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ABSTRACT 

While there are no known analytic solutions for force-free fields in toroidal coordinates, with 
a reasonable boundary condition it is possible to find a solution for the surface field and, with 
a restriction on the form of the field, to the interior of the torus as well. 
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Introduction 

In topology, a torus is a surface of genus one, meaning it has one hole, and the relevant 

question here is whether it is possible for the surface of a torus to have on it a non-singular 

force-free magnetic field, meaning one that does not vanish at any point on the surface.  Such 

a field satisfies the force-free magnetic field equation ∇ × 𝑩 = 𝛼𝑩.  Arnold1 has shown that 

for force-free magnetic fields the field lines will lie on tori provided the field is non-singular 

and a is not constant.  In addition, a theorem by Hopf tells us that that the torus and the Klein 

bottle are the only smooth, compact, connected surfaces without boundary allowing a vector 

field without a singularity.2   

 

It is worth stating the Poincaré-Hopf theorem somewhat more formally: If a smooth, compact, 

connected surface S has on it a vector field with only isolated zeros, then its Euler 

characteristic 𝜒(𝑆) is an appropriate sum of the index of each zero.  Any closed orientable 

surface is topologically equivalent to a sphere with p-handles and Euler characteristic  

𝜒(𝑆) = 2 − 2𝑝. 

 

What the Poincaré-Hopf theorem states is that only surfaces with Euler Characteristic zero 

can have a vector field which is nowhere zero.  Only the torus and Klein bottle have Euler 

characteristic zero.  Since real Klein bottles in 3-dimensional space cannot exist, only the torus 

is relevant. 

 

Below it will be shown that there is a non-singular force-free magnetic field restricted to the 

surface of a torus, and under a restriction on the form of the field, to the interior as well. 

 

With regard to force-free magnetic fields in plasma physics, where the condition for plasma 

equilibrium is given by (∇ × 𝑩) × 𝑩 = ∇𝑝, where p is the plasma pressure, the magnetic field 
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will be force-free if ∇𝑝 = 0.  Force-free means that the "self-force" or Lorentz force vanishes.  

Force-free magnetic field configurations are difficult to find because (∇ × 𝑩) × 𝑩 = 0 is a 

nonlinear equation.  The plasma 𝛽 is defined as the ratio of the plasma pressure to the 

magnetic pressure 𝑝!.  The force-free approximation is valid for "low-beta" plasmas. 

 

Toroidal Coordinates and the Force-Free Relations 

Solving for an exact solution to the force-free magnetic field equations in toroidal coordinates 

is a difficult problem.  An extensive history and the approaches used to solve both the exterior 

and interior toroidal problem has been given by Marsh.3  In particular, for the interior problem 

no exact solution is known and one obtains a first order differential equation for 𝛼, which can 

most likely only be dealt with by numerical methods.   

 

There are numerous definitions for toroidal coordinates, and the one used here is shown in 

Fig. 1 

 
Figure 1. Toroidal coordinates.  Note that 𝑎! = 𝑅! − 𝑟!. 

 

The relation between rectangular coordinates and toroidal coordinates is given by 
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𝑥 =
𝑎	sinh𝜇	cos𝜙
cosh𝜇 − cos𝜂 ,				𝑦 =

𝑎	sinh𝜇	sin𝜙
cosh𝜇 − cos𝜂 				𝑧 =

𝑎	sin𝜂
cosh𝜇 − cos𝜂. 

                          (1) 

The metric coefficients for the coordinates are then 

ℎ" = ℎ# =
𝑎

cosh𝜇 − cos𝜂 ,				ℎ$ =
𝑎	sinh𝜇

cosh𝜇 − cos𝜂. 

                          (2) 

In toroidal coordinates the force-free magnetic field equation, ∇ × 𝑩 = 𝛼𝑩, yields the 

following three equations 

ℎ#𝐵# = −
1
𝛼ℎ$

𝜕"(ℎ$𝐵$), 

ℎ"𝐵" =
1
𝛼ℎ$

𝜕#(ℎ$𝐵$), 

𝜕"(ℎ#𝐵#) − 𝜕#(ℎ"𝐵") =
𝛼ℎ#
sinh𝜇 (ℎ$𝐵$). 

                          (3) 

These equations are very general and are applicable to all force-free fields in toroidal 

coordinates. 

 

The divergence of B is given by   

∇ ⋅ 𝑩 =
1

ℎ"ℎ#ℎ$
[𝜕"(ℎ#ℎ$𝐵") + 𝜕#(ℎ$ℎ"𝐵#) + 𝜕$(ℎ"ℎ#𝐵$). 

                          (4) 

Imposing axial symmetry (𝜕$𝐵$ = 0) and the requirement that ∇ ⋅ 𝑩 = 0 results in 

𝜕"(ℎ#ℎ$𝐵") +	𝜕#(ℎ$ℎ"𝐵#) = 0. 

