribution follows and it has the following density,
see Johnson et al. (1995),

f(x) =

{
φ(0)−φ(x)

x2 , x 6= 0,
1
2φ(0), x = 0.

(5)

It is known that the standard slash density has heavier tails and larger kur-
tosis than those of the normal distribution. It has been very popular in robust
statistical analysis and actively studied by some authors.

Rogers and Tukey (1972) and Mosteller and Tukey (1977) investigated the
general properties of this canonical slash distribution. Kafadar (1982) studied
the maximum likelihood estimates of the location and scale parameters.
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Gómez et al. (2007a) replaced standard normal random variable Z by an
elliptical distribution and defined a new family of slash distributions. They stud-
ied its general properties of the resulting families, including their moments. Genc
(2007) derived the univariate slash by a scale mixtured exponential power dis-
tribution and investigated asymptotically the bias properties of the estimators.
Wang and Genton (2006) proposed the multivariate skew version of this distribu-
tion and examined its properties and inferences. They substituted the standard
normal random variable Z by a skew normal distribution introduced by Azzalini
(1985) to define a skew extension of the slash distribution. Olmos et al. (2011)
introduced the slashed half normal distribution by a scale mixtured half normal
distribution and showed the resulting distribution has higher kurtosis than the
ordinary half normal distribution.

Since the folded normal distribution generalizes the half normal distribution,
it is naturally to define a slash distribution based on it in case there is great
diversity in the distribution’s tail. In our work, we introduce a new slash dis-
tribution, so-called the folded normal slash (FNS) distribution for the first time,
which contains as sub-models the half normal (HN) and the folded normal (FN)
distributions etc.

The rest of this paper is organized as follows: in Section 2, we propose the
new slash distribution and investigate its properties, including the stochastic
representation etc. Section 3 discusses the inference, moments and maximum
likelihood estimation for the parameters. Simulation studies are performed in
Section 4. Section 5 gives a real illustrative application and reports the results.
Section 6 concludes our work.

2. Folded Normal Slash Distribution

2.1 Stochastic Representation

Definition 2.1. A random variable Y has a folded normal slash distribution if
it can be represented as the ratio

Y =
X

U
1
q

, (6)

where X ∼ FN (θ, σ) defined in (2) and U ∼ U(0, 1) are independent, −∞ < θ <
∞, σ > 0, q > 0. We denote it as Y ∼ FNS(θ, σ, q).

Proposition 2.2. Let Y ∼ FNS(θ, σ, q). Then, the density function of Y is
given by

fY (y) =
q
√

2

σ
√
π
e−

θ2

2

∫ 1

0
e−

y2t2

2σ2 cosh(
θyt

σ
)tqdt for y ≥ 0, (7)
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where −∞ < θ <∞, σ > 0, q > 0.

Particularly, if θ = 0, the density function (7) reduces to

fY (y) =
q
√

2

σ
√
π

∫ 1

0
e−

y2t2

2σ2 tqdt,

which is the density function for the slashed half normal distribution discussed
by Olmos et al. (2011). As q →∞,

lim
q→∞

fY (y) =

√
2

σ
√
π
e−

θ2

2 e−
y2

2σ2 cosh(
θy

σ
).

The limit case of the folded normal slash distribution is the folded normal distri-
bution. For σ = q = 1, the canonical case is obtained.

Figure 1 shows some density functions of the canonical cases of folded normal
slash distribution with various parameters.
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Figure 1: The density function of FNS(θ, σ, q) with various parameters

The cumulative distribution function of the folded normal slash distribution
Y ∼ FNS(θ, σ, q) is given as follows. For y ≥ 0,

FY (y) =

∫ y

0
fY (u)du =

q

2

∫ 1

0
tq−1

[
erf(

yt+ θσ√
2σ

) + erf(
yt− θσ√

2σ
)

]
dt, (8)

where erf() is the Gauss error function, defined as erf(x) = 2√
π

∫ x
0 e
−t2dt.
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Proposition 2.3. Let Y |U = u ∼ FN (θ, σu−1/q) and U ∼ U(0, 1), then Y ∼
FNS(θ, σ, q).

Proposition 2.3 shows that the folded normal slash distribution can be repre-
sented as a scale mixture of a folded normal distribution and uniform distribution.
The representation provides another way besides the definition (6) to generate
random numbers from the folded normal slash distribution FNS(θ, σ, q), which is
very useful to conduct simulations. It can also be used to study farther properties
of the folded normal slash distribution.

