
Sādhan̄a Vol. 27, Part 1, February 2002, pp. 35–58. © Printed in India

A font and size-independent OCR system for printed
Kannada documents using support vector machines

T V ASHWIN∗ and P S SASTRY

Department of Electrical Engineering, Indian Institute of Science,
Bangalore 560 012, India
∗Present address: Research Staff Member, IBM India Research Laboratories, I I T
Campus, New Delhi 110 016, India
email: sastry@ee.iisc.ernet.in

Abstract. This paper describes an OCR system for printed text documents in
Kannada, a South Indian language. The input to the system would be the scanned
image of a page of text and the output is a machine editable file compatible with
most typesetting software. The system first extracts words from the document image
and then segments the words into sub-character level pieces. The segmentation
algorithm is motivated by the structure of the script. We propose a novel set of
features for the recognition problem which are computationally simple to extract.
The final recognition is achieved by employing a number of 2-class classifiers based
on the Support Vector Machine (SVM) method. The recognition is independent of
the font and size of the printed text and the system is seen to deliver reasonable
performance.

Keywords. OCR; pattern recognition; support vector machines; Kannada script.

1. Introduction

The objective ofDocument Image Analysisis to process the image of a printed page and render
the information contained there into a form suitable for easy modification and manipulation
on a computer. In general, document image analysis consists of two parts:textual processing
andgraphical processing(Gorman & Kasturi 1995).

Graphical processing is intended to handle the graphical parts such as figures, photographs
etc. in the printed document while textual processing is for handling the text contained in the
document.

In this paper we describe a document image analysis system that can handle printed text
documents in Kannada, which is the official language of the south Indian state of Karnataka.
The input to the system is the scanned image of a page of printed Kannada text. The out-
put is an editable computer file containing the information in the printed page. The system
is designed to be independent of the font and size of characters in the printed document
and hence can be used with any kind of printed document in Kannada. The task of sepa-
rating lines and words in the document is fairly independent of the script and hence can
be achieved with standard techniques (O’Gorman & Kasturi 1995). However, due to the

35

36 T V Ashwin and P S Sastry

peculiarities of the Kannada script, we make use of a novel segmentation scheme whereby
words are first segmented to a sub-character level, the individual pieces are recognized and
these are then put together to effect recognition of individualaksharasor characters. We use
a novel low dimensional feature vector to characterize each segment and employ a classi-
fier based on the recently developed concept of Support Vector Machines (SVM) (Burges
1998).

Currently there are many OCR systems available for handling printed English documents
with reasonable levels of accuracy. (Such systems are also available for many European
languages as well as some of the Asian languages such as Japanese, Chinese etc.) However,
there are not many reported efforts at developing OCR systems for Indian languages. (See,
e.g., Sinha and Mahabala 1979, Choudhury and Pal 1997, Bansal and Sinha 1999, Antani and
Agnihotri 1999, for OCR systems for some of the Indian languages.) The work reported in
this paper is motivated by the fact that there are no reported efforts at developing document
analysis systems for the south Indian language of Kannada.

The rest of the paper is organized as follows. In § 2 we describe the Kannada script and
bring out some of the special characteristics of the script from the point of view of developing
an OCR system. We also motivate our method of segmenting words into pieces each of which
represents only a part of a character orakshara. In § 3, we first provide an overview of our
system and then describe some of the preprocessing steps needed to effect segmentation up
to word level. Section 4 discusses the problem of segmenting words into recognizable units.
Section 5 describes our feature detection and classification algorithms. In § 6 we present some
results to illustrate the current capabilities of the system and conclude the paper in § 7.

2. The Kannada script

The Kannada alphabet is classified into two main categories: vowels and consonants. There are
16 vowels and 35 consonants as shown in figures 1 and 2.1 Words in Kannada are composed of
aksharaswhich are analogous to characters in an English word. While vowels and consonants
areaksharas, the vast majority ofaksharasare composed of combinations of these in a manner
similar to most other Indian scripts.

An aksharacan be one of the following,

(1) A stand alone vowel or a consonant (i.e. symbols appearing in figures 1 and 2).
(2) A consonant modified by a vowel.
(3) A consonant modified by one or more consonants and a vowel.

Figure 1. Vowels in Kannada.

1This list of Kannada alphabet includes a couple of characters (such as the eighth vowel and last
consonant) which may not be included in the standard alphabet now-a-days

OCR system for printed Kannada documents 37

Figure 2. Consonants in Kannada.

When a vowel constitutes the wholeakshara, the vowel normally appears at the beginning
of a word. A consonant can also form the wholeaksharaand can come anywhere in the word.
Theseaksharasappear in the middle region of the line and are represented by the same glyph
as shown in figures 1 and 2.

A consonantC and a vowelV can combine to form anakshara. Here theaksharais
composed by retaining most of the consonant glyph (cf. figure 2) and by attaching to it the
glyph corresponding to the vowel modifier. The vowel modifier glyphs are different from
those of the vowels and are shown in figure 3. The glyph of the vowel modifier for a particular
vowel is attached to all consonants mostly in the same way, though, in a few cases the glyphs
of the vowel modifier may change depending on the consonant. Figure 3 shows two of the
consonants modified by all the 16 vowels. In this figure, the second row shows the vowels,
the third row shows the glyphs of the vowel modifiers, the fourth and fifth rows show the
consonant–vowel(C–V) combinations for two consonants which phonetically correspond to
c as in cat andy as in yacht. As can be seen from the figure, the vowel modifier glyphs attach to
the consonant glyphs at up to three places corresponding to the top, right and bottom positions

Figure 3. Example of consonant–vowel combinations.

38 T V Ashwin and P S Sastry

Figure 4. Consonant conjuncts in Kannada.

of the consonant. It can be observed that the widths of theC–V combinations vary widely
and also that the image of a singleaksharamay be composed of two or more disconnected
components.

In the third form ofaksharacomposition, consonantsC1, C2 . . . Cj and a vowelV can
combine to form anakshara. In practicej is limited to 3. The consonantC1 forms thebase
consonantand the modifier for the vowelV attaches to it. The rules for this consonant-
vowel combination are the same as described above. The consonantsC2 . . . Cj are called
the consonant conjuncts. The glyphs of many consonant conjuncts resemble those of the
consonants though there are a sizeable number of exceptions. Some of the consonant conjunct
glyphs are shown in figure 4. The consonant conjunct glyphs always appear below theC–V

combination formed byC1 andV . A few examples showingaksharasformed by a consonant,
a consonant conjunct and a vowel are shown in figure 5.

Thusaksharasin Kannada are formed by graphically combining symbols corresponding
to consonants, consonant conjuncts and vowel modifiers using well-defined rules of combi-
nation. This general structure of forming characters of a word is a feature common to many
other Indian scripts. It also necessitates some special ways of segmenting a word into its
constituent symbols while designing OCRs for Kannada.

