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A force balance model has been developed to predict the terminal velocity of a sub-
millimetric bubble as its rises in water under buoyancy. The dynamics of repeated
collisions and rebounds of the bubble against a horizontal solid surface is modeled
quantitatively by including forces due to buoyancy, added mass, drag, and hydrody-
namic lubrication—the last arises from the drainage of water trapped in the thin film
between the solid surface and the surface of the deformable bubble. The result is a self-
contained, parameter-free model that is capable of giving quantitative agreement with
measured trajectories and observed collisions and rebounds against a solid surface as
well as the spatio-temporal evolution of the thin film during collision as measured by
interferometry. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4894067]

I. INTRODUCTION

To develop a unified model to describe a bubble rising under buoyancy and its subsequent
collision with a horizontal solid surface that causes it to deform and rebound is a challenging task in
fluid mechanics. For bubbles in the size range that are used in waste-water treatment, oil recovery,
and mineral flotation1–3 the fluid mechanics can vary from the small-Reynolds-number Stokes flow
regime to intermediate and large Reynolds numbers. One characteristic length scale of the problem
is the size of the bubble ∼1 mm. However, the interaction between the bubble and the horizontal
solid surface requires a detailed description of the dynamics of the drainage of the fluid trapped
between the solid surface and the surface of the bubble that may also deform as a result of the
collision. Accurate quantification of the drainage process requires the film thickness and the local
deformation of the bubble surface to be resolved to a scale 1000 times smaller, in the micrometer
regime.

Investigations of the dynamics of bubble-solid interactions tend to fall into two broad classes:

(i) Studies that focus on determining the trajectory of the bubble and its collision by high speed
video recordings4–7 which may then describe the bubble dynamics in term of its center-of-mass.
In particular, collisions of the bubble at a rigid solid-fluid and at deformable fluid-gas interfaces
have been reported. The Navier-Stokes equation appropriate to such experiments has not been
solved but the bubble has been treated as a “particle” with an effective mass.8, 9 The collision
and rebound phenomenon are parameterized in terms of a coefficient of restitution. The value
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of this coefficient is not known a priori, but can be chosen to ensure good fit between theoretical
predictions and experimental observations.

(ii) Investigations that record the spatio-temporal variations of the optical interference fringes
generated between the solid-fluid and bubble-fluid interface from which the evolution of the
shape of the trapped fluid can be extracted.10–12 These experiments focus on the dynamics of
the film drainage process as a bubble comes into near contact with the solid surface. Although
models have been developed to treat the film drainage and associated bubble deformation
processes in quantitative detail, information about the velocity of the bubble outside the film
is needed as boundary conditions.13–15 Such boundary conditions are taken from experimental
measurements without any attempt to predict the trajectories of the bubbles.

Recently, through advances in high-speed video recording at up to 54 000 frames/s using
synchronized cameras, the position of the bubble and the evolution of the interference fringes can be
captured simultaneously. The latter allows measurements of the film thickness with sub-micrometer
precision.13

In this paper, we propose a force balance model to describe the rising trajectory of a bubble and
its collision with a horizontal solid surface. It is an extension of an earlier model by Klaseboer et al.16

that included explicit descriptions of forces acting on the bubble. Although this model performed
reasonably well when compared with the experimental center-of-mass collision and bounce data of
Tsao and Koch,4 no experimental information about the film thickness was available. This model
was revisited recently by Kamran and Carnie.17

Although the model in Klaseboer et al.16 included effects of bubble deformation and drainage of
the thin fluid film between the bubble and the surface, this treatment, via lubrication theory, required
setting the far field radius of the film to be about 30% larger than the bubble radius. This is needed
to ensure the magnitude and phase of the rebound trajectory of the bubble is comparable to that
observed experimentally. Beyond this there is no a priori justification for such a large asymptotic
radius. Another feature omitted in previous models of bubble collision is the account of variation
of the bubble’s effective mass as a function of separation from the solid surface. As we shall see,
this feature is responsible for the initial deceleration of the bubble as it approaches the surface, but
before lubrication forces become significant.

