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Abstract—It is a challenge to precisely predict hand grasps
based on EMG signals given practical scenarios, due to its inher-
ent nature. This paper proposes a solution to tackle the challenge
with a force-driven granular model (FDGM).The problem of n-
class hand grasp classification has been represented as force-
based granular modelling, in which a number of granules are
constructed for each class relying on the synchronically captured
grasping force. A rule based mechanism is formed for granule
generation of each class, and a cross-testing algorithm is proposed
to optimise the number of granules. The experiment based on 8-
case grasp recognition reveals that the proposed method performs
better in terms of motion recognition accuracy of multiple
EMG channel combination, and is more insensitive to signal
interferences. In comparison with other rules of information
granulation, it is confirmed that the force-driven rule is of
the most efficiency with comparable classification accuracy. The
research outcomes pave the way for real-time prediction of grasps
and corresponding force in human-centred environments.

I. INTRODUCTION

Surface EMG based grasp recognition can be utilised to

facilitate smart prosthetic hand control. Pattern recognition has

achieved high accuracy in the classification of hand move-

ments, however suffering from some practical issues, and one

of which is to distinguish hand grasp with dynamic grasping

force. Dynamic muscle contraction is usually considered as

a negative factor for EMG based hand motion recognition.

Till now, the only solution is to train classifiers by data sets

comprising varying muscle contraction levels.

Pattern recognition classifies repeatable patterns of EMG

activities into discernible classes. The EMG pattern of a grasp

at different force levels is somewhat inconsistent, and therefore

it presents challenges to pre-trained classifier [1]–[5]. Dynamic

muscle contraction significantly influences pattern recognition

based prosthetic hand control. As suggested by Scheme et

al. [1], the presence of contractions from unseen force levels

increased the error considerably by greater than 32%. To

counteract the severe degradation, they recommended to form

training sets comprising all force levels, which is consistent

with the solution proposed by Al-Timemy et al., [2]. Besides,

traditional EMG feature varies with muscle contraction level,

and He et al., [3] resorted to identify new features that

immunise to muscle contraction.

The paper proposes a supplementary solution to tackle

grasp recognition by means of a granular model, where
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dynamic muscle contraction is considered. The proposed gran-

ular model is originated from the the concept of granular

computing (GrC). GrC solves problems via making use of

granules, i.e. groups, classes or clusters of a universe [6]. GrC

is very essential to the problem solving strategy of human

being, and could generate significant impact on the design of

intelligent systems. At present, granular computing is more

a theoretical perspective than a coherent set of methods or

principles. This paper verifies the impact of GrC in the field

of pattern recognition with a specific case study: EMG based

grasp recognition.

Recent years, GrC has started to penetrate into the field

of machine learning for classifier development. Liu et al. [7]

proposed a granular computing classification algorithm based

on distance measurement, where granules are constructed

according to geometric shapes. Roh et al. [8] proposed a

methodology for designing granular fuzzy classifiers based

on information granularity. These classifiers split the entire

input space into a collection of subspaces. Both studies aim

to design whole classifiers based on the concept of informa-

tion granulation to achieve equivalent or better performance.

However, without sufficient comparison and theoretical proof,

the performance is still in doubt. More meaningfully, infor-

mation granulation be employed to extend any conventional

classifiers, like linear discriminant analysis (LDA) and support

vector machine (SVM). In 2004, Yuchun et al. [9] built a

granular SVM classifier by building a sequence of information

granules in advance. Not explicitly using the concept of GrC

or information granulation, Zhu et al. [10] published a paper

on Subclass Discrimination Analysis, where subclass (granule)

generation and LDA classification are theoretically merged.

As far as information granulation is concerned for pattern

recognition, two aspects should be balanced: classification

accuracy and model training complexity, which arise two

basic questions. Firstly, how to construct granules from a

universal data set? Secondly, how to determine the number

of granules? A general criterion for granule construction is to

draw elements with indistinguishability, similarity, proximity

or functionality together, while to diffuse elements to different

granules according to their distinguishability, dissimilarity

and inconsistence [11]. Specifically, researchers tend to use

clustering based algorithms, such as (Nearest Neighbor) NN

[10], k-means [12], [13], hierarchical clustering [14] and

spatial partition trees [15] to construct granules. The number of

granules is closely related to the complexity of model training

and classification accuracy. Intuitively, model training com-

plexity would increase with the number of granules. Therefore,
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(a) Original data set
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(b) LDA classification result

Fig. 1: The classification result by a LDA classifier
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(a) The result of k-means granula-
tion
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(b) Classification with granular
model

Fig. 2: The classification result by a granular model based

LDA classifier using k-means for granulation

solutions should be provided to determine the number of

granules in a specific application.