In a language like English (written in the standard Roman script), each word consists of
a linear sequence of characters written next to each other in a line. There are only fifty two
possible character symbols. Since there is always some space between characters of a word,
a general strategy for handling such scripts would be to segment a word into individual
characters and then recognize each character separately. However, such a strategy is not
feasible for Kannada as explained below.

Figure 5. Some examples of consonant-consonant-vowel combinations.

OCR system for printed Kannada documents 39

As in English script, in Kannada also the glyphs ofaksharasare placed next to each other;
but theaksharasthemselves are quite complicated with considerable variation in widths and
heights (cf. figure 5). The number of possible consonant–vowel combinations are 35× 16 =

560. The number of possible consonant–consonant–vowel combinations are 35× 35× 16 =

19600. Thus, if we consider eachaksharaas a separate category to be recognized, building
a classifier to handle these many classes is very difficult. Also, such an approach does not
exploit the fact that theaksharasare formed through well-defined geometric combination
of individual symbols. Many of the letters oraksharasare very similar and differ only in
having an additional stroke or an attachment. Fortunately because of the structure of the script,
it is feasible to break theaksharasinto their constituents and recognize these components
independently. This has been the chosen approach for most Indian scripts and is the chosen
approach here.

As can be seen from figure 5, the image of anaksharamay not be a single connected
component. Hence correctly segmenting the image of a word into those corresponding to
individual aksharas, prior to recognition, is very difficult. Hence, in our system we segment
the word into components each of which can be only part of anakshara. Ideally, we may
want to split the word so that each segment corresponds to the base consonant or vowel
modifier or consonant conjunct. Even this is not generally feasible because some of the vowel
modifiers themselves do not correspond to a single connected component. Further, due to
the structure of some of the consonant and vowel symbols, it was observed that, for getting
consistent segmentation, it is easier to allow even some of the consonant symbols to be split
into two or more parts while segmenting a word. Once a word is split using our segmentation
algorithm, we label each piece (using a pattern recognition technique) and then combine the
labels on neighbouring segments to effect final recognition ofaksharas. Due to the well-
defined graphical combination rules of the script, this step of combining labels of individual
segments intoaksharasis fairly simple.

In most OCR systems the final recognition accuracy is always higher than the the raw
character recognition accuracy. For obtaining higher recognition accuracy, language-specific
information such as co-occurence frequencies of letters, a word corpus, a rudimentary model
of the grammar etc. are used. This allows the system to automatically correct many of the
errors made by the OCR subsystem. In our current implementation, we have not incorporated
any such post-processing. The main reason is that, at present we do not have a word corpus for
Kannada. Even with a word corpus the task is still difficult because of the highly inflexional
nature of Kannada grammar. The grammar also allows for combinations of two or more
words. Even though these follow well-defined rules of grammar, the number of rules is large
and incorporating them into a good spell-checking application for Kannada is a challenging
task. We plan to address these issues in our future work.

3. Preprocessing and identifying words

In our document analysis system, the sequence of processing steps is as follows. The page of
text is scanned through a flat bed scanner at 300 DPI and binarised using a global threshold
computed automatically based on the specific image.2 This image is first processed to remove
any skew so that the text lines are aligned horizontally in the image. The lines and words
are then separated using the appropriate horizontal and vertical projections. The words are

2We shall refer to all the pixels (in the binary image) corresponding to characters as ON pixels
and those corresponding to the background as OFF pixels

40 T V Ashwin and P S Sastry

then segmented into smaller parts. To achieve this segmentation, the word is first split into
three vertical zones based on the horizontal projection for the word. The three zones are
then horizontally segmented using their vertical projections. These segments are then input
to the recognizer. The recognizer extracts a set of features from the bitmaps of the segments.
The feature vector is then classified using a SVM classifier. The labels for the segments
from the three zones output by the classifier are then combined and a ASCII text containing
the transliterated version of recognized Kannada text is output. This ASCII file can then be
uploaded into a Kannada typesetting package for viewing and editing.

In this section we briefly outline the methods used to process the image up to word seg-
mentation. In the next two sections we describe the word segmentation and feature extraction
and classification.

For skew correction we employed a windowed Hough transform technique (Gorman &
Kasturi 1995). Some of the Indian scripts, such as Devanagari, have a dark top line linking all
the characters in a word. This strong linear feature can be exploited for skew estimation, for
example, using a projection profile based method (Gorman & Kasturi 1995). In Kannada, such
a line linking all characters of the word is not present. However, a short horizontal line can
usually be seen near the top of most of the characters. Hence the Hough transform technique
for extracting lines works well.

Simple methods for separating lines and words are those based on projection profiles
(Gorman & Kasturi 1995). A projection profile is a histogram giving the number of ON pixels
accumulated along parallel lines. Thus a horizontal projection profile is a one-dimensional
array where each element denotes the number of ON pixels along a row in the image. Similarly
a vertical projection profile gives the column sums. It is easy to see that one can separate lines
by looking for minima in horizontal projection profile of the page and then one can separate
words by looking at minima in vertical projection profile of a single line. We have used such
projection profile based methods for line and word segmentation.

The line segmentation poses some problems due to the fact that the consonant conjuncts,
which appear below the base consonant, appear frequently disconnected from the base con-
sonant which results in a false white space in the horizontal projection. Also, overlapping of
the consonant conjuncts of one line with the vowel modifiers which appear towards the top
of the next line can mask some of the minima that should have been seen in horizontal pro-
jection. To overcome these problems we first extract the minima of the horizontal projection
profile smoothed by a simple moving average filter. The line breaks so obtained sometimes
segment inside a line. Such false breaks are removed by using statistics of the line widths and
the separation between lines. While segmenting the lines into words, it is to be noted that the
inter-word spacing is not uniform over all the lines because the inter-word spacing is adjusted
to align the text correctly at its ends. Also, by the nature of the script, sometimes inter-word
gaps are as small as some of the inter-character gaps. A threshold to separate inter-word
gaps from inter-character gaps is determined adaptively for each line of text. The threshold is
obtained by analyzing the histogram of the widths of the gaps in a line. Using this threshold
and the vertical projection profile of a line, we segment the line into its constituent words.

4. Segmenting words into smaller components

As described in §2, the letters in Kannada are composed by attaching to the glyph of a
consonant the glyphs of the vowel modifiers and the glyphs of the consonant conjuncts.
Due to the large number of letter combinations possible, building a classifier to recognize

OCR system for printed Kannada documents 41

a whole letter is very difficult. Therefore in our implementation we segment the letters into
its constituents, i.e. the base consonant, the vowel modifier and the consonant conjunct. Our
segmentation strategy is based on the following observations.