To test our model, we provide a detailed comparison with experimental results that have been
obtained for the time variations of the bubble trajectory as well as for the spatio-temporal variations
of the thickness of the thin film of water trapped between the surface and the deforming bubble.
Such comparisons with experimental data collected on two very different length scales (millimeter
vs micrometer) constitute a more stringent test of the performance of the model.

II. FORCE BALANCE MODEL

Figure 1 depicts a schematic representation of the experiment and defines key variables of the
model. Far from the solid surface a spherical bubble with radius R rises under buoyancy. We follow
the time dependent trajectory of the center of mass of the bubble located at z = b(t) that approaches
the surface with instantaneous velocity, V(t) = −db(t)/dt, defined to be positive if the bubble is
moving towards the solid surface. The coordinate z is directed positive downwards along unit vector
k from the horizontal surface.

We now consider the various forces that control the rise of the bubble and its collision with the
solid surface.

A. Buoyancy force

The buoyancy force that drives bubble rise in a fluid of density, ρ, has the form

Fb = −4

3
π R3(ρ − ρb)g k Buoyancy, (1)
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FIG. 1. Schematic representation of the bubble-surface experiment. The trajectory of the deformable bubble of radius R is
defined in terms of the position of the center of mass at z = b(t), and instantaneous velocity, V(t) = −db(t)/dt. The size of the
computational domain in modeling film drainage is taken to be: 0 ≤ r < rmax = 0.9 R.

where g is the acceleration due to gravity. The density of the bubble, ρb can be neglected since
ρb/ρ ∼ 0.001.

B. Drag force

When the bubble has attained its terminal rise velocity, the buoyancy force will be balanced
by a hydrodynamic drag force. Unless the experiments are conducted in ultra pure water,18–20 trace
impurities in the water will render the hydrodynamic boundary condition on the bubble surface to
be tangentially immobile.21–24 This condition is the same as that on a rigid solid sphere. Thus the
hydrodynamic drag force has the form

Fd = π

4
Cd Re μ R V k drag force, (2)

where the drag coefficient, Cd, can be estimated from the empirical Schiller and Naumann formula
for a solid sphere25, 26

Cd = (24/Re)(1 + 0.15 Re0.687) Schiller and Naumann drag coefficient (3)

with good accuracy for Reynolds numbers (Re = 2Rρ|V|/μ) up to 800 for spheres. The use of
Eqs. (1)–(3) gives very good agreement with the observed approach velocities of the bubbles
considered in this paper where the experimental Reynolds number Re ≤ 200.13–15

C. Inertial (added mass) force

The inertia of the fluid surrounding an accelerating bubble is characterized by an added mass.27

For a bubble of constant size in an infinite fluid medium, the associated inertial force has the form

F∞
p = 4π

3
ρ R3 Cm(∞)

dV (t)

dt
k, (4)

where the added mass coefficient, Cm(∞) = 1/2 for a sphere. However, as the bubble approaches
the flat solid surface the effective mass increases due to the presence of the surface and the inertial
force has the form:28–30

Fp = 4π

3
ρ R3

(
Cm(b)

dV (t)

dt
− 1

2
V 2(t)

dCm(b)

db

)
k Inertial added mass. (5)

This result is obtained from potential flow theory for a spherical bubble. An approximate analytic
form, with a relative error of less than 10−4, for the variation of the added mass coefficient, Cm(b),
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with bubble position, b (see Figure 1)30 is

Cm(b) = 1

2
+ 0.19222

(
b

R

)−3.019

+ 0.06214

(
b

R

)−8.331

+ 0.0348

(
b

R

)−24.65

+ 0.0139

(
b

R

)−120.7

. (6)

This provides an accurate interpolation for the monotonic variation between the value of Cm(b
= ∞) = 1/2 for a sphere far from the surface to Cm(b = R) = 0.803 when the sphere is in contact
with the surface. Note that in Eq. (5), the quantity dCm/db is negative and reflects that the variation
of the effective mass coefficient of the bubble with separation from the solid surface appears as an
effective repulsion between the bubble and the surface.