                          (5) 

This means that 𝛼 is only a function of ℎ$𝐵$; that is, 𝛼 = 𝛼(ℎ$𝐵$).  The force-free relation 

also implies that ∇𝛼 ⋅ 𝑩 = 0.  Since 𝛼 is not a function of 𝜙 by symmetry, this in turn implies 

that  
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𝜕# 	𝛼 = −
𝐵"
𝐵#
𝜕"𝛼. 

                          (6) 

Combining Eq. (6) with Eqs. (3) yields the differential equation, 

𝜕" F
1
ℎ$

𝜕"(ℎ$𝐵$)G + 𝜕# F
1
ℎ$

𝜕#(ℎ$𝐵$)G +
𝜕"𝛼
𝛼ℎ$

F
𝐵"
𝐵#
	𝜕#(ℎ$𝐵$) − 𝜕"(ℎ"𝐵")G

+
𝛼%ℎ#
sinh𝜇 (ℎ$𝐵$) = 0. 

                          (7) 

This equation leads to an intractable equation for 𝛼, but will be simplified by imposing an 

additional restriction on 𝐵" as discussed below.  

 

Boundary Conditions 

The cylindrically symmetric Lundquist solution to the force-free field equations is shown in 

Fig. 2.  The Lundquist solution4 is obtained by restricting 𝛼 to a constant and further restricting 

the magnetic field to the form 𝑩 = [0, 𝐵$(𝑟), 𝐵&(𝑟)].   

 

The field equations will then give the solution 𝑩 = 𝐴'[0, 𝐽((𝛼𝑟), 𝐽'(𝛼𝑟)], where J0 and J1 are 

Bessel functions and 𝐴' is a constant. 
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Figure 2.  The Lundquist solution.  The figure is drawn so that Bz = J0(a a) = 0 on 
the cylinder r = a. 

 

If one chooses to apply the solution 𝑩 = 𝐴'[0, 𝐽((𝛼𝑟), 𝐽'(𝛼𝑟)] in a cylindrical region D 

bounded by 𝜕D (as shown if Fig.2) such that 𝐽'(𝛼𝑎) = 0, the solution matches smoothly to an 

external field given by 𝑩 = [0, (𝑎𝐴'/𝑟)	𝐽((𝛼𝑎),0] and no surface currents are required to 

satisfy the boundary condition. 

 

The Equation for 𝜶 on the Surface of the Torus,  

The following differential equation for 𝛼 follows from that of Eq. (7) with the additional 

requirement that 𝐵" vanishes everywhere. 

𝜕" F
1
ℎ$

𝜕"(ℎ$𝐵$)G −
𝜕"𝛼
𝛼ℎ$

	𝜕"(ℎ$𝐵$) +	
𝛼%ℎ#
sinh𝜇 (ℎ$𝐵$) = 0 

                          (8) 

If one computes the first two terms of Eq. (8) and adds the third term, it can be seen that 𝐵$, 

which is not an explicit function of 𝜇, drops out.   

 

After solving Eq. (8) for 𝛼 the magnetic field itself will be found by imposing the boundary 

condition 𝐵"(𝜇') = 0.   
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Equation (8) has two solutions5 

 

𝛼 = ±
1
𝑎 [√(−cos

%𝜂 + cos𝜂	cosh𝜇 + cos%𝜂	coth%𝜇 − 2cos𝜂	cosh𝜇	coth%𝜇

+ cosh%𝜇	coth%𝜇 − sinh%𝜇)]. 

                          (9) 

When 𝜂 is held constant, say in the positive equation, and 𝛼 plotted as a function of 𝜇, 𝛼 

grows monotonically with increasing 𝜇.  In what follows, it will be seen that the field winds 

around the torus specified by a particular value of 𝜇 and the sign of 𝛼 determines the 

handedness of the field while the period of the twisting field is given by |𝛼|. 

 

With reference to Fig. 1, henceforth 𝜇 = 1	and 𝑎 = 2 will generally be used.  The plot of both 

solutions given by Eq. (9) for 𝛼 is shown in Fig. 3.   

 
Figure 3.  The plot of both solutions for 𝛼 in Eq. (9) as a function of 𝜂 where 0 ≤ 𝜂 ≤ 2π. 

 

Figure 3 shows that the solutions for 𝛼 do not cover the full range of 𝜂 from 0 ≤ 𝜂 ≤ 2π.  For 

0 ≤ 𝜂 ≤ 0.529 and 5.753 ≤ 𝜂 ≤ 2π, 𝛼 is pure imaginary so that the solutions given in Eq. (9) are 

not applicable.  In these regions, the real part of 𝛼 vanishes and since 𝛼 must be a real 

function, the force-free relation ∇ × 𝑩 = 𝛼𝑩 implies that the field 𝑩 is given by the gradient 
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of a scalar function.  It will be seen below that the transition from a force-free field to this 

gradient field is smooth with 𝑩 always greater than zero so that the field is non-singular. 