• The Kannadaaksharashows three distinct vertical regions.
• The top region, which ends just below the short head line of the consonant symbol,

contains the vowel modifiers and sometimes parts of the base consonant. Some letters
may not have a head line, and, in that case, the location of the top zone of neighbouring
letters can be used.

• The middle region contains the consonant glyphs and some vowel modifiers. The
vowel modifier glyphs may appear as either connected or disconnected components
to the right of the base consonant. The middle region ends where the base consonants
end.

• The bottom region which extends below the base consonant consists of glyphs for the
consonant conjuncts and the glyphs for some vowel modifiers. These glyphs generally
appear disconnected from the base consonant and the vowel modifiers present in the
middle zone.

The words are first vertically segmented into three zones. This segmentation is achieved by
analyzing the horizontal projection profile of a word. A typical horizontal projection is shown
in figure 6. Points (2) and (4) denote the locations corresponding to the ending of the top and
middle zones respectively. They are identified by using the observation that the drops in the
histogram between (1) and (2), and (3) and (4) (cf. figure 6) are two of the biggest drops in
the histogram. As can be seen from the figure, separating the middle zone from the bottom
zone is easier because of the fact that the consonant conjuncts are always disconnected from
the base consonant. Separating the top zone from the middle zone is more difficult. While our
heuristics work most of the time, there are a few situations where the top zone as segmented
may contain some of the base consonant or the middle zone may contain a little bit of the
top vowel modifier. However, many of these inaccuracies can be (and are) taken care of by
training the pattern classifier properly.

The next task is to segment the three zones horizontally. The middle zone is the most crit-
ical since it contains a major portion of the letter. The middle zone is therefore the first to be
segmented. As described earlier, in the middle zone we find the consonants and some of the
vowel modifiers. Our aim is to separate the vowel modifier from the consonant. Achieving
this exactly, prior to recognition, is very difficult. Therefore we allow certain base conso-
nants to also be segmented into two or more parts. To achieve this segmentation we follow
an oversegment-and-merge approach. The middle zone is first oversegmented by extract-
ing points in the vertical projection (of the middle region) showing drops in the histogram
value exceeding a fixed threshold. The threshold is kept low so that a large number of seg-

Figure 6. A word with its horizontal projection and vertical segmentation into three zones.

42 T V Ashwin and P S Sastry

Figure 7. Segmentation in middle zone. (i) Vertical projection for a word, (ii) the word being consid-
ered, (iii) vertical segmentation and horizontal over segmentation, (iv) after merging of middle zone
segments. The thick vertical lines show the locations whereaksharasactually end. (To be able to draw
these lines and also to show some gap between segments, part of the original image is erased in this
figure. However, all that part is seen by the classifier.)

ments are obtained. This segmentation does not give consistent segments (i.e. the segments
obtained may differ depending on the font and size of the letters) and also gives a large
number of small segments. These segments are merged using two different strategies. In the
first approach the region around a segment break is analysed and features of the boundary
contours around the segment break points along with connectivity information were used to
validate segment breaks. We shall refer to this as the heuristic merging algorithm. The second
approach is a recognition-based approach. Here, for every pair of segments, the classification
confidences of the classifier for the first segment in the pair and for the segment obtained by
merging the pair are obtained. If the merged segment shows higher confidence, the segments
are merged. Since we use an SVM classifier, the magnitude of the output of the SVM gives a
good measure of the classification confidence. Both approaches have resulted in reasonable
performance.

Figure 7 illustrates our segmenting algorithm. Here the word contains fouraksharaswhich
are shown separated by thick vertical lines in the bottom row of the figure. (The fouraksharas
can be roughly transliterated into English as:shi shyo tta maa.) It is easy to see from the figure

OCR system for printed Kannada documents 43

that it is nearly impossible to segmentaksharasprior to recognition. It may also be noted that
the secondaksharais more than four times as wide as the first one. In the figure, the third row
shows the oversegmentation of the word and the fourth row is the final segmentation obtained
using our heuristic merging algorithm.

5. Design and implementation of the classifier

After segmenting the document as described in the previous two sections, we need to recognize
each of the segments to effect final recognition. For this we use a pattern classifier to label
each of the segments in a word with some category. Since eachaksharaconsists of many
segments, arranged in three vertical zones, we need to put together the labels for segments
output by the classifier intoaksharas. Achieving this is not very difficult because theaksharas
are composed through well-defined rules of graphical composition. Since the processing
involved here is fairly straight forward, we will not describe it in this paper.

Each of our segments contains a vowel modifier or a consonant conjunct or a base consonant
(or a part of a base consonant). We use three different classifiers for classifying the segments
in each of the three vertical zones. Thus the possible classes for the segments in the top two
zones would be the vowels, base consonants or vowel modifiers. Hence the total number of
classes here should be 16+ 35 + 16 = 67. The bottom zone contains mostly consonant
conjuncts and hence we should have another 35 classes. However, because of our segmentation
strategy, some of the base consonants give rise to more than one segment which tends to
increase the total number of classes. In our final implementation, it turned out that we had
106 different classes. We have used 106 two-class classifiers (each meant to decide whether
or not a segment belongs to a specific class).

To train all the classifiers we need to generate a training set of patterns which is done
as follows. We scanned many pages of Kannada text from different magazines, textbooks,
pamphlets, newspapers etc. These images are then segmented using the algorithms described
earlier. Some of the segments so obtained were then hand-labelled and added to the training set.
To make this process user-friendly and also to have the capability of adding training patterns
at anytime, an interactive tool was developed. Using this, the user can view any segmented
document and then click on any segment to add to training set. All results reported in this
paper are those obtained with a training set of about 3000 patterns. (The specific number of
training patterns used for classifiers in different zones are given in § 6.)

5.1 Feature extraction

Features are a set of numbers that capture the salient characteristics of the segment image.
Since we want to achieve font and size-independent recognition, we cannot rely on direct
template matching. There are many different features proposed for character recognition
(Trier et al1996). One can consider features based on the image bitmap such as projection of
the image function onto different lines, moments of the image etc. One can split the image into
different zones and then extract simple features from each of the zones (Bosker 1992). One
can also use features obtained through various transforms such as cosine transform, Zernike
moments etc. In these cases, the image function is approximated by using a set of basis
functions and the coefficients are taken to be the features. Another approach is to use features
based on the strokes that make up the different letters. Here one obtains the skeletonised
binary image that gives the contours of the letters. Then various ways of characterizing the

44 T V Ashwin and P S Sastry

Figure 8. Division of segments into tracks and sectors.

contour give rise to different features (see, e.g., Pavlidis 1986, Sekitaet al1988, Luet al91,
Lee & Chen 1992).