D. History force

When a sphere undergoes unsteady motion characterized by a time-varying velocity, V(t), in an
infinite fluid of dynamic shear viscosity, μ, the solution of the time dependent linearized Navier-
Stokes equation results in a force on the sphere at time, t, that is dependent on the acceleration, dV/dt,
at all times prior to t. This is known as the history or Basset force. For a sphere with a tangentially
immobile boundary condition, the history force Fh(t) has the form:31, 32

Fh = 6
√

πμρ R2

t∫
−∞

1√
t − τ

dV (τ )

dτ
dτ k History force. (7)

The assumption of the immobile boundary condition is consistent with the use of the Schiller and
Naumann formula, Eq. (3), to describe the hydrodynamic drag that determines the bubble terminal
velocity. On the other hand, if the sphere surface has a zero tangential stress boundary condition, the
magnitude of the history force is considerably smaller.32

E. Thin film drainage and surface forces

The short-ranged interaction between the bubble and the flat surface during collision is deter-
mined by the lubrication drainage of the water trapped between the rigid surface and the deforming
surface of the bubble. In addition, surface forces such as electrical double layer interaction and van
der Waals forces between the surface and the bubble can also be important if the water film becomes
sufficiently thin. An accurate, quantitative description of such interactions can be given in terms
of the Stokes-Reynolds-Young-Laplace model.33, 34 If the deformation of the bubble surface during
collision is taken to be axisymmetric, the local deformation of the instantaneous local film thickness,
h(r,t) is given by the Young-Laplace equation

σ

r

∂

∂r

(
r
∂h(r, t)

∂r

)
= 2σ

RL
− �(h(r, t)) − p(r, t) Young-Laplace, (8)

where σ is the surface tension of the bubble and the Laplace pressure of the bubble, (2σ /RL), defines
the Laplace radius RL. If the deformation of the bubble as a result of collision with the surface
is small, RL can be approximated by the radius of curvature of the bubble when it is far from the
surface. Here it is taken to be R. The disjoining pressure �(h) accounts for electrical double layer
and van der Waals interaction and p(r,t) is the pressure. The evolution of the bubble in the thin film
region is governed by the Stokes-Reynolds equation

∂h(r, t)

∂t
= 1

12μ r

∂

∂r

(
r h3(r, t)

∂p(r, t)

∂r

)
Stokes-Reynolds. (9)
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The solution of Eqs. (8) and (9) gives the pressure distribution in the film from which the lubrication
and short-ranged surface force between the surface and the bubble is found from

F f =
∞∫

0

2π r p(r, t) dr k Film drainage. (10)

The numerical solution of Eqs. (8)–(10) for the Stokes-Reynolds-Young-Laplace model has been
discussed in detail in the literature.35

III. THE BUBBLE EQUATION OF MOTION

The equation of motion of the bubble, neglecting the density of the bubble, ρb = 0, is obtained
by balancing all the point forces (Secs. II A–II E) in Sec. II: Fb + Fd + Fp + Fh + Ff = 0, or
explicitly

− 4

3
π R3ρg (Buoyancy)

+ π

4
Cd Re μ R V (Schiller and Naumann drag)

+ 4π

3
ρ R3

(
Cm

dV (t)

dt
− 1

2
V 2(t)

dCm

db

)
(Inertial/added mass)

+ 6
√

πμρ R2

t∫
−∞

1√
t − τ

dV (τ )

dτ
dτ (History)

+
∞∫

0

2π r p(r, t) dr (Film drainage) = 0, (11)

where the velocity-dependent drag coefficient, Cd, and the position-dependent added mass coeffi-
cient, Cm, are given by Eqs. (3) and (6), respectively.