2.2 Moments and Measures Based on Moments

Elandt (1961) derived the moments of folded normal distribution. The fol-
lowing notations are used.

Ij(a) =
1√
2π

∫ ∞
a

yje−
y2

2 dy for j = 0, 1, · · · . (9)

Proposition 2.4. Let X ∼ FN (θ, σ), then the kth non-central moments are
given by

E(Xk) = σk
k∑
j=0

(
k

j

)
θk−j [Ij(−θ) + (−1)k−jIj(θ)], (10)

for k = 1, 2, · · · .

Proof. See Elandt (1961). 2

Proposition 2.5. Let Y ∼ FNS(θ, σ, q). For k = 1, 2, · · · and q > k, the kth

non-central moment of Y is given by

µk = E(Y k) =
qσk

q − k

k∑
j=0

(
k

j

)
θk−j [Ij(−θ) + (−1)k−jIj(θ)]. (11)

Proof. From the stochastic representation defined in (6) and the results in (10),
the claim follows in a straightforward manner.

µk = E(Y k) = E[(XU
− 1
q )k] = E(Xk)× E(U

− k
q ) =

q

q − k
E(Xk).

2

The following results are immediate consequences of (11).
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Corollary 2.6. Let Y ∼ FNS(θ, σ, q). The mean and variance of Y are given
by

E(Y ) =
qσ

q − 1
[2φ(θ) + 2θΦ(θ)− θ], q > 1 and (12)

Var(Y ) =
q(θ2 + 1)σ2

q − 2
− q2σ2

(q − 1)2
[2φ(θ) + 2θΦ(θ)− θ]2, q > 2, (13)

where φ and Φ are the probability density and cumulative distribution functions
of standard normal random variable. For the standardized skewness and kurtosis
coefficients, √

β1 =
µ3 − 3µ1µ2 + 2µ3

1

(µ2 − µ2
1)3/2

,

and

β2 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)2

,

we have the following results.

Corollary 2.7. Let Y ∼ FNS(θ, σ, q). The skewness and kurtosis coefficients
of Y are given by

√
β1 =

{
q[−θ3+2θ3Φ(θ)−3θ+6θΦ(θ)+4φ(θ)+2θ2φ(θ)]

q−3
− 3q2[2φ(θ)+2θΦ(θ)−θ](θ2+1)

(q−1)(q−2)

+
2q3[2φ(θ)+2Φ(θ)θ−θ]3

(q−1)3

}
[
q(θ2+1)
q−2 − q2

(q−1)2 [2φ(θ) + 2θΦ(θ)− θ]2
]3/2

, (14)

for q > 3;

β2 =

{
q(θ4+6θ2+3)

q−4
− 4q2[2φ(θ)+2θΦ(θ)−θ][−θ3+2θ3Φ(θ)−3θ+6θΦ(θ)+4φ(θ)+2θ2φ(θ)]

(q−1)(q−3)

+
6q3[2φ(θ)+2θΦ(θ)−θ]2(θ2+1)

(q−1)2(q−2)
− 3q4[2φ(θ)+2θΦ(θ)−θ]4

(q−1)4

}
[
q(θ2+1)
q−2 − q2

(q−1)2 [2φ(θ) + 2θΦ(θ)− θ]2
]2 , (15)

for q > 4.

As q →∞, the skewness and kurtosis coefficients converge.

√
β1 →

{
[−θ3+2θ3Φ(θ)−3θ+6θΦ(θ)+4φ(θ)+2θ2φ(θ)]−3[2φ(θ)+2θΦ(θ)−θ](θ2+1)

+2[2φ(θ)+2Φ(θ)θ−θ]3

}
[(θ2 + 1)− [2φ(θ) + 2θΦ(θ)− θ]2]3/2

,

and
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β2 →

{
(θ4+6θ2+3)−4[2φ(θ)+2θΦ(θ)−θ][−θ3+2θ3Φ(θ)−3θ+6θΦ(θ)+4φ(θ)+2θ2φ(θ)]

6[2φ(θ)+2θΦ(θ)−θ]2(θ2+1)−3[2φ(θ)+2θΦ(θ)−θ]4

}
[(θ2 + 1)− [2φ(θ) + 2θΦ(θ)− θ]2]2

,

which are the skewness and kurtosis coefficients for the folded normal distribution
FN (θ, σ).