We have used a set of features obtained by splitting each segment image into a number
of zones. Characters in Kannada have a rounded appearance. Therefore features which can
extract the distribution of the ON pixels in the radial and the angular directions will be effective
in capturing the shapes of the characters.

To extract the features, the segment bitmap is first area normalized so that the number of
ON pixels in all the normalized bitmaps are equal. This helps in making the classifier immune
to size changes in the characters. The normalized bitmap is then divided into smaller zones
by using tracks and sectors as shown in figure 8. The tracks are the annular regions centred
at the centroid of the ON pixels of the bitmap. The sectors are formed by drawing lines from
the centroid at different angles. The number of ON pixels in each zone is then counted and
the counts in all the zones are composed into a feature vector. (It may be noted that, since the
image bitmap is rectangular, the final track has a rectangular boundary rather than a circular
boundary). As can be seen from figure 8, there are 3 tracks and 16 sectors resulting in a feature
vector of dimension 48. All results reported in this paper are obtained with this 48-dimensional
feature vector. We have also experimented with a variant of these features. Instead of keeping
all tracks to be of equal radial thickness, we can choose tracks with varying radial thickness
so that the number of ON pixels in all tracks are approximately equal. This is achieved as
follows: the bitmap is first split into a large number of tracks and the number of ON pixels in
these tracks is counted. Adjacent tracks are merged, ensuring that the number of ON pixels
in the tracks are approximately equal, till the desired number of tracks is obtained. This gave
improvements in recognition rates for most cases.

For studying the effectiveness of our features, we have also experimented with the feature
vector of Zernike moments as a benchmark. Zernike moments are the projections of the image
onto the Zernike polynomials. The Zernike polynomials are a set of complex polynomials
which form a complete orthogonal set over the interior of the unit circle. The image function is
first scaled to lie inside the unit circle, Then Zernike moments corresponding to the projection
of the image onto the set of Zernike polynomials are obtained. We used Zernike moments of
up to 12th order. It was empirically observed that the representation of the segment images
in terms of Zernike polynomials, truncated at 12th order terms, was sufficient to reconstruct
the original images accurately. The details regarding extraction of Zernike moments can be
found elsewhere (Ashwin 2000).

It is seen that the recognition accuracy obtained with our 48-dimensional feature vector is
at least as good and often better than that obtained using the Zernike features. Computing the
Zernike moments takes more than eight times as much computational time as computing our
features (see discussion in § 6).

OCR system for printed Kannada documents 45

5.2 Pattern classification

The feature vector extracted from the segment bitmap has to be assigned a label using a
pattern classifier. There are many methods for designing pattern classifiers such as Bayes
classifier based on density estimation, using neural networks, linear discriminant func-
tions, nearest neighbour classification based on prototypes etc. In this system we have
used the Support Vector Machine (SVM) classifier. SVMs represent a new pattern classi-
fication method which grew out of some of the recent work in statistical learning theory
(Vapnik 1995, 1999). The solution offered by SVM methodology for the two class pattern
recognition problem is theoretically elegant, computationally efficient and is often found
to give better performance by way of improved generalizations. In the next subsection we
provide a brief overview of SVMs. A tutorial introduction to SVMs is given by Burges
(1998).

5.2a SVM classifier: The SVM classifier is a two-class classifier based on the use of
discriminant functions. A discriminant function represents a surface which separates the pat-
terns so that the patterns from the two classes lie on the opposite sides of the surface. The
SVM is essentially a separating surface which is optimal according to a criterion as explained
below.

Consider a two-class problem where the class labels are denoted by+1 and−1. Given a
set ofl labelled (training) patterns,X = {(xi, yi), 1 ≤ i ≤ l}, xi ∈ <d, yi ∈ {−1,+1}, the
hyper-plane represented by(w, b) wherew ∈ <d -represents the normal to the hyper-plane
andb ∈ < the offset, forms aseparating hyper-planeor a linear discriminant functionif the
following separability conditions are satisfied.

wtxi + b > 0, for i : yi = +1,

wtxi + b < 0, for i : yi = −1. (1)

Here,wtxi denotes the inner product between the two vectors, andg(x) = wtx + b is the
linear discriminant function.

In general, the setX may not be linearly separable. In such a case one can employ the
generalized linear discriminant functiondefined by,

g(x) = wtφ(x) + b whereφ : <d → <d ′

, w ∈ <d ′

. (2)

The original feature vectorx is d-dimensional. The functionφ represents some nonlin-
ear transformation of the original feature space andφ(x) is d ′-dimensional. (Normally we
would haved ′ much larger thand.) By proper choice of the functionφ one can obtain
complicated separating surfaces in the original feature space. For any choice ofφ, the func-
tion g given by (2) is a linear discriminant function in<d ′

, the range space ofφ. However,
this by itself does not necessarily mean that one can (efficiently) learn arbitrary separat-
ing surfaces using only techniques of linear discriminant functions by this trick of usingφ.
A good class of discriminant functions (say, polynomials of degreep) in the original fea-
ture space may need a very high dimensional (of the order ofdp) vector,φ(x), and thus
d ′ can become much larger thand. This would mean that the resulting problem of learn-
ing a linear discriminant function in thed ′-dimensional space can be very expensive both
in terms of computation and memory. Another related problem is that we need to learn the
d ′-dimensional vectorw and hence we would expect that we need a correspondingly larger
number of training samples as well. The methodology of SVMs represents an efficient way

46 T V Ashwin and P S Sastry

of tackling both these issues. Here we only explain the computational issues. (For a dis-
cussion on why use of SVMs does not demand larger training sets and other related issues
of the generalization abilities of SVMs, the reader is referred to Burges 1998 and Vapnik
1999.)

Let zi = φ(xi). Thus now we have a training sample{(zi , yi)} to learn a separating hyper-
plane in<d ′

. The separability conditions are given by (1) withxi replaced byzi . Since there
are only finitely many samples, given anyw ∈ <d ′

, b ∈ <, that satisfy (1), by scaling them
as needed, we can findw, b, that satisfy

yi [w
tzi + b] ≥ 1, i = 1, . . . , l. (3)

Note that we have made clever use of the fact thatyi ∈ {+1,−1}while writing the separability
constraints as above. Thew, b, that satisfy (3) define a separating hyper-plane,wtz + b =

0, such that there are no training patterns between the two parallel hyper-planes given by
wtz + b = +1, andwtz + b = −1, The distance between these two parallel hyper-planes
is 2/||w||, which is called the margin (of separation) of this separating hyper-plane. It is
intuitively clear that among all separating hyper-planes the ones with higher margin are likely
to be better at generalization. The SVM is, by definition, the separating hyper-plane with
maximum margin.