As we will demonstrate in Sec. IV, although the model encapsulated by Eq. (11) will describe the
experimental terminal velocities of the bubbles, there are inherent inconsistencies and hence possible
limitations in its formulation. The inertial added mass term28–30 is obtained under the assumption
of a spherical bubble and inviscid potential flow. However, it appears that variations of the added
mass coefficient are only important when the surface of the bubble is within about one radius of the
solid surface. When the bubble is further away, the added mass coefficient is close to its value of
1/2 corresponding to a bubble in an infinite fluid. When the bubble surface is closer than about one
radius to the surface, the lubrication force will start to dominate.

The second inconsistency in Eq. (11) is that the Reynolds number corresponding to the observed
terminal velocities of the bubble can be as high as Re ∼ 200 whereby the Schiller and Naumann
expression for the drag force will be accurate. However, the expression for the history force is
derived from the linearized time-dependent Stokes equation that is strictly applicable for Re = 1. In
the absence of a better theory, we persevere with this approximation. With the benefits of hindsight
obtained through comparison with experimental data (see Sec. IV) this approximation does not
appear to give rise to significant error.

A final observation is related to the solution of the Stokes-Reynolds-Young-Laplace (SRYL)
equations, (8) and (9). They account for the film drainage force in the deformation zone defined
by r ≤ rmax, in which these two equations needed to be solved. In previous work16 that focussed
on modelling the bubble trajectory, the SRYL equations are solved in the domain 0 < r < rmax,
with rmax = 1.3 R. Although this is an obviously unphysical domain to take, it is nonetheless a
necessary assumption in order to obtain trajectories that are close to experimental observations. In
our analysis, it turns out that the need for such an unphysically large domain is due to the omission
in accounting for the variations of the added mass coefficient with separation between the bubble
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and surface.16 In our force balance model, solving the SRYL equation in the domain 0 < r < rmax

= 0.9 R provided good quantitative description of the experimental data for the bubble trajectories
and for the evolution of the film profiles. The history force was evaluated without the approximation
used in Refs. 17 and 36.

IV. COMPARISON WITH EXPERIMENTS

The experimental results of Hendrix et al.13 consist of high speed video recordings of the
position of rising bubbles of radius of around 500 μm and synchronized video recordings of the
evolution of the interference fringe patterns between the horizontal glass-water interface and the
bubble-water interface during bubble-surface collision. From the video recordings of the bubble
position, the bubble velocity as a function of time, V(t), is extracted. The evolution of the film
thickness, h(r,t), as a function of position and time can be obtained by analyzing the axisymmetric
interference fringe patterns.13–15

Initially, as the bubble approaches the surface after attaining its terminal rise velocity, the
minimum film thickness is located at the axis of symmetry, r = 0, since the bubble surface is still
spherical. However, as film drainage progresses, the bubble surface deforms with axial symmetry.
The characteristic dimple in the film then develops so that the position of minimum film thickness,
hm will then be relocated to r = rm, commonly referred to as the film barrier rim. The value of rm

also varies as the bubble approaches closer to the surface.
As the bubble approaches the solid planar surface, it starts to decelerate and eventually comes

to a halt. It then reverses direction and rebounds to move away from the surface until buoyancy
force drives the bubble back towards the surface again. This bubble-surface encounter is a series of
rebounds with decreasing amplitude until the bubble settles with a thin draining film separating it
from the surface. After a period much longer than the rebound period, the film eventually ruptures.

In Figure 2 we compare the time evolution of the experimental and predicted bubble position,
b(t) and velocity, V(t); the characteristic film thicknesses at the axis of symmetry: ho(t) ≡ h(r = 0,t)
and at the barrier rim (when it exists) where the film thickness is a minimum: hm(t) ≡ h(rm,t); and
the magnitudes of various forces in Eq. (11) that act on the bubble. In Figures 2(a)–2(c), we show
these results for a bubble with radius, R = 385 μm and in Figures 2(d)–2(f), we show the same
results for a bubble of radius, R = 630 μm. The time axes of each of the 3 figures are aligned to
the same arbitrary reference t = 0, to indicate the relative chronology of the bubble trajectory, film
thickness evolution, and the relative magnitude of the various forces in Eq. (11) at different stages
of the bubble-surface encounter.

