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Abstract

A proof-of-concept force sensor based on three degree-of-freedom (DoF) weakly

coupled resonators was fabricated using a silicon-on-insulator (SOI) process and

electrically tested in 20µTorr vacuum. Compared to the conventional single res-

onator force sensor with frequency shift as output, by measuring the amplitude

ratio of two of the three resonators, the measured force sensitivity of the 3DoF

sensor was 4.9× 106/N, which was improved by two orders magnitude. A bias

stiffness perturbation was applied to avoid mode aliasing effect and improve

the linearity of the sensor. The noise floor of the amplitude ratio output of

the sensor was theoretically analyzed for the first time, using the transfer func-

tion model of the 3DoF weakly coupled resonator system. It was shown based

on measurement results that the output noise was mainly due to the thermal-

electrical noise of the interface electronics. The output noise spectral density

was measured, and agreed well with theoretical estimations. The noise floor

of the force sensor output was estimated to be approximately 1.39nN for an

assumed 10Hz bandwidth of the output signal, resulting in a dynamic range of

74.8dB.
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1. Introduction

For the last couple of decades, emerging micro- and nano-scale devices en-

abled the measurement of forces in the region of pN to µN. Measurement of the

forces in this range plays important roles in many different areas, including sur-

face characterization [1], contact potential difference measurement [2], study of5

biomechanics [3] and cell mechanobiology [4], inertial sensing [5], manipulation

of microscale objects [6] and magnetometer for electronic compass [7], among

many others.

Among these miniature force sensors, resonant sensing devices are attractive

to researchers due to its quasi-digital output signal and high accuracies [8].10

The conventional approach employs a single degree-of-freedom (DoF) resonator;

when an external force is exerted on the resonator, the stiffness changes while

the mass remains the same, leading to a frequency shift [9]. The challenge

to improve the performance of the force sensor, aiming to sense smaller forces

motivates research in alternative sensing paradigms.15

One promising approach, which couples two identical resonators with a

spring much weaker than that of the resonators, is to form a 2DoF system

[10]. This approach utilizes a mode localization effect which was first described

in solid-state physics by Anderson [11]. When a small perturbation is applied

on one of the resonators, the mode shapes of the system change. It was demon-20

strated that by measuring the eigenstates shift caused by mode localization,

orders of magnitude improvement in sensitivity of mass change was observed

[10]. Various groups demonstrated that orders of magnitude enhancement in

sensitivity of stiffness change [12, 13, 14, 15] and force [16] could be achieved

using this approach. Another advantage of this type of device is its intrinsic25

common mode rejection [17].

The force to be measured can be applied to a resonator in different direc-
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tions, depending on the application: one way is to apply a vertical force or force

gradient to the tip of a horizontal cantilever, as demonstrated in [18]. This ap-

proach is widely used for atomic force microscopy (AFM) due to its simplicity.30

However, for non-contact AFM applications, when the gradient of the Van der

Waals force exceeds the stiffness of the cantilever, snap-down instability occurs

[19], which is analogous to the pull-in effect occurring in parallel plate actuation.

Hence, a large stiffness for the vibrating structure is required for some appli-

cations, which, in turn, deteriorates the force sensitivity and resolution of the35

sensor. To reach maximum stability while not compromising the sensitivity, an

alternative method is to apply the force along the length of a beam [20, 21]. Due

to a relatively high longitudinal stiffness of a beam, the instability is alleviated

[21].

In this work, a novel proof-of-concept force sensor consisting of three res-40

onators with enhanced force sensitivity is presented. The reason for using a

3DoF resonator system is that, the third resonator located in between two iden-

tical resonators reduces the energy propagation due to its absorption of energy,

thus increases the energy attenuation along the chain. Consequently, it enhances

the mode localization when a structural disorder is present. It has been demon-45

strated in both theory and by measurement results [22, 23] that a 3DoF weakly

coupled resonator sensor can exhibit enhanced sensitivity compared to existing

2DoF mode-localized sensors. The device was fabricated using a silicon-on-

insulator process, and tested electrically. The external force was an quasi-static

electrostatic force applied along the direction of the beam length, which avoided50

the potential instability mentioned above. The 3DoF force sensor utilized the

mode shape change due to a stiffness perturbation introduced by an external

force. The vibration amplitude ratio of two resonators at one mode of interest

was used to measure the mode shape change. Two orders of magnitude im-

provement in sensitivity, compared to 1DoF resonator sensors with frequency55

shift as an output signal, was observed from the measurement. In addition

to sensitivity, resolution and dynamic range of the force sensing device is also

discussed.

3



Page 4 of 36

A
cc

ep
te

d 
M

an
us

cr
ip

t

K
1

K
C1

K
C2

K
3

x
1

x
2

x
3

M
1

K
2

M
2

M
3

C
2

C
1

C
3

F
1

F
2

F
3

x

y

z

(a)

Direction of

vibration
Proof mass

T/2 T/2

T/2 T/2

Electrodes

Tether

x

y

Beam 1

Beam 2

Beam 3 Beam 4

(b)

Electrostatic
Coupling

Capacitive actuation

Differential
sensing

Kc1 Kc2

Resonator 1 Resonator 2 Resonator 3

Differential
sensing

200um

Direction of
vibration

Electrode for
perturbation
voltage

Electrode for
electrostatic
force

(c)

Figure 1: Figures showing: a) block diagram of a 3DoF resonator sensing device [15]; b) a

detailed schematic diagram of the left resonator to which the force is applied; and c) SEM

image of the fabricated 3DoF resonator force sensor.