Hence, the problem of obtaining the SVM can be formulated as an optimization problem
of obtainingw ∈ <d ′

andb ∈ <, to

Minimize:
1

2
||w||2 (4)

Subject to: 1− yi(z
t
iw + b) ≤ 0 i = 1, . . . , l. (5)

Supposew∗ andb∗ represent the optimal solution to the above problem. Using the standard
Lagrange multipliers technique, one can show that

w∗ =

l
∑

i=1

α∗
i yizi , (6)

whereα∗
i are the optimal Lagrange multipliers. There would be as many Lagrange multipliers

as there are constraints and there is one constraint for each training pattern (cf. (5)). From
standard results in optimization theory, we must haveα∗

i [1 − yi(zt
iw

∗ + b∗)] = 0, ∀i. Thus
α∗

i = 0 for all i such that the separability constraint (5) is satisfied by strict inequality. Define
a set of indices,

S = {i : yi(z
t
iw

∗ + b∗) − 1 = 0, 1 ≤ i ≤ l}. (7)

Now it is clear thatα∗
i = 0 if i /∈ S. Hence we can rewrite (6) as

w∗ =
∑

i∈S

α∗
i yizi , (8)

The set of patterns{zi : i s.t. α∗
i > 0} are called thesupport vectors. From (8), it is clear that

thew∗ is a linear combination of support vectors and hence the name SVM for the classifier.
The support vectors are those patterns which are closest to the hyper-plane and are sufficient

OCR system for printed Kannada documents 47

to completely define the optimal hyper-plane.3 Hence these patterns can be considered to be
the most important training examples.

To learn the SVM all we need are the optimal Lagrange multipliers corresponding the
problem given by (4) and (5). This can be done efficiently by solving its dual which is the
optimization problem given by: Findαi, i = 1, . . . , l, to

Maximize :
∑

i

αi −
1

2

∑

i,j

αiαjyiyj zt
izj ,

Subject to :αi ≥ 0, i = 1,2, . . . , l,

l
∑

i=1

αiyi = 0. (9)

By solving this problem we obtainα∗
i and using these we getw∗ andb∗. It may be noted

that the dual given by (9) is a quadratic optimization problem of dimensionl (recall thatl is
the number of training patterns) with one equality constraint and nonnegativity constraints
on the variables. This is so irrespective of how complicated the functionφ is. Once the SVM
is obtained, the classification of any new feature vector,x, is based on the sign of (recall that
z = φ(x))

f (x) = φ(x)tw∗ + b∗ =
∑

i∈S

α∗
i yiφ(xi)

tφ(x) + b∗, (10)

where we have used (8). Thus, both while solving the optimization problem (given by (9))
and while classifying a new pattern, the only way the training pattern vectors,xi come into
picture are as inner productsφ(xi)

tφ(xj). This is the only way,φ also enters into the picture.
Suppose we have a function,K : <d × <d → < such thatK(xi , xj) = φ(xi)

tφ(xj).
Such a function is called a Kernel function. Now we can replacezt

izj in (9) by K(xi , xj).
Then we never need get into<d ′

while solving the dual. Often we can choose the kernel
function so that it is computationally much simpler than computing inner products in<d ′

.
Once (9) is solved andα∗

i are obtained, during classification also we never need enter<d ′

.
We can calculate the needed value off defined by (10) once again by using the kernel
function.

Given any symmetric functionK : <d × <d → <, there are some sufficient conditions,
called Mercer’s conditions (Burges 1998), to ensure that there is some functionφ such that
K gives the inner product in the transformed space. Some of the Kernels used in SVMs
are listed in table 1. The polynomial Kernel results in a separating surface in<d repre-
sented by a polynomial of degreep. With the Gaussian Kernel, the underlyingφ is such
thatφ(x) is infinite dimensional! However, by the trick of Kernel functions, we can get such
arbitrarily complicated separating surfaces by solving only a quadratic optimization prob-
lem given by (9). The SVM with a Gaussian Kernel is equivalent to a radial basis function
neural network and SVM with perceptron kernel is equivalent to a three-layer feedforward
neural network with sigmoidal activations. In both cases the learning problem for SVM
(namely, the optimization problem given by (9)) is much simpler computationally (Burges
1998).

3It may be noted that oncew∗ is determined using (6), it is easy to determineb∗. By definition, if
zi is any support vector, then,b∗ = yi − zt

iw
∗. In practiceb∗ is taken to be the average of values

obtained like this from all support vectors

48 T V Ashwin and P S Sastry

Table 1. Some popular kernels for SVMs.

Type of kernel K(xi, xj) Comments

Polynomial kernel (x t
i xj + 1)p Powerp is specifieda

priori by the user
Gaussian kernel exp

(

− 1
2σ 2 ‖xi − xj‖

2
)

The widthσ 2, common
to all the kernels, is
specifieda priori

Perceptron kernel tanh(β0x
t
i xj + β1) Mercer’s condition sat-

isfied only for certain
values ofβ0 andβ1

The optimization problem given by (9) has a lot of interesting structure and hence there are
available many efficient algorithms for solving it (Joachims 1999a; Platt 1999; Mangasarian
& Musicant 1999; Keerthiet al2000).

So far, we have assumed that the optimization problem specified by (4)–(5), whose dual is
given by (9), has a solution. This is so only if in thed ′-dimensionalφ-space, the (transformed)
pattern vectors are linearly separable. In general, this is difficult to guarantee. To overcome
this, we can change the optimization problem to

Minimize:
1

2
||w||2 + C

l
∑

i=1

ξi, (11)

Subject to: 1− yi(zt
iw + b) − ξi ≤ 0 i = 1, . . . , l.

ξi ≥ 0, i = 1, . . . , l. (12)

Hereξi can be thought of as penalties for violating separability constraints. Now these are
also variables over which optimization is to be performed. The constantC is a user specified
parameter of the algorithm and asC → ∞ we get the old problem. It so turns out that the
dual of this problem is same as (9) except that the nonnegativity constraint onαi is replaced
by 0 ≤ αi ≤ C. The optimal values of the new variablesξi are irrelevant to the final SVM
solution.

To sum up, the SVM method for learning two class classifiers is as follows. We choose a
Kernel function and some value for the constantC in (11). Then we solve its dual which is
same as (9) except that the variablesαi also have an upper bound, namely,C. (It may be noted
that here we useK(xi , xj) in place ofzt

izj in (9)).Once we solve this problem, all we need
to store are the non-zeroα∗

i and the correspondingxi (which are the support vectors). Using
these, given any new feature vectorx, we can calculate theoutputof SVM, namely,f (x)
through (10). The classification ofx would be+1 if the output of SVM is positive; otherwise
it is −1.