Note that different scales are used on different parts of the time axes. For the R = 630 μm
bubble, the film between the solid surface and the bubble ruptured at t = 255 ms whereas for the
smaller R = 385 μm bubble, the video recordings terminated at 180 ms when the film is still intact.

The following observations can be made concerning the results in Figure 2:

(a) The force balance model given by Eq. (11) provides quantitatively accurate predictions of
the time variations of the position and velocity of bubble rise and subsequent collisions and
rebounds against the solid surface.

(b) Surface forces that contribute to the disjoining pressure �(h) in the Young-Laplace
equation (8) have not been included in the present model. The film rupture observed for
the R = 630 μm bubble in Figures 2(d) and 2(e), occurring at minimum film thickness of hm

∼ 0.5 μm, is due to the bubble being punctured by asperities on the solid or triggered by the
presence of hydrophobic contaminants as surface forces relevant to this system are small for
ideally smooth surfaces at this separation. A more precise cause for the rupture of the water
film that is <1 μm thick will require more detailed surface chemical analysis.

(c) The force balance model is the least accurate when the bubble is about one radius from
the surface. At this separation, the most important forces are the inertial added mass force,
Eq. (5) and the history force, Eq. (7). From the discussion at the end of Sec. III, we recognize
that the assumptions that underpin the force balance model are likely to be less precise when
the bubble is about one radius from the sphere.
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FIG. 2. A comparison of experimental (symbols) and force balance model predictions (lines) of the time variations of center
of mass positions and velocities of rising bubbles colliding with a horizontal solid surface, the film thickness at the center
ho(t), and at the barrier rim hm(t) of the bubble as well as the force components of the model at different times. (a)–(c) Results
for a bubble of radius R = 385 μm and (d)–(f) for a bubble with R = 630 μm. The points marked “A” and “B” correspond
to the first and last line in Figure 3 where film profiles during the first impact are shown.

(d) The dimpling phenomena, observed as the bifurcation of the film thickness into ho(t) and hm(t)
as well as the rebound positions and velocities are predicted quite accurately by the model.
This highlights the important role of the history force, Eq. (7) and the film drainage force,
Eq. (10) that are the dominant terms in the force balance model in the bubble bouncing regime
at times t ≥ 10 ms. See Figures 2(c) and 2(f) and Sec. V for further discussions.

(e) In our model, the simple addition of the Schiller-Naumann drag force given by Eq. (2) and
the lubrication force given by Eq. (10) has in theory counted the pressure contribution from
the front part of the bubble twice. However, as can be seen in Figures 2(c) and 2(f), the
magnitude of the Schiller-Naumann drag force is significant when the bubble is far from the
solid surface where the bubble velocity is high. In the same regime, the lubrication force is
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negligible. As the bubble approaches the surface and slows down, the Schiller-Naumann drag
force decreases rapidly and contemporaneously the magnitude of lubrication force increases
rapidly as the bubble-surface separation decreases. Thus the “double counting” only occurs
over a small separation or time interval.

(f) The experimentally observed terminal velocity of ∼13 cm/s for the 630 μm radius bubble
is consistent with the tangentially immobile hydrodynamic boundary condition at the bubble
surface, like that on a solid sphere. This value for the terminal velocity is consistent with the
prediction from the Schiller-Naumann formula. In contrast, for bubbles of the same size in
ultra clean water obeying the tangentially mobile boundary condition, the terminal velocity is
expected to be ∼32 cm/s.18, 19 The experimental reason for the difference is that the water in
the experiments we considered was open to the laboratory atmosphere and that is sufficient
for trace impurities to be adsorbed on the bubble surface to change the nature of the boundary
condition.