2. Theory

2.1. Force sensing mechanism60

To understand the behaviour of the 3DoF resonator force sensor, the system

is modelled as a lumped parameter block diagram as shown in Fig. 1a. A

schematic drawing of the left resonator to which the force to be measured is

applied, is shown in Fig. 1b, and a SEM image of our proof-of-concept chip is

shown in Fig. 1c.65
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A tether structure [24] was used in our design to allow the transmission of

an axial electrostatic force to the suspension beams of the left resonator. In

addition, it is also used to impede the movement of the electrode attached to

the bottom of the suspension beams when the resonator is vibrating, so that

the electrostatic force is kept as constant as possible. Therefore, the tether was70

made wide in the x -axis (170µm), but thin in the y-axis (5µm) in our design.

The design ensures that the tether has a high mechanical stiffness in the x -

direction. In addition, when the displacement of the resonator in the direction

of vibration is small compared to the length of the beam, the movement of

the resonator in the y-axis is negligible. Consequently, the tether efficiently75

constraints the movement of the electrode attached to the suspension beams,

and thus it can also be regarded as a fixed end for the two suspension beams

attached.

In the y-axis, the tether, which is a cantilever beam in essence, has a stiffness

of [25]:80

Ktether =
Etw3

t

4L3
t

(1)

where E, t, wt, Lt are the Young’s modulus, the thickness of the device, the

width in the y-axis and effective length of tether, respectively. The longitudinal

stiffness of the suspension beam is given by [25]:

Klong =
Etw

L
(2)

where w and L are the width in the x -axis and the length of the suspension

beam.85

To applied forces in the negative y-direction, the tether and the suspension

beams act similarly to two springs in parallel [24]. Ideally, the tether does not

absorb any force applied in the y-axis, so that all the forces can be measured

by the resonator. For our design, the shortest effective length of the tether is

60µm, resulting in a maximum stiffness of Ktether = 538N/m. Whereas in the y-90

axis, suspension beams 1 and 3 are in series, therefore the effective longitudinal

5
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stiffness is Klong = 2.48 × 104N/m. This indicates that more than 97.9% of

the force applied is absorbed by the suspension beams, with less than 2.1% of

the force exerting on the tether. Hence, we are able to assume that the entire

electrostatic force is transmitted to the resonators for measurement.95

When two different DC voltages are applied to the resonator and the elec-

trode below, an electrostatic force is generated in the negative y-axis pulling

the resonator. Due to the relatively large length of the electrode in the x -axis

of 160µm compared to the air gap of 4.5µm, the fringe field can be neglected.

Assuming small displacements in the y-axis, the tensile force for the resonator100

T in terms of voltage difference ∆V between the resonator and the electrode,

cross-sectional area of electrode Ae, air gap de and dielectric constant of vacuum

ε0 is given by [25]:

T =
ε0Ae∆V 2

2d2e
(3)

For an applied force in the y-axis, the two identical suspension beams (beams

3 and 4 in Fig. 1b), are in parallel. Hence the tensile force T is evenly distributed105

to the two suspension beams. Furthermore, the suspension beams 1 and 3 are

in series, so are suspension beams 2 and 4. Therefore, the tensile force applied

on each suspension beam equals to T/2.

The suspension beams have one end fixed, while the other end moves per-

pendicular with respect to the beam length. Given the displacement functions110

along the axis of the beam for these boundary conditions [26], the stiffness of

each suspension beam under weak axial tensile force T/2 is given by [27]:

Kbeam =
Etw3

L3
+

0.6T

L
(4)

Moreover, due to the high longitudinal stiffness of the suspension beams,

the elongation of the beams are trivial compared to the beam length L. For a

tensile force of 1µN, the resulting elongation of the beams is less than 0.1nm,115

which is negligible compared to the beam length of 300µm; the strain change is

therefore neglected. The stiffness perturbation introduced by the tensile force,

6
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normalized to the effective stiffness of the resonator K, is therefore:

∆Kforce

K
=

2.4T

LK
(5)

With the coupling voltage Vc applied, suppose d is the air gap between

parallel plates and A,Acf are the cross-sectional area of the actuation parallel120

plate and the comb finger overlap, respectively. Neglecting the intrinsic tension

introduced during fabrication process, the effective stiffness is given by [15]:

K = 4×Kbeam −Kelec

=
4Etw3

L3
− ε0(A+ 6Acf )V

2
c

d3
(6)

2.2. Amplitude ratio

In the model of the 3DoF force sensor, as shown in Fig. 1a, each resonator

consists of a mass, spring and damper, and is coupled to its neighbouring res-125

onator through springs (Kc1 and Kc2).

Suppose the mass of all resonators and their corresponding coupling spring

stiffness are identical, i.e., M1 = M2 = M3 = M and Kc1 = Kc2 = Kc, while the

spring stiffness of the resonators are asymmetrical with a quasi-static stiffness

perturbation of ∆K, thus K3 = K + ∆K, ∆K < 0 and K1 = K, and the130

stiffness of the resonator in the middle is different to the other two resonators

with K2 ̸= K. The damping coefficients are included due to its constraints on

the value of ∆K (as will be shown in Section 2.3), and it will be used in later

sections for noise considerations. Further, assuming all springs are linear, and

no movement in the y and z -axis, the motion in the x -direction of the resonators135

can be described by the equations of motion of the system (Eqs. (A.1) to (A.3)

in Appendix A).