5.2b SVM classifiers for OCR: We have used SVM classifiers for labelling each segment
of a word. As explained earlier, we have trained a number of two-class classifiers (SVMs),
each one for distinguishing one class from all others. Thus each of our class labels has an
associated SVM. A test example is assigned the label of the class whose SVM gives the largest
positive output. If no SVM gives a positive output then the example is rejected. The output
of the SVM gives a measure of the distance of the example from the separating hyper-plane
in theφ space. Hence higher the value of the (positive) output for a given pattern higher is
the confidence in classifying the pattern.

OCR system for printed Kannada documents 49

We have used Gaussian kernel function for all SVMs and used a single value for the penalty
constantC. The SVMs are trained using the SVMlight package (Joachims 1999). This is one
of the efficient algorithms available for solving (9) or the dual of the problem specified by
(11) and (12).

We have also experimented with hierarchical classifiers. Since each of our classifiers are
meant to distinguish one against all other classes, we get somewhat poor generalization
because of confusions among very similar looking characters. Often this is overcome by
grouping of ‘similar’ classes. In our system we have used such hierarchical classifiers for the
middle zone segments in the words. We first trained SVM classifiers, one for each class. Then
looking at theconfusion matrix, we grouped some of the classes together. Now we retrained
a two-level hierarchical classifier. The first level classifier categorizes the input into one of
the groups of classes. Then the second level classifier (there is one such classifier for each
group) distinguishes between the classes in that group. We have used SVM classifiers at each
level and used the same features for both levels of the hierarchy.

5.3 Recognized output

The sequence of segments corresponding to a givenaksharais not necessarily unique. This
is because, during the segmentation some base consonants may be split into different number
of segments for different fonts. (It may be noted that the system has no information about
the font etc.) However, all the possible modes of splitting of theaksharasis known and
this information is encoded in a lexicon. The sequence of labels output from the classifier is
checked against this lexicon for final recognition of all theaksharas. If an inconsistency is
observed an attempt is made to remove this inconsistency by replacing the best label for the
current segment by the second best label. If the inconsistency could not be removed by this,
then that piece is labelled as unrecognizable.

The output after classification has to be transformed into a format which can be loaded into a
Kannada editing package. The method of composition ofaksharasin all Kannada typesetting
packages is similar. The input is usually ASCII text in which theaksharasare encoded as
ASCII strings. The string representing anaksharais composed from the ASCII character
codes corresponding to the different components of theaksharaas follows: the codes for the
base consonant appear first followed by the codes for the consonant conjuncts; the codes for
the vowel modifier appear at the last and signify the end of anakshara. The ASCII codes
are such that the final text looks like transliteration of the Kannada word into English. In our
system we currently output a file which is compatible with theKantextypesetting software
(Jagadeesh & Gopinath 2000).Kantexis essentially a collection of fonts and macros to typeset
Kannada using LATEX typesetting tools.

6. Results

The sequence of operations in our system to process a document is as follows. A page
of Kannadatext is scanned through a flat bed scanner at 300DPI. The image format used
throughout is the PGM raw format. The first step isskew correction. We used theWindowed
Hough Transformusing a window size that roughly corresponds to 100000 pixels. If we
assume a 50% pixel occupancy in each scan line and if the height of text line is 100 pixels,
then this window corresponds to roughly 2 text lines which should be sufficient for a good
enough skew estimate. Except for separating out lines etc., we have not implemented any
other page layout analysis. (That is why the final outputs shown in this section do not show

50 T V Ashwin and P S Sastry

Figure 9. Example of word segmentation, it can be seen that the interword spacing varies widely
across lines, and is also almost indistinguishable from the intercharacter gaps. The algorithm identifies
all words correctly.

even paragraph breaks.) We expect that any of the standard page layout analysis schemes
used for English will work equally well withKannadafor tasks such as recognizing headings,
titles etc.

The skew corrected image is then input to the segmentation program which separates lines,
words and then segments words into smaller parts as explained in §§ 2 and 3. We first separate
lines and then words. An example of word segmentation is shown in figure 9. The words are
then segmented into three vertical zones and each of the vertical zones are then horizontally
segmented. As explained in § 3, we first oversegment the word and then merge the segments.
An example of an over-segmented page of text is shown in figure 10a. The final results of
segmentation using the two merging strategies are shown in figures 10b and c. For this figure,
the document image is obtained by combining subimages from many scanned pages. This is
done so as to be able to illustrate the font and size independence of our system in a single
figure.

In the final step we need to label each of the segments using our classifier and then effect
final recognition of theaksharasbased on these labels. Figure 11 shows an example of the
final output of our system.

Before presenting the final recognition accuracies obtained on some test data with our
system, we briefly summarize the various options available at the classification stage.

As explained in § 3, we experimented with three types of features. Two feature sets are based
on dividing the image into radial tracks and sectors. The two feature sets are distinguished
by whether the radial tracks are equally spaced or adaptively spaced to achieve roughly equal
number of ON pixels in each annular region. We refer to these asstructural featuresand
modified structural featuresrespectively. In both cases we have used 3 tracks and 16 sectors
so that we have a feature vector of dimension 48. We have also experimented with Zernike
moments as the features.

We have used the SVM classifier for recognizing the segments in all zones. To train the
SVM classifier we used the SVMlight (Joachims 1999b) package. As explained in § 5.2b, we

OCR system for printed Kannada documents 51

F
ig

ur
e

10
.

E
xa

m
pl

e
of

ch
ar

ac
te

r
se

gm
en

ta
tio

n,(a
)s

eg
m

en
ts

ag
ai

ns
ta

da
rk

er
ba

ck
gr

ou
nd

in
(b

)
an

d
(c

)a
re

m
er

ge
d

se
gm

en
ts

.

52 T V Ashwin and P S Sastry

F
ig

ur
e

11
.

R
ec

og
ni

ze
d

ou
tp

ut
:(a

)i
np

ut
pa

ge
of

te
xt

;(b
)

re
co

gn
is

ed
ou

tp
ut

–h
eu

ris
tic

m
er

gi
ng

;
(c

)r
ec

og
ni

se
d

ou
tp

ut
–r

ec
og

ni
tio

n
ba

se
d

m
er

gi
ng

.

OCR system for printed Kannada documents 53

Table 2. Performance on segments ofaksharas.

Base character/matra/ Features NNC SVM
consonant conjunct accuracy(%) accuracy(%)

Base character Zernike 92.76 92.63
Base character Structural 92.56 93.78
Base character Modified structural 93.28 93.34
Topmatra Zernike 88.13 88.43
Topmatra Structural 86.91 87.98
Topmatra Modified structural 88.28 87.21
Consonant conjuncts Zernike 92.22 91.95
Consonant conjuncts Structural 89.27 93.83
Consonant conjuncts Modified structural 92.76 94.90

have also developed a hierarchical SVM for classifying the segments in the middle zone. The
classifiers for top and bottom zones are not hierarchical. We have also experimented with
a nearest neighbour classifier (NNC) using all training examples as prototypes (thus having
multiple prototypes per class).

