
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 121, Number 1, May 1994

A FORBIDDEN SET FOR EMBEDDED EIGENVALUES

RAFAEL RENE DEL RIO CASTILLO

(Communicated by Andrew Bruckner)

Abstract. We study the problem of embedding eigenvalues to the spectrum

of a Sturm-Liouville operator in the half axis when this spectrum is a perfect

set. We prove the existence of an uncountable dense subset of the spectrum

for which, by modifying the condition at the left or by locally perturbing the

potential, it is not possible to add any eigenvalues.

1. Introduction

In this paper we consider Sturm-Liouville operators generated by the differ-

ential expression lu = -u" + q(x)u in the half line [0, oo).

It is known that, through local perturbations of the potential or by considering

arbitrary conditions at the left, it is possible to add eigenvalues anywhere in

the resolvent set (see [4, Theorem 2.5.3]) or to produce an infinite number of
embedded eigenvalues (see [2, Remark 5]).

Nevertheless, we prove in this paper that there exists a specific subset of the

spectrum for which, assuming the spectrum of the unperturbed operator is a

perfect set, it is not possible to generate embedded eigenvalues by means of the
above perturbations. We also show that this "forbidden" set, which depends
only on the behaviour of the potential at infinity, is a dense and uncountable
set. Moreover, every point of the spectrum is a condensation point of this set.

This paper is organized as follows. In §2 we define the unperturbed opera-

tor L and the perturbed operator L. We prove that eigenvalues can appear

only in points where the symmetric derivative of the spectral function of the
unperturbed operator is zero. This is proved by using a theorem of Aronszajn

[1]. In §3, using tools of elementary real analysis, we show that the set of points

where a given series diverges is "big" in some sense. This result is crucial for
proving our main theorem in the presence of only pure point spectrum. Section

4 is devoted to the proof of the main result where a theorem of Kundu [5] is

applied.
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2. PRELIMINARIES

Consider the selfadjoint operator L generated by the differential expression

lu= -u" + q(x)u,        0<x<oc,

where 67 is a real-valued, locally integrable function, as Lu = lu with domain

D(L) = {¡íé L2(0, oo)\u, u' are locally absolutely continuous, lu e L2(0, 00),

and u(0) cos a + u'(0) sin a = 0},        a G [0, it).

The limit point case occurs at 00, and 0 is a regular point. We shall denote

the spectral function of L by p. Sometimes to emphasize the dependence on

a we shall write La and pa .

The perturbed operator L will be any selfadjoint realization of the differen-

tial expression

ïu =-u" + {q(x)+ v(x)}u,        a<x<oo,

where -00 < a and v(x) is a locally integrable function with compact support.

If the limit circle case (l.c.c.) occurs at a, then a boundary condition will be

needed.
The operator L is defined as Lu = lu with domain

D(L) = {u G L2(a, oo)\u, u' are locally absolutely continuous,

lu G L2(a, 00), and [v, u]a = 0 if we have l.c.c. at a).

Here v is a nontrivial solution of (/ - k)u = 0  (leE) and

[v, u]a = lim(v(x)u'(x) - v'(x)u(x)).
x—>a

See, for example, Theorem 5.8 of [6].

The following observation will be useful in the sequel.

Remark 1. If A is eigenvalue of L then, for some a G [0, n), A is an eigen-

value of La.

Let us define
Dp(X) = limp^ + e):p{X-e).

£—0 2e

Lemma 1.  /^ dp(k)/(k0 - A)2 < 00 => Dp(k0) = 0.

Proof. Assume that /^ dp(k)/(k0 - A)2 < 00, and, for all e > 0, define the

interval /e = [An - e, An + ■?] • We shall denote the length of Ie by |/e|. Then

we have

r àp{k)    r dp(p    1 r     _ 1 p(iE)
J-00 (Ao - A)2 - JIc (Ao - A)2 - |/£|2 y/£ Wj     |/,|  I/.I

and, therefore,

J—1

dp(k)    > p(À0 + e)- p'ko - e)

(A0 - A)2 - 2£

Since
dp(k)

lim\IE\ [
e^°    J-00 (ko - ky

and the right-hand side of the above inequality is nonnegative, it follows that

Dp(ko) exists and equals zero.   Q.E.D.
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Lemma 2. If Xq is an eigenvalue of L then Dp(Xo) = 0 or An is an eigenvalue

ofL.