The remaining part of this paper is organised as follows.

Section II generalises the granular model for pattern recog-

nition and provides an experiment with a synthetic data

set. Section III describes the FDGM. Section IV proposes

an algorithm to optimise the number of granules. Section

V demonstrates the protocol for data set collection, feature

extraction and the implementation of FDGM. Section VI

discloses the experimental results. Section VII concludes the

paper.

II. A GRANULAR MODEL FOR PATTERN RECOGNITION

The granular model is defined in this section, and con-

fined to the following notation. Given a data set D of K

training samples (patterns) from l separable classes: D “
tpxk, ykq, k “ 1, ...,Ku, where xk P R

n and yk labels xk

to one of classes in yk P Ωc “ tc1, c2, ..., clu. A traditional

classifier is a function: f : x Ñ Ωc that assigns a class

label c P Ωc to a pattern described by a set of attributes

x “ tx1, x2, ..xnu P R
n.

According to the theory of information granulation, one

class can be decomposed into m subclass granules. Rules

for granular decomposition can be customised according to

different applications. In despite of any granulation rule, the

granular model maps the original data set to a new one with

more classes, also called subclass granules. The new data set

can be denoted by D
1 “ tpxk, y

1
kq, k “ 1, ...,Ku, where y1

k

labels xk to one of l ˆ m classes in Ω1
c “ tΩc1,Ωc2, ...,Ωclu

and Ωci “ tci1, ci2, ..., cimupi “ 1, 2, ..., lq is a set of granules

decomposed from the entirety ci. The relationship between cij

and ci can be denoted by cij ĺ ci, saying cij is a granule of

ci. Accordingly, a classifier f 1 : x Ñ Ω1
c

can be trained to

assign a class label c1 P Ω1
c to any input pattern x. Therefore,

the original m-class classification problem upgrades to a lm-

class problem. After obtaining the prediction result from f 1, an

inverse procedure should be applied to c1 using the relationship

cij ĺ ci. cij is a refinement of ci and ci is a coarsening

of cij [16]. It can be described by a coarsening function,

ci “ coarsenpcijq.

As described above, the granular model solves a l-class clas-

sification problem by upgrading it to a lm-class classification

problem, and m granules are generated for each class. This

paper utilises a synthetic data set to demonstrate the advantage

of the granular model. The data set was randomly generated

in accordance of 2-dimensional normal distribution with the

same covariance matrix Σ “
“

0.5 0
0 0.5

‰

but different mean

vectors. Half of samples labeled as c1 are randomly generated

with the mean vector µ “
“

0.5
0.5

‰

and the other half are under

µ “
”

´0.5
´0.5

ı

. These samples in class c1 are noted by circles in

Fig. 1(a). Samples labeled as c2 are generated by µ “
“

0.5
´0.5

‰

and µ “
“

´0.5
0.5

‰

in half, represented by squares in Fig. 1(a).

Fig. 1(b) demonstrates the self-classification result (54%

accuary) using LDA classifier, and the incorrectly classified

sample are denoted by the symbol ‘ˆ’. This result indicates

that LDA is not able to solve the classification problem with

the given data set, because it is not linearly separable. Fig.

2(a) shows the granulation result for each class by k-means

clustering algorithm, where the number of granules is set to 2.

Accordingly, class c1 is divided into two granular classes c11
and c12, while c2 is separated into c21 and c22. In Fig. 2(a),

blue circles, red circles, blue squares and red squares represent

the samples in c11, c12, c21 and c22, respectively. Obviously,

the original 2-class classification problem becomes 4-class

problem after applying the granular model. Consequently, the

LDA is trained to predict one of four granular classes c11,

c12, c21 and c22. Finally, the coarsening function is applied

to recover the prediction results to 2 classes c1 and c2. As

demonstrated in Fig. 2(b), the dividing border divides the space

into four parts, and achieves better self-classification accuracy

of 64.88%.