As explained earlier, we generated the set of training patterns by scanning a number of
pages of Kannada text from different magazines, text books etc. These images are segmented
by our system and then some of the segments are labelled by us to make-up the training set.
Since we have to choose training patterns only from theaksharasthat appear in the scanned
pages, we had different number of training patterns for different classes. The total number of
training patterns for the middle zone is 2824. The total number of training patterns for the
top and bottom zones are 1332 and 758.

We measured the performance of our system on 16 pages of text scanned from different
Kannadamagazines and books. These pages are taken from two weekly magazines, two
monthly magazines, three school texts, two newspapers and three booklets. While the same
books are used for generating the training patterns also, it was ensured that the training and
test sets of patterns are disjoint.

In our system, we can distinguish between two types of recognition accuracies4: the seg-
ment recognition accuracy and theakshararecognition accuracy. The segment recognition
accuracy is actually the accuracy achieved by different classifiers. However, what the user
desires is a correct readable output. An error in any component of theakshararenders it incor-
rect. So, from a user point of view, a more meaningful measure of accuracy is theakshara
recognition accuracy which is the fraction ofaksharascorrectly recognized. Here an error in
any component of anaksharais flagged as an error and hence the segment recognition accu-
racies would always be higher. The segment recognition accuracies are useful for validating
and/or improving the classifier.

The final results obtained for segment recognition accuracy are shown in table 2 and the
those forakshararecognition accuracy are shown in table 3 below. All results are average
accuracies over the sixteen pages of text.

From table 2, we can see that the classifiers for individual segments deliver reasonably
good performance. The recognition accuracy obtained with our 48-dimensional feature vec-
tor is at least as good as or better than that obtained with the Zernike features, which are
computationally very expensive. The performance of SVM classifiers is a little better than

4Whenever we talk of recognition accuracies, we mean the accuracies obtained on the test set of
patterns

54 T V Ashwin and P S Sastry

Table 3. Summary ofakshararecognition accuracies.

Merging Feature Classifier % Wrong % Reject % Error=
strategy %wrong+ %reject

Heuristic Zernike NNC 15.60 1.22 16.82
Heuristic Zernike NH-SVM 11.86 6.11 17.97
Heuristic Zernike H-SVM 10.74 4.68 15.42
Heuristic Structural NNC 15.32 1.30 16.62
Heuristic Structural NH-SVM 12.56 5.69 18.25
Heuristic Structural H-SVM 11.12 4.57 15.69
Heuristic Modified structural NNC 15.48 1.37 16.85
Heuristic Modified structural NH-SVM 13.47 5.19 18.67
Heuristic Modified structural H-SVM 11.09 3.75 14.84
Recognition Zernike H-SVM 10.49 3.42 13.91

based
Recognition Structural H-SVM 11.86 3.64 15.50

based
Recognition Modified structural H-SVM 11.26 2.63 13.89

based

H-SVM => hierarchical-SVM classifier, NH-SVM=> non hierarchical-SVM classifier,
NNC => nearest neighbour classifier

that obtained using Nearest Neighbour Classifier (NNC). Here it may be noted that we have
used all the training samples as prototypes for the NNC. When the training set size increases,
this type of classifier would be inefficient in terms of both memory and computation time.

In table 3 we have shown two types of errors inakshararecognition: wrong classifications
and rejects. As explained earlier, with the SVM classifier we reject a segment if none of the
SVMs give positive output. On the other hand, at segmen level, the NNC does not reject
any pattern. However, at theaksharalevel, the labels given to different segments may be
incompatible in the sense that they cannot be put together into anakshara. We count such
errors also as rejects. For the SVM classifier, a reject can result both by rejecting a segment
or by incompatibility of class labels of the segments. For the NNC, the rejects can occur only
by incompatibility of labels on successive segments.

From table 3 it can be seen that, of the three classifiers (i.e. the NNC, SVM, hierarchical
SVM), for the same set of features, the hierarchical SVM shows the lowest overall error rate.
Comparing the SVM with the nearest neighbour classifier (NNC), it can be seen that the
misclassification rate of the SVM classifier is lower, but the SVM has a higher reject rate.
In some applications the cost of misclassification can be much higher than that of rejection.
In such cases the SVM classifier is better. Also it is seen that the hierarchical structure
considerably reduces both the misclassification and the reject rate of the SVM classifier.

Of the three feature extraction schemes (the Zernike features, the structural features and
the modified structural features) it can be seen that the modified structural features give the
best performance.

The recognition-based merging scheme shows a definite improvement over the heuristic
merging scheme. In our current implementation, the recognition based merging scheme suffers
from the disadvantage that it can only merge pairs of successive segments and hence the
degree to which the characters are over-segmented is very critical (i.e. if a character is split
into more than 2 parts this scheme will reject the character). The heuristic scheme does not
suffer from this problem since it validates each segment break point individually and hence
is more rugged.

OCR system for printed Kannada documents 55

Table 4. Computational time for different classifiers with
heuristic segment merging and structural features .

Classifier Total time (s)

NNC 183.22
Non-hierarchical SVM 171.92
Hierarchical SVM 169.54

The overall computational time for feature extraction (including the time for line, word
and character segmentation, and merging), classification and final output generation for all
16 pages are shown, for different configurations of the system, in tables 4, 5, 6.

Referring to table 4, of the three classifiers, the Hierarchical SVM shows the least computa-
tional time. We can compare the computational requirements of NNC and SVM classification
methods as follows. In the case of the NNC, to classify a given test pattern, computation
of distance withevery feature vector in the training setis required. In a SVM classifier a
dot product computation withsupport vectors extracted for every classis required. If it is
assumed that a dot product computation and a distance computation are roughly equal, then
the SVM has an advantage in cases where the total number of support vectors for all the
classes is less than the number of training examples. This is usually true for most training
sets and hence SVM would be advantageous. In our current implementation we have only
about 3000 samples for a hundred class problem which works out to only about 30 sam-
ples per class. That is the reason why the difference in computational expenses between
SVM and NNC is not very significant here. For a very robust (font and size independent)
recognition we should have many more training samples. When the sample size is appropri-
ately increased, we can expect the computational advantage of the SVM method to be more
pronounced. The training algorithm for the SVM classifier is also very efficient. The train-
ing of all the hundred classifiers took less than 30 minutes on a Pentium II system running
at 330MHz.

Of the three feature extraction strategies, the modified structural features are only slightly
more expensive than the structural features. The Zernike features are roughly 8 times more
expensive.

Comparing heuristic merging with the recognition based merging approach, recognition
based merging is more expensive. In the recognition based merging scheme, for every pair
of segments, the first segment and the merged segment are sent for classification. Therefore
the number of segments input to the classifier is roughly twice that of the heuristic approach.
The overall time required for the recognition based approach is roughly double that required
for the heuristic approach.