Proof. Assume that A0 is an eigenvalue of L and Dp(Xo) > 0. Then from

Lemma 1 it follows that /^ dp(X)/(Xo - X)2 is not finite. Using Theorem 4

of [ 1 ] we can conclude that An is not an eigenvalue of Lß for ß ^ a. If An

is not an eigenvalue of La then, from Remark 1, it follows that An is not an

eigenvalue of L.   Q.E.D.

3. A REAL VARIABLE RESULT

Let N denote the set of positive integers, R+ the positive real numbers, and

7 the closure of /. The difference of two sets A , B will be denoted by A-B.

Recall that a set is said to be dense in itself if it is contained in the set of its
limit points and that a point p in a metric space X is said to be a condensation
point of a set A c X if every neighborhood of p contains uncountable many
points of A.

LeX F: S —» R+ be an arbitrary function, where S c [a, b] is countable and
dense in itself. Define

A = {te[a,b]-S

Lemma 3. The set A defined above is uncountable, and every point of S is a
condensation point of A.

Proof. Let us consider the family of functions & := {ô\ô: N —> {0, 1}}.
Choose ô G SF, and, for each k G N, denote by ôk the restriction of ô
to the finite set {1, ... , k} . We shall define for each 5k an interval Igk.

In what follows Isp will denote the open interval (s - Fx/2(s), s + Fxl2(s)),

and the index i will take the values 0,1.
Let / c [a, b] be an arbitrary open interval such that Snl ^ 0, and choose

s0 G S n /. Define ISg := I n ISof . Select and fix two different points a, such
that a¡ t¿ so and a¡ e ISo n S. We can do this because 5 is dense in itself.

Let I a, be two open intervals which satisfy a¡ G Ia¡, Ia¡ C ISo, flLo^a, — 0 •

Define Igx := Iasm^IasmF ■ This completes the construction for the case k = 1.

Now define sx = a¿(X).

Let us assume that we have defined an interval I¡k_x and a point s^x G

^_, nS. Choose two points a¡ such that a¡ g /¿t_1 n5 and a¡ ^ Sk-X, and

fix two open intervals Ia¡ satisfying a, G Ia,, Ia¡ C Isk_t , flLo^»/ = 0 • Define

7<5* := ^(tj n ^f and sk = aô(k).

We can now define I¿k for each k G N. This definition can be done in many

ways, but once we have chosen the points a, and the intervals Ia¡, the definition

is unique. In order to define Is> for any other function ô', we choose exactly
k

the same points a¡ and the same intervals Ia¡ we have chosen to construct I&k.

Now, for each 8 G &, define B¡(o) = Ç]kxLx7sk where l¡k  denotes the

closure of the interval ISk. Since 7¿kí D 7gk for every k G N, it follows that

Now define B¡ = (Js€^-B¡(o) and B = \JB¡ where the second union is

taken over all open intervals contained in [a, b] such that I C\S ^ 0 .
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We shall prove the following:

(a) B-ScA.
(b) B - S is uncountable and every point of 5 is a condensation point of

B-S.

Choose ¿; G B - S. Then £ g B¡(6) = fr^li 7gk f°r some ô and /. Hence,

there is a sequence sk e Igk n S such that, for all k g N, |¿| - sfc| < Fxl2(s¡c).

Therefore,

F(Sk) j    v^   ^(j)   ^ v^   F(Sk)1 < ,- v fe,,    and    V.    v.,7>>,    v/y.7=oo,

I"» AC I j€5   I "91 fc_,    I    AC -51

implying that £ G A . This shows that (a) holds.
To prove (b), choose an open interval I c[a, b] and construct B¡ as before,

i.e.,

BI=\J B,(ô).