III. FORCE DRIVEN GRANULAR MODEL

Basic issues in information granulation involves two as-

pects: the construction and the computation of granules. For

the construction of granules, granular models should be firstly

determined to check if two elements should be gathered to

the same granule. Traditional clustering algorithms, like NN,

k-means algorithm and Gaussian mixture model (GMM), can

be used as the granular model. They assemble homogenised

samples into a granule based on their similarity and geometry

distance. However, these models are lack of semantic inter-

pretation towards the generated granules. Therefore, FDGM

is proposed in this paper to compensate its disadvantage

in the case of grasp recognition. The FDGM employs rule

based mechanism for the construction of granules as described

below.



The recorded data set contains two parts: EMG signal and

force signal. The observations in class i is indicated by a set

tFi1,Fi2, ...,Fini
u, where

Fij “ tfij ,xiju, (1)

where fij is the force variable and xij “ txi1, xi2, ...xinu is

the EMG feature vector. xij can be assigned into K different

granules by a crisp rule as follows,

fij ´ fpi,minq ď s ñ xij P gi1, (2)

pk ´ 1qs ă fij ´ fpi,minq ď ks ñ xij P gik (3)

and

fij ´ fpi,minq ą pK ´ 1qs ñ xij P giK , (4)

where gik is the kth granule, fpi,minq is the minimum force

for the observations in class i, and s “
fpi,maxq´fpi,minq

K
,

where fpi,maxq is the maximum force for class i. As a result,

EMG feature vectors in a granule represents the same range of

grasping force. In the granule of gik, the bigger value k is, the

larger grasping force being reflected by the EMG feature. It

is the semantics of the granule, which paves the way of force

estimation in our future studies.

IV. DETERMINATION OF THE NUMBER OF GRANULES

The most convenient criterion for the selection of the

optimal number of granules is the leave-one-out-test, using

all but one sample for training and test the sample left

out. It is a direct solution, but computationally expensive,

especially when the number of samples (n) and classes (ml)

are large. Therefore, the 10-fold-cross-test is utilised in this

study instead.

For each possible value of M , we implement 10-fold-cross-

test to obtain the classification accuracy RM to obtain the

optimal value Mo by solving the following problem

Mo “ argmax
M

RM , (5)

and the proposed algorithm is described in Algorithm 1.

V. DATA CAPTURING AND SIGNAL PROCESSING

Traditional EMG based grasp recognition involves several

important issues: 1) EMG data set recording, 2) EMG feature

extraction, 3) classifier training, and 4) system evaluation. Data

set recording is to record EMG signals that reflect diverse

hand grasps. EMG features are extracted from EMG signals to

reduce its randomness and highlight the distinguishability and

similarity among EMG patterns. Classifier training functions

to optimise the coefficients according to the training data set.

System evaluation is to investigate the performance of a tuned

system, mainly on the accuracy and stability. This paper aims

to improve the performance of a grasp recognition system,

in terms of the accuracy and stability. Sensitivity analysis is

utilised to evaluate system stability by considering some very

practical issues, such as power line noise and white gaussian

noise interferences.

Algorithm 1: Determination of the number of granules

Initialization: Ro “ 0,Mo “ 1;

for M “ 1 to N a do

Generate the 10-fold-cross-test indices;

for i “ 1 to 10 do

Training data set Xi generation ;

Testing data set X̄i generation ;

Construct granules for each class, and form a

new training set X1
i;

LDA classifier training using the set X1
i;

Obtain the testing accuracy Ri via testing Xi;

end

RM “ 1

10

ř

10

i“1
Ri;

if RM meet the customised convergence condition

then

Mo “ argmaxM RM ;

end

end

aThe maximum number of granules. It is determined by the time complexity
of the prediction algorithm. The value is set to 80 in experiment to meet the
real-time requirement for EMG based grasp prediction.
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Fig. 3: 16-channel electrode configuration on the forearm.

It has been pointed out that muscle contraction could

become a negative factor for a EMG based pattern recognition

systems [1]–[5], if it is not properly sorted. We captured EMG

signal together with the grasp force during the phase of data

set acquisition. Therefore, force signal can be utilised as an

additional information in the classifier training stage, though

only EMG signal is used for testing late on.

A. Data collection

A force sensor, LUD-050-015-S*C01 (Loadstar sensors,

US), was used to measure the grasping force. The sensors’

capacity and accuracy are 50 lb (22.68 kg) and 0.25%,

respectively. A customised software is designed to obtain force

data sampled at 25 samples/sec. A customised sEMG signal

acquisition system was utilised to capture EMG signals from

the forearm, as described in our previous work [17]. The EMG

device owns 16 bi-polar channels with 3000 signal gain, 1

kHz sampling frequency and 12 bits ADC resolution. sEMG

signals were restricted between 10 Hz and 500 Hz by a band



Fig. 4: Eight types of grasps

pass filter and the power line noises were filtered by a notch

filter in hardware. All the electrodes were evenly distributed

without muscle positioning but covered most forearm muscles.