In Figure 3, we compare the experimental film profile deduced from interferometry data and
predictions of the force balance model during the first approach of the bubble to the surface in
between the time marked by “A” and “B” in Figure 2. There is also good quantitative agreement
in the observed and predicted film profiles in Figures 3(a) and 3(b). The hydrodynamic pressure,
p(r,t), profiles that contribute to the film drainage force in the same time interval are shown in
Figures 3(c) and 3(d). We see that when the pressure exceeds the Laplace pressure, 2σ /R, of the
bubble, the film dimple develops with the minimum thickness, hm, of the film located at the barrier
rim, rm, rather than at the center of the film at r = 0. As the bubble retracts from the surface, between
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FIG. 3. Comparison of experimental (symbols) and force balance model predictions (lines) of the film profile for the
(a) R = 385 μm and (b) R = 630 μm bubble during the initial approach indicated between the points marked “A” and “B” in
Figure 2. The corresponding pressure profiles are shown in (c) and (d) relative to the Laplace pressure of each bubble: 2σ /R.
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12 and 18 ms in each case, the pressure becomes negative around the barrier rim, signifying an
attractive hydrodynamic contribution that opposes the separation of the bubble from the surface.

V. DISCUSSION AND CONCLUSIONS

It is instructive to quantify in more detail the effect of the history force and the variable added
mass of the bubble on the bubble velocity and on the film profiles. In Figure 4, we compare the effects
on the bubble velocity when either the history force is omitted or when the separation variation of
the effective mass coefficient, Cm, is omitted, that is, assumed to have the constant value Cm = 1/2.
In these comparisons, all other model parameters are kept constant.

In Figure 4(a) we can see that the failure to account for the effective mass, Cm increasing from
0.5 to 0.8 as the bubble approaches the surface means that the bubble velocity becomes too high
because the increase in inertia has been omitted. On the other hand, with the omission of the history
force that helps the bubble “remember” how fast it has been travelling in the past, the approach
velocity becomes lower. However, since the model in Eq. (11) has inherent approximations in the
history force and the variation of Cm with separation, it still overestimates the magnitude of the
bubble velocity on approach to the surface.

The effect of omitting the history force is quite marked in affecting the magnitude and period
of the bubble rebound velocity as shown in Figure 4(b). During this rebound phase, the magnitude
of the velocity is small and therefore the history force obtained from the linearized Stokes equation
should become more accurate. Thus the use of a mathematically incorrect simplification17, 36 to treat
the history force is not recommended.

Consistent with the above observation, we see in Figure 5(a) that omission of the history force
results in large errors in the predicted film thickness at the center of the film: ho(t) = h(r = 0,t), and
at the barrier rim: hm(t) = h(r = rm,t). The assumption that the effective mass coefficient is constant:
Cm = 1/2 has a less marked effect on the film profiles seen in Figures 5(a) and 5(b) in that the onset
of dimple development and the height of the dimple are quantitatively different from the experiment.

In the original model of Klaseboer et al.,16 the effective mass coefficient was taken to be a
constant, Cm = 1/2. We see in Figure 6 that this simplification can be compensated by choosing
the size of the integration domain of the Stokes-Reynolds-Young-Laplace equation to be 1.5 times
the bubble radius: rmax = 1.5 R. Although such a choice does not have a sound physical basis, it
can actually produce quite a good fit to the measured bubble velocity (Figure 6(a)). However, the
predictions of the characteristic film thickness ho(t) = h(r = 0,t) and hm(t) = h(r = rm,t) are not as
good as the present model in Eq. (11) (Figure 6(b) and cf. Figure 5(a)). Physically, we must have rmax

≤ R and the choice rmax = 0.9 R provided good agreement with experimental data and the difference
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FIG. 4. A comparison of effects on the bubble velocity, V(t), as a result of omitting the history force, Fh, or the separation
dependence of the added mass coefficient, Cm, during (a) the approach phase and (b) the bounce phase of the bubble: o o o
(blue): experimental data, —— (red): present model according to Eq. (11), . . . . (pink): omitting the history force, and - - -
(green): using a constant added mass coefficient, Cm = 1/2.
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using a constant added mass coefficient, Cm = 1/2, and (b) the film profile, h(r,t): symbols are experimental data, and lines
are predictions using a constant added mass coefficient, Cm = 1/2.

between the asymptotic parabolic shape of the water film is still close to the actual surface of the
spherical bubble, see Figure 1.