Now, consider the case where the coupled resonator system is only driven

by F1(s) = F1 and F2(s) = F3(s) = 0, the frequencies of the in-phase and

7
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out-of-phase modes can be calculated, and are given by [23]:140

ωip ≈
√

1

M

[

K +Kc +
1

2
(∆K − α−

√

∆K2 + α2)

]

(7)

ωop ≈
√

1

M

[

K +Kc +
1

2
(∆K − α+

√

∆K2 + α2)

]

(8)

Where

α =
2K2

c

K2 −K +Kc

(9)

Let s = jω, and substitute the out-of-phase mode frequency (Eq. (8)) into

the equations of the transfer functions of |H11(jω)| (Eq. (A.12)) and |H31(jω)|
(Eq. (A.17)), for the system driven only by F1, the amplitude ratios of the

out-of-phase modes can be approximated as:145

∣

∣

∣

∣

X1(jωop)

X3(jωop)

∣

∣

∣

∣

≈
∣

∣

∣

∣

∣

−
√

γ2
3(∆K/K)2 + 4− γ3(∆K/K)

2
+ j

γ3
Q

∣

∣

∣

∣

∣

(10)

Where

γ3 =
2K

α
=

K(K2 −K +Kc)

K2
c

(11)

With a tensile force applied on resonator 1, the stiffness of resonator 1

is increased by a positive ∆Kforce. When the tensile force is weak, so that

∆Kforce ≪ K, this is equivalent to break the symmetry of the resonator system

with a negative stiffness perturbation −∆Kforce acting on resonator 3. There-150

fore, we are able to gauge an external force applied along the beam length of the

resonator, by measuring the amplitude ratio change resulting from a stiffness

change caused by the force.

2.3. Mode aliasing effect

Damping has the effect that it lowers the quality factor of the vibration155

modes, therefore limiting the bandwidth of the modes. If the in-phase and

out-of-phase modes overlap, this effect is termed mode aliasing. Hence, for a

8
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given bandwidth ∆f3dB of the modes, the two main modes having a frequency

difference of ∆f do not alias, the following antialiasing condition has to be

satisfied:160

∆f > 2×∆f3dB (12)

With the frequencies of the in-phase and out-of-phase modes given by Eqs.

(7) and (8), the frequency difference can be approximated as:

∆f = fop − fip ≈ 1

2π

√

K

M

√

(

∆K

2K

)2

+

(

1

γ3

)2

(13)

It can be seen from Eq. (13) that the frequency difference is a function of

the stiffness perturbation ∆K. Hence, small stiffness perturbations ∆K can

result in a frequency difference ∆f violating the condition of Eq. (12); and thus165

strong mode aliasing would occur. This is illustrated by a simulation using an

equivalent RLC electrical circuit model of the 3DoF weakly coupled resonator

system [28]. The values used in the simulation are chosen to be close to the

device design, and are listed in Table 1.

Table 1: Values used for the simulations to demonstrate mode aliasing

Component Values
Mechanical model

equivalent

L 0.489MH M

C 0.254fF K

C2 84.8aF K2/K = 3

Cc -19.07fF K/Kc = −75, γ3 = 11174

R 8.77MΩ Q = 5000

∆C
a) 0fF

b) −0.17pF

∆K = 0

∆K/K = −1.5× 10−3

It can be seen from Fig. 2 that for ∆K = 0 strong mode aliasing occurs,170

which stops the sensor from functioning properly by preventing the observer

9
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Figure 2: Simulated frequency responses of resonators 1 and 3 using an equivalent electrical

RLC network model [28] with different stiffness perturbations: a) γ3 = 11174, ∆K/K = 0

and b) γ3 = 11174, ∆K/K = −1.5× 10−3. The theoretically calculated frequency difference

and the 3dB bandwidth of the modes are also shown in the figure. Strong mode aliasing can

be seen in a), as the in-phase and the out-of-phase modes merged; this is due to the frequency

difference violating the anti-aliasing condition (Eq. (12)). The mode aliasing effect reduces

to a negligible level when the anti-aliasing condition is satisfied, and the two modes can be

distinguished in b).

from identifying the out-of-phase mode. On the contrary, when the anti-aliasing

condition is satisfied for ∆K/K = −1.5 × 10−3, the out-of-phase mode can be

distinguished, and the amplitude ratio can be measured. Hence, it is important

that the anti-aliasing condition Eq. (12) is satisfied for all input conditions.175

2.4. Nonlinearity of amplitude ratio

It can be seen from the amplitude ratio expression (Eq. (10)) that the

amplitude ratio is a nonlinear function of the normalized stiffness perturbation

∆K/K. Mathematically, it can be further deduced that for large |∆K/K|, the
amplitude ratio approaches a linearized scale function of ∆K/K:180

∣

∣

∣

∣

X1(jωop)

X3(jωop)

∣

∣

∣

∣

≈
∣

∣

∣

∣

γ3∆K

K

∣

∣

∣

∣

(14)

It can be seen from Eq. (10) that two nonlinearity errors contribute to the

total nonlinearity error: a) a nonlinearity from the first term occurring even

without damping and b) a nonlinearity due to damping (term jγ3/Q). By

10
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calculating the nonlinearity errors separately and superimposing, we are able to

estimate the total nonlinearity error, ϵ, as:185

ϵ = ϵ1 + ϵ2 ≈
(

K

γ3∆K

)2

+
1

2

(

1

Q

K

∆K

)2

(15)

where ϵ1 is the nonlinearity error from the first term and ϵ2 is the nonlinearity

error from the second term. To verify this estimation, a simulation using the

equivalent RLC electrical circuit model is run using the values listed in Table

2. The stiffness perturbations used in the simulations complied with the anti-

aliasing condition.190

Table 2: Values used for the simulations to verify the nonlinearity error estimation

Component Values
Mechanical model

equivalent

L 0.489MH M

C 0.254fF K

C2 84.8aF K2/K = 3

R 8.77MΩ Q = 5000

Cc

a) -12.72fF

b) -19.07fF

K/Kc = −50, γ3 = 4950

K/Kc = −75, γ3 = 11174

The results shown in Fig. 3 showed good agreement between the theoretical

estimations and the simulated results of the nonlinearity error. It can also be

seen from the figure that the nonlinearity error diminished as the value of the

negative ∆K/K decreased. Hence, in order to improve the linearity of the

amplitude ratio, it is desired to have a high stiffness perturbation.195

2.5. Bias point

To ensure that any tensile force applied will not result in severe mode alias-

ing, a negative bias stiffness perturbation ∆Kbias < ∆Kmax < 0 can be applied

to resonator 3; this is depicted in Fig. 4. With this bias perturbation, for

11
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Figure 3: Simulated amplitude ratios compared to the linearized scale function given by Eq.