To the best of our knowledge, it was the first attempt to use

pinch force information to improve hand motion recognition

accuracy, where evenly distributed EMG electrode configu-

ration with 16 EMG channels was utilized, as demonstrated

in Fig. 3. It is not always a right choice of using large

number of EMG channels, mainly because of limited space

and high cost, although it is very likely to provide natural,

reliable myoelectric control via increasing EMG channels

[18]. Young, etc., [19] and Li, etc. [20] presented that four

to six channels were sufficient for pattern recognition based

prosthetic manipulation. Thus, our experiments also consider

the use of less numbers of EMG channel, 8-channel, 4-channel

and 2-channel. When we talk about using 8-channel, channel

1 to 8 are selected. In the case of 4-channel, the 1st, 3rd,

5th and 7th channel are selected, while channel 1 and 5 are

selected in the case of 2-channel.

Five subjects were employed to implement 8 types of grasps

towards an object (i.e. the force sensor), as can be seen in Fig.

4. For each grasp, the subjects were asked to follow a changing

given force that is linearly increases to 60% maximal voluntary

contraction (MVC) in 10 seconds and decreases to 0% MVC

in the next 10 seconds. This procedure was repeated 3 times

for each grasp.

B. Feature Extraction

Sliding window technique was utilised to extract the feature

from EMG signal with a 200 ms window size and 40 ms incre-

ments. Consequently, the computing time for feature extraction

and motion prediction should be less than 40 ms. Four stable

time domain features, root mean square (RMS), mean absolute

value (MAV), zero crossings (ZC) and waveform length (WL)

[5] and 4th-order aggressive regression (AR4) coefficients,

were employed. These features has been widely accepted as

the robust combination for EMG based motion recognition.

Figs. 5(a) to 5(d) demonstrate an example of the force signal,

raw EMG signal and the EMG features.

C. Information Granulation and Classification

This paper applied 10-fold-cross-test to evaluate the perfor-

mance of FDGM via testing the data set from every subject
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Fig. 5: Force signal, EMG signal and feature demonstration

by the following steps.

‚ Select 9 of 10 all observations as the training data set.

‚ Apply FDGM to generate m granules for each class.

‚ Train the Fisher’s LDA classifier to discriminate 8 ˚ m

classes.

‚ Predict class labels at the granular level from the remain-

ing observations.

‚ Use the coarsening function to recover the predicted

labels into 8 classes.

‚ Calculate the classification accuracy.

Above procedure was repeated 10 times to get the average

accuracy.

VI. RESULT

Three experiments were taken place to evaluate the per-

formance of FDGM in EMG based grasp recognition. The

first experiment compared traditional LDA with FDGM-based

LDA in terms of classification accuracy. The second experi-

ment evaluated the robustness of FDGM towards EMG signal

interferences. The third experiment compared FDGM with

other clustering based granular models in terms of accuracy

and efficiency.

A. LDA vs FDGM-based LDA

The first experiment is to evaluate the effectiveness of

FDGM in EMG based grasp recognition on the basis of con-

ventional LDA classifier. The number of granules is optimised

via Algorithm 1, where N is set to 80 to satisfy the real-

time performance in practical grasp recognition applications.

Besides, it also ensures that each granule would contain

sufficient samples for training. The convergence condition of

Algorithm 1 is determined by

∣

∣

∣

řM´5

M´9
´

řM

M´4

∣

∣

∣
ă 0.0001,



TABLE I: The comparison of FDGM-based LDA and conventional LDA in grasp recogntion (Error Rate %)

No. of Channels 16 8 4 2

Methods LDA LDA FD (Mo) LDA LDA FD(Mo) LDA LDA FD(Mo) LDA LDA FD(Mo)

Subject 1 0.65 0.07(33) 2.46 0.61(47) 12.74 8.47(77) 27.9 23.2(55)

Subject 2 2.75 1.03(18) 6.86 3.44(31) 12.33 7.31(77) 26.98 23.63(74)

Subject 3 0.74 0.14(59) 2.03 0.55(63) 9.74 5.17(76) 23.81 19.63(46)