In our model, the variation of the added mass of the bubble with separation from the flat solid
surface was taken to be the form given by a sphere under inviscid potential flow. Also, we have
only employed the Basset expression, Eq. (7), as history force. We note from Figures 2(c) and 2(f)
that this force is important only in the transition regime when the bubble first became close to the
surface as it decelerates rapidly from the terminal velocity. Thereafter, it is the buoyancy force and
the lubrication force that play the dominant role in determining the bubble trajectory. Although a
more complex expression for the history is available,37 the limited role of the history force probably
justifies the use of the simple Basset expression.

We have constructed a force balance model to analyze the rise and collision of a bubble with a
solid surface that can account quantitatively for phenomena on the scale of the bubble size (∼1 mm)
and on a much smaller scale of the film drainage and bubble deformation (∼1 μm). In Figures 2(c)
and 2(f), we see that on approaching the surface the drag force (a bubble size ∼1 mm phenomenon) is
large, whereas the film drainage force (a film size ∼1 μm phenomenon) is small. But during bubble
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of the integration domain of the Stokes-Reynolds-Young-Laplace equation to rmax = 1.5 R. (a) Bubble velocity and (b) film
thickness at the center and at the rim.
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collision and rebound, when the bubble velocity is small, the drag force is unimportant whereas
the film drainage and bubble deformation are dominant. Although the model contains obvious and
necessary simplifications, it is successful in capturing the main physics of the problem and handling
the transition of phenomena on very different length scales. There is potential to extend the current
approach to model bubble-wall experiments that study oblique collisions and bubble sliding motion
along the wall.38, 39 It can also serve as a useful complement to full-scale direct numerical simulation
approaches that may find it challenging to have to resolve physical processes accurately over such a
large range of length scales.
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6 F. Suñol, and R. González-Cinca, “Rise, bouncing and coalescence of bubbles impacting at a free surface,” Colloids Surf.
A: Physicochem. Eng. Aspects 365, 36 (2010).

7 D. Kosior, J. Zawala, and K. Malysa, “Influence of n-octanol on the bubble impact velocity, bouncing and the three-phase
contact formation at hydrophobic solid surfaces,” Colloids Surf. A: Physicochem. Eng. Aspects 441, 788 (2014).

8 R. Zenit and D. Legendre, “The coefficient of restitution for air bubbles colliding against solid walls in viscous liquids,”
Phys. Fluids 21, 083306 (2009).

9 D. Legendre, R. Zenit, and J. R. Velez-Cordero, “On the deformation of gas bubbles in liquids,” Phys. Fluids 24, 043303
(2012).

10 B. V. Derjaguin and M. Kussakov, “Anomalous properties of thin polymolecular films,” Acta Physicochim. URSS 10, 26
(1939); Prog. Surface Sci. 40, 26 (1992) (Reprinted).

11 A. Sheludko, “Thin liquid films,” Adv. Colloid Interface Sci. 1, 391 (1967).
12 L. R. Fisher, D. Hewitt, E. E. Mitchell, J. Ralston, and J. Wolfe, “The drainage of an aqueous film between a solid plane

and an air bubble,” Adv. Colloid Interface Sci. 39, 397 (1992).
13 M. H. W. Hendrix, R. Manica, E. Klaseboer, D. Y. C. Chan, and C.-D. Ohl, “Spatiotemporal evolution of thin liquid films

during impact of water bubbles on glass on a micrometer to nanometer scale,” Phys. Rev. Lett. 108, 247803 (2012).
14 R. Manica, M. H. W. Hendrix, R. Gupta, E. Klaseboer, C.-D. Ohl, and D. Y. C. Chan, “Effects of hydrodynamic film

boundary conditions on bubble-wall impact,” Soft Matter 9, 9755 (2013).
15 R. Manica, M. H. W. Hendrix, R. Gupta, E. Klaseboer, C-D. Ohl, and D. Y. C. Chan, “Modelling bubble rise and interaction

with a glass surface,” Appl. Math. Model. 38, 4249–4261 (2014).
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