(14). The total nonlinearity errors were also calculated and are plotted for a) γ3 = 4950 and

b) γ3 = 11174. The total theoretical nonlinearity error was estimated using Eq. (15). The

nonlinearity errors determined by simulation match the theoretical predictions well.

∆Kforce > 0 resulting from a tensile force, the total stiffness perturbation ∆K200

satisfies ∆K = ∆Kbias −∆Kforce < ∆Kmax.

In addition, the negative bias stiffness perturbation also makes ∆K = ∆Kbias−
∆Kforce < −∆Kforce, hence, the nonlinearity of the amplitude ratio is also de-

creased; this is also shown in Fig. 4.

To introduce the negative stiffness perturbation bias, we applied a DC volt-205

age on the electrode on the right, hence lowering the effective stiffness of res-

onator 3. Once an appropriate bias stiffness perturbation (which will be dis-

cussed in Section 4.2) is introduced, the mode aliasing effect and nonlinearity

can be made negligible. Therefore Eq. (10) can be linearized as Eq. (14).

Combining Eqs. (5) and (14) and neglecting the nonlinearity, the change in210

amplitude ratio is approximately linear with the tensile force, T :

∆

∣

∣

∣

∣

X1(jωop)

X3(jωop)

∣

∣

∣

∣

≈ γ3∆Kforce

K
=

2.4γ3T

KL
(16)

12
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Figure 4: Demonstration of the bias point concept. The amplitude ratio as a function of

the stiffness perturbation is based on an analytical model described in the previous sections.

The black curve shows the actual curve of amplitude ratio, the red dotted line shows the

linearized scale function and the grey area illustrates the region with severe mode aliasing. It

demonstrates that with a bias point outside the region with strong mode aliasing, the working

region for tensile forces will not suffer from the same effect. It also shows that improved

linearity can be achieved through deploying a bias point.

Therefore, the sensitivity of the force sensor can be approximated as:

S3DoF =
∂(Amplitude ratio)

∂T
≈ 2.4γ3

KL
(17)

With the bias, the lower limit of the dynamic range of the quasi-static force

is only limited by the noise floor of the sensor and the interface electronics.

Hence, we shall discuss the noise in the following section.215

2.6. Noise

Assuming the noise of the sensing device is Gaussian and the noise of res-

onator 1 and 3 are not correlated, the output noise power of the 3DoF sensor,

equivalent to the variance of the amplitude ratio |X1/X3|, can be derived ac-

cording to [29]:220

∣

∣

∣

∣

X1

X3

∣

∣

∣

∣

2

noise

= σ2

(
∣

∣

∣

∣

X1

X3

∣

∣

∣

∣

)

=

∣

∣

∣

∣

X1

X3

∣

∣

∣

∣

2
[

(

σ(X1)

X1

)2

+

(

σ(X3)

X3

)2
]
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=

∣

∣

∣

∣

X1

X3

∣

∣

∣

∣

2
[

X2
n,1

X2
1

+
X2

n,3

X2
3

]

(18)

where σ2(f) is the variance of function f , which by definition equals to the

noise power; X2
n,i (i = 1, 3) is the noise power of the ith resonator. Hence the

signal-to-noise ratio (SNR) is:

SNR =

∣

∣

∣

∣

X1

X3

∣

∣

∣

∣

2
/

∣

∣

∣

∣

X1

X3

∣

∣

∣

∣

2

noise

=

(

X2
n,1

X2
1

+
X2

n,3

X2
3

)

−1

=
SNR1 × SNR3

SNR1 + SNR3

(19)

It can be seen from Eq. (19) that the output SNR increases as the SNR of

resonator 1 and/or 3 improves.225

The noise power of resonator 1 and 3 is dominated by two parts, mechanical-

thermal noise of the resonators and the electrical-thermal noise of the interface

electronics [30]. Therefore, the SNR of resonator 1 and 3 can be written as:

SNRi =
SNRm,i × SNRe,i

SNRm,i + SNRe,i

, i = 1 or 3 (20)

where SNRm,i and SNRe,i are the mechanical and electrical SNR of the ith

resonator, respectively.230

2.6.1. Mechanical SNR

To theoretically calculate the mechanical noise, a transfer function model

[15] of the 3DoF resonator sensor was used. The block diagram of the model is

shown in Fig. 5.

H (s)1

1
+Kc

F (s)n,1

F (s)n,2
F (s)n,3

X (s)1 X (s)2

Kc +

Kc

+

Kc

X (s)3

H (s)2

1

H (s)3

1

Figure 5: Block diagram of a 3DoF resonator sensing device
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Considering three mechanical-thermal noise inputs Fn,r (r = 1 to 3) (see235

Fig. 5), the noise power in terms of displacement near the out-of-phase mode

of the rth resonator Xmn,i (i = 1 to 3) can be evaluated as [31]:

X2
mn,i =

1

2π

∫ ωop+∆ω

ωop−∆ω

3
∑

r=1

F 2
n,rH

2
irdω (21)

Where Hir is the transfer function from rth input to ith output, which is

derived in Appendix A, and the power spectral density of the thermal driving

force is given by [32, 30]:240

F 2
n,r = 4kBTCr, r = 1, 2, 3 (22)

Where kB , T and Cr are the Boltzmann constant, ambient temperature and

damping coefficient of rth resonator, respectively.