Figure 2 shows the skewness and kurtosis coefficients with various parameters
for the FNS(θ, σ, q) model. The skewness and kurtosis coefficients decrease as q
increases. Also, for q is large, the skewness and kurtosis coefficients decrease as
θ increases. The parameter σ does not affect the two coefficients.

(a) Skewness coefficient (b) Kurtosis coefficient
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Figure 2: The plot for the skewness
√
β1 and kurtosis coefficient β2 with various

parameters

3. Maximum Likelihood (ML) Inference

In this section, we consider the maximum likelihood estimation about the
parameters (θ, σ, q) of the FNS model. Suppose y1, y2, · · · , yn is a random sample
of size n from the folded normal slash distribution FNS(θ, σ, q). Then the log-
likelihood function is given by

l = log

n∏
i=1

fY (yi)

= n log q − n log σ +
n

2
log(

2

π
)− nθ2

2
+

n∑
i=1

log

∫ 1

0
e−

y2
i t

2

2σ2 cosh(
θyit

σ
)tqdt.

(16)



238 Wenhao Gui, Pei-Hua Chen and Haiyan Wu

The estimates of the parameters maximize the likelihood function. Taking the
partial derivatives of the log-likelihood function with respect to θ, σ, q respectively
and equalizing the obtained expressions to zero yield to likelihood equations.
However, they cannot lead to explicit analytical solutions for model parameters.
Thus, the estimates can be obtained by means of numerical procedures such as
Newton-Raphson method. The program R provides the nonlinear optimization
routine optim for solving such problems.

It is known that as the sample size increases, the distribution of the MLE tends
to the normal distribution with mean (θ, σ, q) and covariance matrix equal to the
inverse of the Fisher information matrix. The score vector and Hessian matrix
are given in Appendix A.2. However, the log-likelihood function given in (16) is a
complex expression. It is not generally possible to derive the Fisher information
matrix. Thus, the theoretical properties (asymptotically normal, unbiased etc)
of the MLE estimators are not easily obtained. We study the properties of the
estimators numerically.

4. Simulation Study

In this section, we perform a simulation to illustrate the behavior of the MLE
estimators for parameters θ, σ and q. We first generate 500 samples of size
n = 50 and n = 100 from the FNS(θ, σ, q) distribution for fixed parameters.
The random numbers can be generated as follows:

Simulate W ∼ N (θσ, σ) and U ∼ U(0, 1), compute Y = |W |U−1/q, it follows
that Y ∼ FNS(θ, σ, q).

The estimates are computed by the optim function which uses L-BFGS-B
method in software R. The empirical means and standard deviations of the esti-
mates are presented in Table 1. From Table 1, the parameters are well estimated
and the estimates are asymptotically unbiased.

In addition, a simulation is presented illustrating the sample properties of
the moments. We consider the skewness

√
β1 and kurtosis β2 coefficients derived

in Section 2. We generate 500 samples of size n = 1000 and n = 2000 from
the FNS(θ, σ, q) distribution for fixed parameters. For each generated sample,
y1, · · · , yn, the sample skewness

√
b1 and sample kurtosis b2 are computed by√

b1 =
1
n

∑n
i=1(yi − ȳ)3

( 1
n

∑n
i=1(yi − ȳ)2)3/2

,

and

b2 =
1
n

∑n
i=1(yi − ȳ)4

( 1
n

∑n
i=1(yi − ȳ)2)2

.

The mean values of the sample coefficients and simulated standard deviation (SD)
are obtained and reported in Table 2. From Table 2, we can see that the sample
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Table 1: Empirical means and SD for the MLE estimators of θ, σ and q

n = 50 n = 100

θ σ q θ̂ σ̂ q̂ θ̂ σ̂ q̂
(SD) (SD) (SD) (SD) (SD) (SD)

2 2 2 2.0663 2.0607 2.2781 2.0171 2.0454 2.1087
(0.4195) (0.6097) (0.8620) (0.2763) (0.3764) (0.4324)

2 2 4 2.0699 1.9969 4.5470 1.9917 2.0488 4.4275
(0.3778) (0.4499) (1.9785) (0.2353) (0.2973) (1.4005)

2 4 2 2.0530 4.1048 2.3916 2.0080 4.1027 2.1151
(0.4666) (1.1135) (1.2174) (0.2917) (0.7721) (0.4580)