Since Bj(ô) ■£ 0 , select x¿ G B¡(3) and define the function

J: F ^Bi

ô^xse Bi(ô).

We shall see that J is injective. If ô, ô' G y and ô ^ ô', then there is
/c G N such that r5(rc) -^ ¿'(/c). From the construction above it follows that

7am n7<v(lt) = 0 and therefore 7Sk n7¿< = 0 . Hence, 5/(r5) n B¡(S') = 0 and

so xô ¿ xs..
Since the set y is uncountable, so are B¡ and B - S. Since Bi <z I, ix

follows that each point of S is a condensation point of A . Thus (b) holds, and

the proof of the lemma is complete.   Q.E.D.

4. The main result

In [5] Kundu proved that if:

(i)   liminfj^.o/tx) > f(0 > ]iminfx^i+0 f(x) for all £,e[a,b],
(ii)   Df(x) < 0 almost everywhere in (a, b),

(iii)   Df(x) < oo except of a countable set in (a, b),

then / is decreasing in [a, b].
Here we used the notation

-R/v  ».    ,• f(x + h)-f(x-h)
Df(x) = hm sup ̂ -'—¿-±- ,

A-.0 2h

Df(x) = liminff{x + h):uñx-h).
~ v '       a->o 2h

The function / is said to be decreasing if x < y =>• f(x) > f(y). Analogously,

/ is increasing if x < y =>• f(x) < f(y).
We shall use this result to prove the following theorem. The spectrum of L

will be denoted by o(L).

Theorem. If for an interval J the set C = J n a(L) is a perfect set, then there

exists an uncountable set B c C such that every point of C is a condensation

point of B and, moreover, L cannot have eigenvalues in B.
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Proof. The spectral function of L can be written as p = pc + Pd where pc

is an increasing continuous function and p¿ is an increasing saltus function.

Consider an arbitrary open interval such that /nC/0.
If pc is not constant in / then pc is not decreasing and, applying the the-

orem of Kundu mentioned above, it follows that there is an uncountable set

¿5c/ such that, if x G B, then it is not possible to have Dpc(x) = 0. Since

Dp(x) = 0 implies Dpc(x) = 0, it follows that the relation Dp(x) — 0 is not
possible. In view of Lemma 2, the two last conclusions of the theorem follow

in this case. It remains to show that B c C, but this is a simple consequence

of the fact that for x in the resolvent set of L we have Dp(x) = 0.

Now assume that pc is constant in /. In this case the spectrum is pure point

in / and, for any t, G /, we have

f   dp(k)       f dp(k)       f   dpd
J-oo(Ç-k)2-Jl(t-k)2       Jl(Ç-k)2'

Since p¿ is a saltus function, the measure generated by this function is sup-

ported on a countable set S c I.
Let us denote the measure of a point s G S by F (s). Then we have

f dpd(X)     v   F(s)

Since 7nC = S and C is perfect, S is dense in itself and we can apply Lemma

3, showing that for every Ç in an uncountable set A c I it happens that

r dp(x)
Lvrw=00-

An application of Theorem 4 of [1] and Remark 1 imply now the two last

conclusions of theorem. From

V^ F(s) = / dp(s) < oo   and    V^ .,      ., = oo
à,      Ji sTs^-s)

for Ç £ A, it follows that infj6s |<j[ - s\ = 0 and therefore A c C. This can
also be proven using Theorem 2.5.3 of [4]. Therefore, the remaining assertion

is proven.   Q.E.D.

Remark 2. The theorem holds for every perturbation L which has the property

mentioned in Remark 1.

Remark 3. Using Theorem 1 of Donoghue [3] instead of Theorem 4 of Aron-

szajn [1], a similar result can be obtained for perturbations Ha = H0 + aP

of a selfadjoint operator H0, where P is a selfadjoint projection on a fixed

normalized element and a G K.

Remark 4. If A G B then lu = Xu has no solution which lies in L2 near oo.
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