Suppose C1 = C2 = C3 = C, the noise power of the displacement of res-

onator 1 is:

X2
1 =

2kBTC

π

∫ ωop+∆ω

ωop−∆ω

(H2
11 +H2

12 +H2
13)dω (23)

Assume a quality factor of Q = 2 × 104 in vacuum, which is a conservative245

estimation compared to other similar devices [12, 33] and setting |K/Kc| = 200,

K2/K = 2, γ3 can be calculated to be 40000 using Eq. (11). The sensor, without

any force applied, has a bias of |∆Kbias/K| = 5/γ3. As shown in Appendix B,

it can be demonstrated that near the out-of-phase mode, |H12|2 and |H13|2 are

both negligible compared to |H11|2. Therefore Eq. (23) can be simplified as:250

X2
1 ≈ 2kBTC

π

∫ ωop+∆ω

ωop−∆ω

H2
11(jω)dω (24)

Based on the integrals derived in [34], we are able to estimate the spectral

density of the thermal-mechanical noise displacement of resonator 1, ⟨X1(jωop)⟩2,
in close vicinity of the out-of-phase mode, assuming ∆ω ≪ ωop, as:

⟨X1(jωop)⟩2 ≈ 8kBTCQ2

K2
(25)
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Furthermore, for ∆ω = ωop/(2Q), the mechanical SNR of resonator 1 within

the 3dB bandwidth of the out-of-phase mode can be evaluated as:255

SNRm,1 ≈ X2
1 (jωop)Keff

kBT
(26)

In a similar manner, the noise displacement power spectral density at the

out-of-phase mode ⟨X3(jωop)⟩2 and the mechanical SNR of resonator 3 can be

approximated by:

⟨X3(jωop)⟩2 ≈ 8kBTCQ2

K2

X2
1 (jωop)

X2
3 (jωop)

(27)

SNRm,3 ≈ X2
3 (jωop)Keff

2πkBT

X2
1 (jωop)

X2
3 (jωop)

≈ X2
1 (jωop)Keff

kBT
(28)

2.6.2. Electrical SNR

For a standard transimpedance amplifier, the input-referred current noise260

power spectral density can be expressed as [31]:

i2n = i2na +

(

Rm +Rf

RmRf

)2

e2na +

(

4kBT

Rf

)2

(29)

where ina, ena, Rm and Rf are the current noise, voltage noise spectral den-

sity of the op-amp, equivalent motional resistance of the resonator and feedback

resistance, respectively. Given the sensing transduction factor ηs [25] of the de-

vice and the 3dB bandwidth of the out-of-phase mode f3dB , the electrical SNR265

of resonator 1 and 3 within the 3dB bandwidth can therefore be calculated as:

SNRe,i =
X2

i η
2
s

i2n,if3dB
, i = 1 or 3 (30)

As will be shown in the experimental results, for a biased 3DoF resonator

sensor, within the 3dB bandwidth, for resonator 1 with larger vibration ampli-

tude, the mechanical noise from the resonators is the dominant noise source,

whereas outside of the bandwidth, the total noise was mainly attributed to the270
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electronic noise. But for resonator 3 having a smaller vibration amplitude, the

electrical noise dominated. The ultimate limit of the output noise power was

imposed by electrical noise from the interface electronics.

3. Experiment

3.1. Device description275

To demonstrate the concept of a 3DoF force sensor, a device was fabricated

using a single mask silicon on insulator (SOI) process [35] with a structural layer

of 30µm thickness. The fabrication process for the device is described in detail

elsewhere [15].

The design of this chip is different from our previous work [15]. In this device,280

the beam width was 4µm (compared to 5µm, which was the stated minimum

width for good yield). In addition, the length of the beams were 300µm, the

resulting aspect ratio of the beam was 75, higher than the previous device of 70.

This demonstrates the potential capability of the process to fabricate compliant

beams. With these dimensions, the spring constant of the resonators was weaker285

for the device tested in this work, which is desirable for sensitivity improvement.

Moreover, the air gap was reduced to 3.5µm to achieve higher actuation and

sensing transduction factors. With smaller air gaps, the DC voltage required

to achieve a certain coupling strength is also lowered. One downside of smaller

air gap is the increased electrostatic nonlinearity, which contributes to a the290

nonlinear sensitivity, as discussed later.

The design parameters of the fabricated device are listed in Table 3.

3.2. Measurement methodology

To electrically test the chip, the chip was mounted on a chip carrier and wire

bonded to the contacts. The chip carrier was then inserted into a socket on a295

printed circuit board. The circuit board was placed into a customized vacuum

chamber with electrical feedthroughs. The ambient pressure was 20µTorr en-

suring minimum air damping loss, so a high quality factor could be obtained.
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Figure 6: Test configuration of the prototype 3DoF resonator sensing device

Three DC voltages were used in the experiment: a) a fixed coupling voltage of

Vc = 12V was applied to resonators 1 and 3, while resonator 2 was grounded,300

hence the resonators were electrostatically coupled; b) a variable voltage Vb, the

value of which will be discussed later, was used to bias the 3DoF sensor to an

appropriate operating point; c) a variable voltage Ve < 0 was used to apply

a tensile force on resonator 1. With the voltages applied, suppose Ac and dc

are the cross-sectional area and the air gap between resonators, the coupling305

strength is given by [25]:

Kc = −ε0AcV
2
c

d3b
(31)

Similarly, given that Ab and db are the cross-sectional area and the air gap

between the electrode on the right and resonator 3, the bias stiffness ∆Kbias is

given by:

∆Kbias = −ε0Ab(Vc − Vb)
2

d3b
(32)

It should be noted that the same configuration was used for resonator 3.310

Therefore, when the electrode for resonator 3 was grounded as demonstrated in

Fig. 6, and Ve < 0 applied for perturbation on resonator 1, using Eq. (3), the

effective perturbation force can be calculated as:
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t∆T =
ε0Ae[(Vc − Ve)

2 − V 2
c ]

2d2e

=
ε0Ae(V

2
e − 2VcVe)

2d2e
(33)

The resulting perturbation is therefore:

∆Kforce

K
=

2.4∆T

LK
=

1.2ε0Ae(V
2
e − 2VcVe)

KLd2e
(34)

Motional currents were used to measure the motion of resonators 1 and 3.315

With both resonators vibrating at the same frequency, the ratio of the mo-

tional currents equals to the amplitude ratio. Standard TIAs (AD8065, Analog

Devices Inc) with feedback resistance of 6.6MΩ were used to convert and am-

plify the differential motional currents to differential voltage signals, which were

further amplified by subsequent instrumentation amplifiers (INAs) (AD8421,320

Analog Devices Inc) with a differential gain of 100. The sub-nano ampere mo-

tional currents from the resonators were amplified to voltages at a measurable

level of hundreds of millivolts, whereas the common mode signals such as the

feedthrough signals, were suppressed to the sub-millivolt range.