2 4 4 2.0411 4.0989 4.7641 2.0023 4.0721 4.4270
(0.3638) (0.8699) (1.9402) (0.2480) (0.5756) (1.4590)

4 2 2 4.2147 2.0293 2.2102 4.1144 2.0118 2.0945
(0.9060) (0.5031) (0.5611) (0.5633) (0.3303) (0.3212)

4 2 3 4.2518 1.9789 3.2708 4.0928 1.9996 3.1376
(0.8607) (0.4714) (1.0197) (0.5379) (0.3107) (0.5808)

4 3 2 4.2697 2.9658 2.1169 4.1118 3.0041 2.0683
(0.9880) (0.7052) (0.4764) (0.5938) (0.5101) (0.3155)

4 3 3 4.2206 3.0076 3.3026 4.1519 2.9546 3.1078
(0.8920) (0.7136) (1.0749) (0.5767) (0.4666) (0.5856)

Table 2: Empirical means and SD for the skewness and kurtosis coefficients

n = 1000 n = 2000

θ q
√
β1 β2

√
b1 b2

√
b1 b2

(SD) (SD) (SD) (SD)

1 5 1.5660 12.3408 1.5419 10.5885 1.5626 11.5151
(0.4479) (0.6326) (0.5009) (0.5895)

2 5 1.4569 14.9363 1.4120 12.1546 1.4517 13.7815
(0.5872) (0.8038) (0.5120) (0.6401)

3 5 1.9121 22.6475 1.8661 18.5366 1.8765 19.2365
(0.9404) (0.7943) (0.7646) (0.6059)

1 6 1.1528 9.5588 1.1380 8.9319 1.1473 9.2822
(0.9123) (0.9798) (0.3547) (0.7556)

2 6 0.9134 6.8155 0.9062 6.5632 0.9104 6.6623
(0.2117) (0.9473) (0.1675) (0.4999)

3 6 1.1528 9.5588 1.1440 9.1652 1.1504 9.4080
(0.3154) (0.8501) (0.2598) (0.6854)

skewness and kurtosis coefficients converge to the population coefficients as ex-
pected.
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In the following, we conduct a simulation to compare the behavior of the
moment estimator (MME) and the maximum likelihood estimator (MLE). We
generate 500 samples of size n = 100 from the FNS(θ, σ, q) distribution for fixed
parameters. For each generated sample, we compute the ML estimates as well as
the sample skewness and kurtosis coefficients. The results are displayed in Table
3. It can be seen that the moment estimators are less efficient than the MLE’s.
For small sample size such as n = 100, the MLE performs well and the estimates
are very close to the true parameters. However, for the measures based on the
MME, their values deviate from their population values and their behavior is
poor. In fact, sample size has a big impact on both skewness and kurtosis.

Table 3: A simulation comparison between MLE and MME (n = 100)

θ σ q θ̂ σ̂ q̂
√
β1 β2

√
b1 b2

(SD) (SD) (SD) (SD) (SD)

2 1 5 2.0048 1.0355 5.1891 1.4569 14.9363 1.0213 5.9111
(0.2494) (0.1742) (0.5807) (0.8435) (2.0302)

2 1 6 2.0226 1.0328 5.7785 0.9134 6.8155 0.6463 4.0805
(0.2407) (0.1503) (0.5163) (0.4736) (2.2514)

2 1 7 2.0259 1.0243 6.7216 0.6574 4.7334 0.5430 3.8703
(0.2115) (0.1386) (0.5688) (0.5035) (1.7476)

3 1 5 3.0539 1.0045 5.3766 1.9121 22.6475 1.2076 12.1143
(0.3138) (0.1391) (0.8109) (0.9245) (3.6377)

3 1 6 3.0216 1.0212 6.2134 1.1528 9.5588 0.7710 5.1320
(0.2999) (0.1301) (0.5374) (0.7279) (1.9533)

3 1 7 3.0366 1.0137 6.7561 0.7724 6.1320 0.5738 4.2818
(0.3201) (0.1271) (0.5276) (0.5435) (1.1654)

5. Real Data Illustration

In this section, we consider the Australian Sports data. The data are the
plasma ferritin concentration measurements of 202 athletes collected at the Aus-
tralian Institute of Sport. This data set has been well studied by several authors,
see Azzalini and Dalla Valle (1996), Cook and Weisberc (1994) and Elal-Olivero
et al. (2009).