Figure 12 shows another example of the recognized output for some paragraphs extracted
from the test pages. The ‘*’s show the characters rejected by the system. The system as

Table 5. Computational time for different features with
heuristic segment merging and hierarchical SVM.

Feature Total time (s)

Zernike 1258.46
Structural 169.54
Modified structural 172.27

56 T V Ashwin and P S Sastry

Table 6. Computational time for different segment merging
strategies with modified structural features and hierarchical
SVM classifier.

Merging method Total time (s)

Heuristic merging 172.27
Recognition based 320.24

Figure 12. Test image and recognized text.

OCR system for printed Kannada documents 57

described here does not recognize anything other than Kannadaaksharas. That is why all punc-
tuation marks also go unrecognized in the output. The results in this figure are obtained using
heuristic merging algorithm, modified structural features and hierarchical SVM classifier.

From table 3, recognition based merging seems to perform better than heuristic merging.
As remarked earlier, our current implementation is inadequate because we only consider
pairs of segments for merging. If we follow a strategy of merging segments in various groups
to increase the confidence of the classification we should get better performance. The main
strength of such a strategy is that final recognition would be quite robust to oversegmentation
or other similar shortcomings of the segmentation algorithm. The contribution of segmen-
tation errors in the final recognition performance is difficult to estimate. But we feel that
segmentation errors do have a major contribution. Hence an improved version of recognition
based merging may be very effective and we plan to pursue this in our future work.

Looking at recognition rates it can be seen the recognition-based merging approach with
modified structural features and the hierarchical SVM classifier gives the best performance
and has moderate computational requirements. In the current system we have used the same
set of features in the SVM classifier for all the levels of the hierarchical classifier. The
segment level recognition rates could be improved by designing a more complex hierarchy
with different features at different levels in the hierarchy.

Our structural features essentially capture the distribution of the black pixels around the
centre of the character. South Indian scripts such as Kannada, Telugu, Malayalam have a
generally rounded appearance. Scripts like Kannada and Telugu have very few strong linear
strokes in the characters. We feel that the type of features we have used here should be useful
for character recognition in many such scripts. At present we are trying to modify this system
(by retraining the classifiers) so that we can handle printed Telugu documents also.

7. Conclusions

In this paper we describe an OCR system for processing printed text documents in Kannada,
a South Indian language. Starting with the image of a page of printed Kannada text, the sys-
tem first separates lines and words using standard methods. Then the words are segmented
into sub-character-level pieces using a strategy that is tailored to the special features of the
script. We propose a novel feature vector that characterizes the distribution of foreground
pixels in radial and angular directions. Using these features, each of the segments of a word
is classified using a support vector machine classifier. The labels so obtained are then put
together to effect recognition of individualaksharasin the word. The system is designed to
be independent of the font and size of text. We have presented some results with our system
which delivers reasonable recognition accuracy.

The work reported in this paper is partially supported by a project under theIndian Lan-
guage Technology Solutions – Kannadaprogramme of the TDIL Group of the Ministry of
Information Technology, Government of India.

References

Antani S, Agnihotri L 1999 Gujarathi character recognition. InProc. Fifth Int. Conf. on Document
Analysis and Recognition,Bangalore (IEEE Computer Society Press) pp 418–421

58 T V Ashwin and P S Sastry

Ashwin T V 2000A font and size independent OCR for printed Kannada using SVM. M E Project
Report, Dept. Electrical Engg., Indian Institute of Science, Bangalore

Bansal V, Sinha R M K 1999 On how to describe shapes of Devanagari characters and use them for
recognition. InProc. Fifth Int. Conf. on Document Analysis and Recognition, Bangalore (IEEE
Computer Society Press) pp 410–413

Bosker M 1992 Omnidocument technologies.Proc. IEEE80: 1066–1078
Burges C 1988 A tutorial on support vector machines for pattern recognition.Data Mining

Knowledge Discovery2: 121–167, available at http://svm.research.bell-labs.com/papers/tutorial
web page.ps.gz.

Choudhury B B, Pal U 1997 An OCR system to read two Indian language scripts: Bangla and Devana-
gari. In Proc. Fourth Int. Conf. on Document Analysis and Recognition(IEEE Computer Society
Press) pp 1011–1015

Jagadeesh G S Gopinath V 2000 Kantex, a transliteration package for Kannada available at
http://langmuir.eecs.berkeley.edu/˜ venkates/kantex1.00.html).

Joachims T 1999a Making large-scale support vector machine learning practical. InAdvances in kernel
methods – support vector learning(eds) B Scholkopf, C J C Burges, A Smola (Cambridge, MA:
MIT Press) available at http://www-ai.cs.uni-dortmund.de/DOKUMENTE/joachims99a.ps.gz

Joachims T 1999b SVMlight. http://www-ai.informatik.uni-dortmund.de/FORSCHUNG/VER-
FAHREN/SVM LIGHT/svm light.eng.html

Keerthi S S, Shevade S K, Bhattacharyya C, Murthy K R K 2000 A fast iterative nearest point algorithm
for support vector machine classifier design.IEEE Trans. Neural Networks11: 124–136

Lee H J, Chen B 1992 Recognition of handwritten Chinese characters via short line segments.Pattern
Recogn.25: 543–552

Lu S W, Ren Y, Suen C Y 1991 Hierarchical attributed graph representation and recognition of
handwritten Chinese characters.Pattern Recogn.24: 617–632

Mangasarian O L, Musicant D R 1999 Successive overrelaxation for support vector machines.IEEE
Trans. Neural Networks10: 1032–1037

O’Gorman L, Kasturi R 1995Document image analysis(IEEE Computer Society Press)
Pavlidis T 1986 A vectorizer and feature extractor for document recognition.Comput. Vision Graphics

Image Process.35: 111–127
Platt J C 1999 Sequential minimal optimisation: A fast algorithm for training support vector machines.

In Advances in kernel methods – support vector learning(eds) B Scholkopf, C J C Burges, A Smola
(Cambridge, MA: MIT Press) available at http://www.research.microsoft.com/˜ jplatt

Sekita I, Toraichi K, Mori R 1988 Feature extraction of hand written Japanese characters using spline
functions and relaxation matching.Pattern Recogn.21: 821–828

Sinha R M K, Mahabala H 1979 Machine recognition of Devanagari script.IEEE Trans. Syst., Man
Cybern.9: 435–449

Trier O D, Jain A K, Taxt T 1996 Feature extraction methods for character recognition - a survey.
Pattern Recogn.29: 641–662

Vapnik V N 1995The nature of statistical learning theory(New York: Springer-Verlag)
Vapnik V N 1999 An overview of statistical learning theory.IEEE Trans. Neural Networks10: 988–

999