A two-channel oscilloscope (DSO6032A, Agilent Technologies) was used for325

measuring the voltage amplitudes of the resonators simultaneously. By manu-

ally altering the frequency of the drive signal, which was generated from a signal

generator with variable frequency function, in 0.01Hz steps, two distinct peaks

in the amplitudes could be found, i.e., the in-phase and out-of-phase modes. The

out-of-phase mode was used in our measurement for high sensitivity, which was330

identified by the phase difference between the resonators. Then, the applied fre-

quency was maintained at the out-of-phase mode frequency for the oscilloscope

to measure the amplitudes in over 500 cycles. The oscilloscope computed the

mean value of the amplitudes of both resonators, which were then used to calcu-

late the amplitude ratios. Additionally, the mode frequencies were recorded as335

displayed by the signal generator. It is worth noting here that the third mode

was neglected in the analysis due to the fact that in the experiment this mode
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could not be detected as the amplitudes of resonators 1 and 3 were below the

noise level.

4. Results and discussion340

4.1. γ3 and offset values extraction

Before proceeding to demonstrate the force sensor, γ3 and stiffness offset

values were extracted due to their importance in analysing the experimental

results [15].

The 3dB bandwidth of the out-of-phase mode was found to be 0.48Hz, the345

quality factor was 28653 (as shown in Fig. 9). While ensuring the mode aliasing

effect was negligible and with Ve kept at 0V, bias voltage Vb was altered to

change ∆K/K. The amplitude ratios were recorded for different ∆K/K, and the

amplitude ratio curve was fitted to Eq. (10), as shown in Fig. 7. The extracted

values of γ3 = 29119 and the offset in normalized stiffness offset = 5.16× 10−4.350

Compared to the theoretically calculated value of γ3 = 39557 from the designed

dimensions, the relative error is approximately 26%, this is due to the variances

introduced during the fabrication process.
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A
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Normalized stiffness perturbation ( K/K)

 Measured amplitude ratio
 Fitted curve 

Extracted 3=29119

Extracted offset = 5.16

Figure 7: Measured amplitude ratios (in red dots) were fitted to Eq. (10) to extract γ3 and

offset value in normalized stiffness perturbation. The fitted curve is shown in black. The

extracted γ3 = 29119 and offset = 5.16× 10−4.
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Figure 8: Measured (red) and theoretically calculated (black) frequency difference as a function

of the bias voltage Vb. The theoretical frequency differences were calculated using equation

Eqs. (7) and (8) with γ3, offset value extracted and the designed dimensions. 2f3dB = 0.96Hz

is marked with a blue line in the figure. Measured frequency differences match well with

theoretical calculated values. It can also be seen that for bias voltages smaller than 0.5V, the

anti-aliasing condition was satisfied.

4.2. Bias point selection

A bias stiffness perturbation ∆Kbias was intentionally introduced in the355

experiment, in order to avoid the mode aliasing effect. This was achieved by

applying a fixed bias voltage Vb, as shown in Fig. 6. To reduce the mode aliasing

effect, the anti-aliasing condition, Eq. (12), should be satisfied.

A mode frequency measurement was carried out to find the range of the

bias voltage Vb that satisfies Eq. (12). The results are shown in Fig. 8. Since360

the 3dB bandwidth of the in-phase and out-of-phase modes were 0.48Hz from

the measurement, the minimum frequency difference that satisfies Eq. (12) was

0.96Hz, which was marked with a blue line in Fig. 8. Therefore, a bias voltage

of Vb ≤ 0.5V satisfied the anti-aliasing condition.

Moreover, as mentioned in Section 2.4, a negative ∆Kbias with larger mag-365

nitude, therefore, a lower Vb (refer to Eq. (32)), is desired for better linearity.

However, as shown from Eq. (18), a larger |∆K| leads to a larger |X1/X3|,
hence leading to larger noise in the amplitude ratio. Therefore, to balance the

trade-off, Vb = 0.4V was used for perturbation. The corresponding normalized
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stiffness perturbation ∆Kbias/K and amplitude ratio were 1.91×10−4 and 5.75,370

respectively.

4.3. Force measurement

13752 13754 13756
0.0

0.5

1.0

A
m

pl
itu

de
 (V

)

Frequency (Hz)

 Resonator 1 with Vb=0.4V and Ve=0V
 Resonator 3 with Vb=0.4V and Ve=0V
 Resonator 1 with Vb=0.4V and Ve=-28.5V
 Resonator 3 with Vb=0.4V and Ve=-28.5V

Figure 9: Measured frequency response of resonator 1 and 3 under two different perturbation

conditions: a) Vb = 0.4V and Ve = 0V, shown in solid lines; b) Vb = 0.4V and Ve = −28.5V,

shown in dotted lines. The quality factor was calculated to be 28653.

To demonstrate the functionality of the proof-of-concept force sensing device,

electrostatic forces along the beam length were created by applying Ve to the

electrode for resonator 1. With Ve < 0 applied, a tensile force was exerted375

on resonator 1, therefore decreasing ∆K. Hence the frequency difference ∆f

increased and the mode aliasing effect could be neglected, as shown in Fig. 9.