Table 4 summarizes descriptive statistics of the data set. This data set indi-
cates non negative asymmetry. We fit the data set with the half normal(HN), the
folded normal(FN) and the folded normal slash(FNS) distributions, respectively,
using maximum likelihood method. The results are shown in Table 5. The usual
Akaike information criterion (AIC) introduced by Akaike (1973) and Bayesian
information criterion (BIC) proposed by Schwarz (1978) to measure of the good-
ness of fit are also computed. AIC = 2k − 2 logL and BIC = k log n − 2 logL.
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where k is the number of parameters in the distribution and L is the maximized
value of the likelihood function. The results show that FNS model fits best.
Figure (3a) and (3b) display the fitted models using the MLE estimates.

Table 4: Summary for the plasma ferritin concentration measurements

sample size mean standard deviation
√
b1 b2

202 76.88 47.50 1.28 4.42

Table 5: Maximum likelihood parameter estimates (with (SD)) of the HN, FN
and FNS models for the plasma ferritin concentration data

Model θ̂ σ̂ q̂ loglik AIC BIC

HN − 76.9436 − −1062.037 2126.074 2129.382

(3.0588)

FN 1.7288 41.4799 − −1065.875 2135.75 2142.367

(0.1114) (1.7256)

FNS 2.4227 19.1816 2.3775 −1037.344 2080.688 2090.613

(0.2387) (2.8424) (0.3778)

(a) Histogram and fitted curves (b) Empirical and fitted CDF
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6. Concluding Remarks

In this article, we have studied the folded normal slash distribution, denoted
by FNS(θ, σ, q). It is defined to be the quotient of two independent random vari-
ables, a folded normal random variable and a power of the uniform distribution.
This proposed non-negative distribution generalizes the folded normal, the half
normal distribution etc.

Probabilistic and inferential properties are studied. A simulation is conducted
and demonstrates the good performance of the maximum likelihood estimators.
We apply the model to a real dataset and the results demonstrate that the pro-
posed model is appropriate and flexible for non-negative data.

There are a number of possible extensions of the current work. Lin et al.
(2007b) addressed the problem of analyzing a mixture of skew normal distribu-
tions from the likelihood-based and Bayesian perspectives, respectively. Lin et al.
(2007a) proposed a robust mixture framework based on the skew t distribution
to efficiently deal with heavy-tailedness, extra skewness and multimodality in a
wide range of settings. Ho et al. (2012) dealed with the problem of maximum
likelihood estimation for a mixture of skew Student-t-normal distributions. Thus,
mixture modeling using the proposed distributions is the most natural extension.
Other extensions of the current work include, for example, a generalization of the
folded normal slash distribution to multivariate settings.

Appendix

A.1 Proofs of Propositions

(1) Proof of Proposition 2.2.

Proof. From (2), the joint probability density function of X and U is given by

g(x, u) =

√
2

σ
√
π
e−

θ2

2 e−
x2

2σ2 cosh(
θx

σ
) for x ≥ 0, 0 < u < 1.

Using the transformation: y = x
u1/q , u = u, the joint probability density function

of Y and U is given by

h(y, u) =

√
2

σ
√
π
e−

θ2

2 e−
y2u2/q

2σ2 cosh(
θyu1/q

σ
)u

1
q for y ≥ 0, 0 < u < 1.

The marginal density function of Y is given by

fY (y) =

∫ 1

0

√
2

σ
√
π
e−

θ2

2 e−
y2u2/q

2σ2 cosh(
θyu1/q

σ
)u

1
q du.
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After changing the variable into t = u
1
q , the density function will be obtained as

stated. 2

(2) Proof of Proposition 2.3.

Proof.

fY (y) =

∫ 1

0
fY |U (y|u)fU (u)du =

∫ 1

0

√
2

σu−1/q
√
π
e−

θ2

2 e
− y2

2(σu−1/q)2 cosh(
θy

σu−1/q
)du.