 

The Force-Free Field on the surface of the Torus 

Solutions to the force-free field equations may now be found for any torus satisfying the 

condition that 𝜇 be constant on it.  The second of Eqs. (3) with 𝐵"(𝜇') = 0 tells us that ℎ$𝐵#  

is not a function of 𝜂.  It is also not a function of 𝜙 by axial symmetry and therefore is only a 

function of 𝜇, and because 𝜇 is constant on the surface of the torus, ℎ$𝐵$ is also constant.  

Therefore, 𝐵$ = 𝐶(/ℎ$.   

 

In Eq. (4), ∇ ⋅ 𝑩 = 0 and cylindrical symmetry along with 𝐵" = 0 imply that  

𝜕#(ℎ"ℎ$𝐵#) = 0	so that 𝐵# = 𝐶%/ℎ$ℎ".  Figure 4 shows 𝐵$ and 𝐵#  for 𝐶1 = 1, 𝐶2 = 2, with 

𝜇 =1 and a=2. 

 

 
Figure 4. 𝐵" and 𝐵# plotted for 0 ≤ 𝜂 ≤ 2𝜋. 

 

Where the curves for 𝐵" and 𝐵# cross the magnitude of these components are equal so that 

the angle of their vector is at p/4 radians with respect to 𝜙T.  The magnitude of the 

components depends on the choice of the constants C1 and C2. 
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Note that in the regions 0 ≤ 𝜂 ≤ 0.529 and 5.753 ≤ 𝜂 ≤ 2π, where 𝛼 is pure imaginary there 

is no discontinuity in the field components and that the components 𝐵" and 𝐵# never vanish 

so that the vector field they represent is not singular.  Coupled with the fact that a is not 

constant, the field satisfies Arnold's requirements for a force-free field on a torus. 

 

The fact that this solution has a smooth transition from a force-free magnetic field to a field 

given by the gradient of a scalar function in the regions  0 ≤ 𝜂 ≤ 0.529 and 5.753 ≤ 𝜂 ≤ 2π 

is one of the most interesting features of the solution. 

 

A vector plot of the vector 𝑩 = (0, 𝐵𝜙, 𝐵𝜂) gives a better idea what the field looks like.  This is 

shown in Fig. 5. 

 

   
 

Figure 5.  This is a plot of the vector field 𝑩 = (0, 𝐵", 𝐵#) as a function of 𝜙 and 𝜂.  The 
magnitude of the field is given by the length of the arrows.  For a given 𝜂 the projection of the 
vectors on the 𝜙-axis (the 𝐵" component), remains constant so that axial symmetry is 
preserved.  The angle of the vectors along a given 𝜂 with the 𝜙-axis changes with 𝜙, although 
that is somewhat difficult to see in the figure. 
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This field is unusual since both the pitch and magnitude change with location on the surface 

of the torus.  This should be compared to the Lundquist solution shown in Fig. 2 and its surface 

at r = a. 

 

Considering only the plot of Fig. 5 itself, without the "padding" around it, one can get idea of 

how the field looks on a torus by identifying the 𝜙 sides of this plot and then identifying the 

ends of the resulting cylinder. 

 

Alternatively, one can use a stream plot, which loses the magnitude information.  The stream 

plot itself is shown in Fig 6 and its mapping onto the torus in Fig. 7. 

 

 
Figure 6.  A stream plot of the vector field shown in Fig. 5. The magnitude information of Fig. 5 
cannot be made a part of this plot. 
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Figure 7.  Two views of the stream plot of Fig. 6 mapped onto the torus.  The gap seen in the first figure 
is an artifact of the mapping and not a discontinuity in the field.  The region on the perimeter of the 
torus where the field becomes a gradient field is also indicated. 

 

In producing the plots in Fig. 7 the axes and "padding" around the stream plot in Fig. 6 were 

remove before doing the mapping.  Unfortunately, the mapping program only recognizes the 

removal of the axes--hence the gap seen particularly in the first figure.  It is not real and only 

an artifact of the mapping. 

 

Summary 

While the general solution to the force-free field equations in toroidal coordinates remains 

unknown, the solution for the magnetic field on the surface of a torus when a reasonable, and 

possibly necessary, boundary condition is assumed has been derived here.  It satisfies Arnold's 

requirement that the force-free magnetic field lines will only lie on tori if the field is non-

singular and a is not constant—when a is a constant, force-free fields can have a much more 

complicated topology (see Ref 3, p.62).  The analytic solution found is very interesting because 

it also has a region where the field becomes the gradient of a scalar function.  If, in addition, 

the form of the field is restricted to 𝑩 = [0, 𝐵$(𝑟), 𝐵#(𝑟)] then the solution found applies to 

the interior of the torus as well.   

 

 

The region where 0 ≤ 𝜂 ≤ 0.529 
and 5.753 ≤ 𝜂 ≤ 2π 
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