It can also be seen from Fig. 9 that negligible spring nonlinearity was present;

therefore the assumption of linear springs can be regarded as valid.

Varying Ve, we were able to measure the amplitude ratios. Using Eq. (33),380

the effective tensile forces applied were calculated. Hence, we can obtain the

theoretical amplitude ratio using Eqs. (10) and (34). Fig. 10 shows the mea-

sured amplitude ratios and linearized scale function, given by Eq. (16), together

with the nonlinearity error. It can be seen from Fig. 10 that the measured am-

plitude ratio matched well with the linearized scale function, with a nonlinearity385

error smaller than 10% for all the data points. The linear force sensitivity was

found to be 4.9 × 106/N. The theoretical force sensitivity is calculated to be
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6.6 × 106/N. The relative error compared to theoretical prediction is −26%,

which is attributed to fabrication tolerances.
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Figure 10: Measured amplitude ratios and the linearized scale function with respect to the

applied tensile force. The measured amplitude ratios matched well with the linearized scale

function, with nonlinearity error smaller than 10% for all the data points. The force sensitivity

is found to be 4.9× 106/N.

A comparison of sensitivity to other state-of-the-art resonant force sensors390

are listed in Table 4. It can be seen that significant improvement in sensitivity

of at least two to three orders of magnitude was achieved.

4.4. Force resolution and dynamic range

Since any motion caused by mechanical noise (SNR given by Eqs. (26) and

(28)) went through the same amplification stages on the printed circuit board,395

the output mechanical SNR of the ith resonator is therefore:

SNRm,i =
V 2
i Keff

kBT (2ωopηsRfGINA)2
, i = 1 or 3 (35)

where Vi is the rms-value of the output voltage of the ith resonator and

GINA are the differential gain of the instrumentation amplifiers.

From Eqs. (29) and (30), the electrical SNR at the output can be computed

as:400

SNRe,i =
V 2
i

(
√
2in,iRfGINA)2

, i = 1 or 3 (36)
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Figure 11: Output voltage noise spectral density of resonator 1 and 3 compared to the the-

oretically estimated noise density. The measured noise floor agreed well with theoretical

calculations.

The noise spectral density was measured using a two channel dynamic signal

analyser (35670A by Agilent Technologies) without any driving signals applied,

while Vc = 12V, Vb = 0.4V and Ve = 0V were retained. Averaging of 50

measurement results were used to reduce the measurement variation, hence the

peak caused by the mechanical noise could be found. The theoretical noise405

was calculated using Eqs. (35) and (36), together with the equations in section

2.6. It can be seen from Fig. 11 that the measurement results and theoretical

predictions agreed well. Therefore we were able to evaluate the noise power

based on the theoretical noise.

Assuming an ambient temperature of 290K, using the designed value of the410

sensing transduction factor, ηs from Table 3, Rf = 6.6MΩ and GINA = 100

as designed, when Vb = 0.4V and Ve = 0V, resulting in an amplitude ratio

|X1/X3| = 5.75, the SNRs can be calculated from the noise power within 3dB

bandwidth (f3dB = 0.48Hz) using the measured output signal. The evaluated

SNR and noise power are listed in Table 5.415

It can be seen from Table 5 that the electrical noise of resonator 3 (the res-

onator with smaller amplitude) ultimately sets the noise floor of the amplitude

ratio. Due to the fact that the thermal-electrical noise can be regarded as uni-
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formly distributed in a wide frequency span, as a consequence, the amplitude

ratio noise can also be regarded as white noise. Therefore, from Table 5, we can420

evaluate the minimum resolvable force of the sensor near the bias point as:

⟨T ⟩min =
⟨Amplitude ratio⟩min

Force sensitivity

=

√

2.23× 10−6/0.48

4.9× 106
N/

√
Hz

= 4.40× 10−10N/
√
Hz (37)

where ⟨Amplitude ratio⟩min is the evaluated noise power spectral density

of the amplitude ratio, hence, the frequency bandwidth in Eq. (37) is the

bandwidth of the output voltage signals.

To estimate the dynamic range of the 3DoF sensor, a bandwidth of 10Hz425

of the output voltage signal was supposed; for this assumption, the minimum

detectable DC force is 1.39nN. For a maximum force of 7.6µN in the experiment,

a dynamic range of approximately 74.8dB can be achieved.

4.5. Nonlinearity
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Figure 12: Measured amplitude ratio and the linearized scale function (Eq. (14)) as a function

of normalized stiffness perturbation. Nonlinearity error was also calculated and shown in the

figure. Nonlinearity error decreased in value as the amplitude ratio increased.
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From the measurement results, it can be noticed that the nonlinearity error of430

the 3DoF device started off decreasing in value as the amplitude ratio increased,

as shown in Fig. 12, which agreed with the theoretical prediction in Section 2.4.

However, the linearity of the 3DoF sensor tended to deteriorate as the am-

plitude ratio increased, as shown in Figs. 10 and 12. It should be noticed that

this nonlinearity was found to be insignificant for the device in [15]. One possi-435

ble reason for this is that the air gap between the resonators was 3.5µm in this

design, smaller compared to 4.5µm in [15]. For example, when amplitude of

resonator 1 is significantly higher than resonator 3 (larger than 30 times), the

nonlinearity of Kc1 becomes larger than that of Kc2, making the assumption of

Kc1 = Kc2 invalid for larger amplitude ratios.440

5. Summary and future work

In this work, a proof-of-concept force sensing device consisting of three

weakly coupled resonators with enhanced sensitivity is reported. Two orders

of magnitude improvement in sensitivity compared to current state-of-the-art

resonant force sensors was observed. A noise floor of the output signal, i.e. for445

10Hz bandwidth of the output signal, 1.39nN could be demonstrated.