2

A.2 Score Vector and Hessian Matrix

Suppose y1, y2, · · · , yn is a random sample drawn from the folded normal slash
distribution FNS(θ, σ, q), then the log-likelihood function is given by (16). The
elements of the score vector are obtained by differentiation

lθ = −nθ +
n∑
i=1

yi
∫ 1

0 e
− y

2
i t

2

2σ2 sinh( θyitσ )tq+1dt

σ
∫ 1

0 e
−
y2
i
t2

2σ2 cosh( θyitσ )tqdt

,

lσ = −n
σ

+

n∑
i=1

∫ 1
0 e
− y

2
i t

2

2σ2 [y2
i t

2 cosh( θyitσ )− σθyit sinh( θyitσ )]tqdt

σ3
∫ 1

0 e
−
y2
i
t2

2σ2 cosh( θyitσ )tqdt

,

lq =
n

q
+

n∑
i=1

∫ 1
0 e
− y

2
i t

2

2σ2 cosh( θyitσ )tq log tdt∫ 1
0 e
−
y2
i
t2

2σ2 cosh( θyitσ )tqdt

.

The Hessian matrix, second partial derivatives of the log-likelihood, is given by

H =

 lθθ lθσ lθq
lσθ lσσ lσq
lqθ lqσ lqq

 ,

where

lθθ = −n+
n∑
i=1

y2
i

∫ 1
0 e

−
y2
i t

2

2σ2 cosh(
θyit

σ
)tq+2dt

∫ 1
0 e

−
y2
i t

2

2σ2 cosh(
θyit

σ
)tqdt

−(
∫ 1
0 e

−
y2
i t

2

2σ2 sinh(
θyit

σ
)tq+1dt)2


σ2(
∫ 1

0 e
−
y2
i
t2

2σ2 cosh( θyitσ )tqdt)2

,
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lθσ = lσθ

=
n∑
i=1


∫ 1
0 e

−
y2
i t

2

2σ2 [σ−1y3
i t

3 sinh(
θyit

σ
)−σyit sinh(

θyit

σ
)−θy2

i t
2 cosh(

θyit

σ
)]tqdt×∫ 1

0 e
−
y2
i t

2

2σ2 cosh(
θyit

σ
)tqdt

−
∫ 1
0 e

−
y2
i t

2

2σ2 [y2
i t

2 cosh(
θyit

σ
)−σθyit sinh(

θyit

σ
)]tqdt

∫ 1
0 e

−
y2
i t

2

2σ2 yit

σ
sinh(

θyit

σ
)tqdt


σ3[
∫ 1

0 e
−
y2
i
t2

2σ2 cosh( θyitσ )tqdt]2
,

lθq = lqθ =
n∑
i=1

 ∫ 1
0 e

−
y2
i t

2

2σ2 yi sinh(
θyit

σ
)tq+1 log tdt

∫ 1
0 e

−
y2
i t

2

2σ2 cosh(
θyit

σ
)tqdt

−
∫ 1
0 e

−
y2
i t

2

2σ2 cosh(
θyit

σ
)tq log tdt

∫ 1
0 e

−
y2
i t

2

2σ2 yi sinh(
θyit

σ
)tq+1dt


σ[
∫ 1

0 e
−
y2
i
t2

2σ2 cosh( θyitσ )tqdt]2
,

lσq = lqσ

= −
n∑
i=1

∫ 1
0 e

− t2y2

2σ2 tq cosh(
tθyi
σ

) log t dt
∫ 1
0 [
e
− t2y2

2σ2 t2+qy2 cosh(
tθyi
σ )

σ3 − e
− t2y2

2σ2 t1+qθy sinh(
tθyi
σ )

σ2 ] dt(∫ 1
0 e
− t2y2

2σ2 tq cosh( tθyiσ ) dt

)
2

+

n∑
i=1

∫ 1
0 [

e
− t2y2

2σ2 t2+qy2 cosh(
tθyi
σ

) log t

σ3 − e
− t2y2

2σ2 t1+qθy log t sinh(
tθyi
σ

)

σ2 ] dt∫ 1
0 e
− t2y2

2σ2 tq cosh( tθyiσ ) dt
,

lqq = − n
q2
−

n∑
i=1

[
∫ 1

0 e
− t

2y2
i

2σ2 tq cosh( tθyiσ ) log t dt]2

[
∫ 1

0 e
−
t2y2

i
2σ2 tq cosh( tθyiσ ) dt]2

+

∫ 1
0 e
− t

2y2
i

2σ2 tq cosh( tθyiσ )[log t]2 dt∫ 1
0 e
−
t2y2

i
2σ2 tq cosh( tθyiσ ) dt

.
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