Subject 4 0.57 0.13(18) 1.94 0.95(67) 6.26 4.55(30) 20 18.46(67)

Subject 5 2.69 1.46(24) 6.95 3.37(62) 13.14 8.04(69) 37.77 34.53(13)
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Fig. 6: The change of the error rate alone with the number of

granules (Subject 1)

which indicates that the accuracy becomes stable. The experi-

ment also considers different combinations of EMG channels,

covering different practical situations where large number of

electrodes can not be placed due to limited remaining space

after amputation. Table I shows the comparison between LDA

and FDGM-based LDA (LDA FD) in terms of classification

accuracy. Clearly, FDGM-based LDA outperforms LDA in

achieving lower error rate. Taking the advantage of FDGM, the

average error is reduced by 0.91%, 2.26%, 4.13% and 3.40%

in 16-channel, 8-channel, 4-channel and 2-channel cases.

Moreover, the experiment also reveals that Algorithm 1

is able to optimise the number of granules, and provide an

optimised one (Mo). More commonly, it is also found that

the error rate decreases along with the number of granules,

as displayed in Fig. 6. The optimised number of granules are

marked by red stars. The result also discloses that the error can

always reduce dramatically by using several granules (less than

10), and then become relatively stable (very slow decrease).

Based on the above findings, the left experiments apply FDGM

by constructing 10 granules for each class.

B. Sensitivity Analysis

This experiment is to evaluate the stability of FDGM by

means of adding synthetic white Gaussian noise (WGN) and

50Hz power line noises to the captured EMG signals. The
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Fig. 7: The comparison of FDGM-based LDA and LDA with

WGN interferences
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Fig. 8: The comparison of FDGM-based LDA vs LDA with

power line noise interferences

intensity of Gaussian are measured by signal to noise ratio

(SNR) with the unit of dB. 10 dB, 0 dB and -10dB were

tested. Fig. 7 demonstrates the average error across 5 subjects

in four EMG channel combinations and three noise levels. It

reveals that the FDGM is insensitive to WGN. All comparison

groups show that the FDGM-based LDA performs better than

conventional LDA, except when -10dB noise and 2-channel

case are considered. It is possibly because the limited EMG

information is overwhelmed by the noise. Similarly, 50 Hz

power line noise was added to EMG signals with three levels

of peak to peak voltages(0.08mv, 0.16mv and 0.32mv), and

the result shows that FDGM is also robust towards power line

noise, as seen in Fig. 8.

C. FDGM vs other clustering based granular models

This experiment compares FDGM with other clustering

based granular models in terms of computing complexity
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Fig. 9: The comparison of granular models

and classification accuracy. The comparison group includes

NN, k-means and GMM clustering algorithms. In terms of

the training efficiency (Fig. 9(a)), FDGM requires the least

training time among all the algorithms. Taking 10 granules as

an example, the training time for FDGM is less than 0.5 s,

while NN, k-Means and GMM based granular model required

about 5 s, 1.5 s and 5 s for training, respectively. In terms of the

classification accuracy, four types of granular models achieved

similar classification accuracy in 8- or 16-channel cases, while

GMM outperformed the others in the 4-channel case and k-

means achieved the best in the 2-channel case. Taking both

aspects into account, FDGM is very likely to achieve the best

accuracy when the training time is constrained to less than 1

second. Moreover, it is worth to be noted again that FDGM

owns better semantic interpretation than the others, and can

be further exploited to estimate grasp force via checking the

prediction result at the granular level.

VII. CONCLUSION AND FUTURE WORK

FDGM is proposed in this paper to enhance the performance

of EMG based grasp recognition. The proposed model utilised

force information to implement the construction of granules

during the training stage. Experimentally, this paper proved

that 1) FDGM-based LDA is able to increase EMG based grasp

recognition accuracy in comparison with conventional LDA;

2) FDGM-based LDA is insensitive to some practical EMG

signal interferences; 3) FDGM is of the best training efficiency

when compared with NN, k-means and GMM based granular

models; 4) FDGM-based LDA shows a decreasing tendency

along with the increase of granule number in a specific range;

5) the error decrease is more profound when the number

of granules was less than 10; 6) 10 can be considered as

the reference granule number in other similar studies, which

could balance the accuracy and computation cost. Theoreti-

cally, FDGM emphasises the significance of semantics in the

construction of granules, and thus the classification result at

granular level could provide additional information. In our

case, the predicted result contains the force information, and

thus can be further extended to the application of grasping

force estimation.
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