Currently the measurement method requires mode frequency searching, which

makes real-time measurement of a fast changing force impossible. Hence, only

quasi-static stiffness and force perturbations were used as inputs. Future work

will include the design of a self-oscillating loop that is capable of locking to a450

particular mode of interest. This would enable the measurement of the dynamic

inputs.

Furthermore, since the resonators were coupled by electrostatic forces, in a

future study we can completely switch off the coupling voltages to decouple the

resonators. This would enable a better comparison between the 3DoF and the455

1DoF resonator sensor in the future.
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Appendix A. Transfer function derivation

The motion of the three resonators can be described by three differential

equations:

Mẍ1 + C1ẋ1 + (K +Kc)x1 −Kcx2 = F1 (A.1)

Mẍ2 + C2ẋ2 + (K + 2Kc)x2 −Kcx1 −Kcx3 = F2 (A.2)

Mẍ3 + C3ẋ3 + (K +∆K +Kc)x3 −Kcx2 = F3 (A.3)

where xi, Fi denote the displacement of the proof mass with respect to a460

fixed frame and external force on the mass of the ith resonator (i = 1, 2, 3),

respectively. After performing a Laplace transformation and rearranging, we

obtain:

H1(s)X1(s) = KcX2(s) + F1(s) (A.4)

H2(s)X2(s) = KcX1(s) +KcX3(s) + F2(s) (A.5)

H3(s)X3(s) = KcX2(s) + F3(s) (A.6)

where the transfer functions are defined as:

H1(s) ≡ Ms2 + C1s+ (K +Kc) (A.7)

H2(s) ≡ Ms2 + C2s+ (K2 + 2Kc) (A.8)

H3(s) ≡ Ms2 + C3s+ (K +Kc +∆K) (A.9)
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Let s = jω, we are able to obtain the matrix form of the forced response in465

terms of angular frequency ω:











X1(jω)

X2(jω)

X3(jω)











= H











F1(jω)

F2(jω)

F3(jω)











(A.10)

where

H =











H11(jω) H12(jω) H13(jω)

H21(jω) H22(jω) H23(jω)

H31(jω) H32(jω) H33(jω)











(A.11)

By applying Mason’s rule [36] to the block diagram shown in Fig. 5, we are

able to obtain the following:

H11(jω) =
H2(jω)H3(jω)−K2

c

D(jω)
(A.12)

H22(jω) =
H1(jω)H3(jω)

D(jω)
(A.13)

H33(jω) =
H1(jω)H2(jω)−K2

c

D(jω)
(A.14)

H12(jω) =H21(jω) =
H3(jω)Kc

D(jω)
(A.15)

H23(jω) =H32(jω) =
H1(jω)Kc

D(jω)
(A.16)

H13(jω) =H31(jω) =
K2

c

D(jω)
(A.17)

where470

D(jω) =H1(jω)H2(jω)H3(jω)

− [H1(jω) +H3(jω)]K
2
c (A.18)
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Appendix B. Transfer function ratio approximations of out-of-phase

mode

We make the following assumptions as in the text: a quality factor of Q =

2 × 104, |K/Kc| = 200, K2/K = 2, γ3 = 40000, the sensor is perturbed by

|∆K/K| = 5/γ3. Near the out-of-phase mode frequency:475

ω ≈
√

1

M

[

K +Kc +
1

2
(∆K − α+

√

∆K2 + α2)

]

(B.1)

Since H13 = H31, the ratio |H2
11/H

2
13| near the out-of-phase mode frequency

can be approximated using Eq. (10):

∣

∣

∣

∣

H2
11

H2
13

∣

∣

∣

∣

≈
∣

∣

∣

∣

∣

−
√

γ2
3(∆K/K)2 + 4− γ3(∆K/K)

2
+ j

γ3
Q

∣

∣

∣

∣

∣

2

= 30.96 (B.2)

Now consider the ratio |H2
12/H

2
13| near the out-of-phase mode frequency:

∣

∣

∣

∣

H2
12

H2
13

∣

∣

∣

∣

≈
∣

∣

∣

∣

H3(jωop)

Kc

∣

∣

∣

∣

2

(B.3)

Let s = jω in H3 in Eq. (A.9) and substitute into Eq. (B.3):

∣

∣

∣

∣

H2
12

H2
13

∣

∣

∣

∣

≈
∣

∣

∣

∣

∆K

Kc

+
Kc

K2 −K +Kc

+ j
K +Kc

QKc

∣

∣

∣

∣

2

= 7.51× 10−4 (B.4)

Therefore, |H2
12|/|H2

11| = 2.43×10−5. So we are able to conclude that |H12|2480

and |H13|2 are both negligible compared to |H11|2.
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Table 3: Design parameters of the device

Parameter Design Value Unit

Device layer thickness 30 µm

Suspension beam lengths (L)

(resonator 1, 2 and 3)

300 µm

Suspension beam width (w)

(resonator 1 and 3)

4 µm

Suspension beam width (w2)

(resonator 2)

5 µm

Tether length (Lt) 170 µm

Tether width (wt) 5 µm

Air gaps (d = dc = db) 3.5 µm

Air gaps (de) 4.5 µm

Cross-sectional area (A = Ac = Ab) 360× 22 (µm)2

Cross-sectional area (Ae) 160× 22 (µm)2

Cross-sectional area (Acf ) 70× 22 (µm)2

Sensing transduction factor (ηs)

(12V coupling voltage)

4.01× 10−8 A/(m · rad/s)

Actuation transduction factor (ηt)

(12V coupling voltage)

6.87× 10−8 A/(m · rad/s)

Proof mass (M) 6.87× 10−9 kg

Resonant frequency

(single resonator)

13.24 kHz
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tTable 4: Sensitivity comparison with state-of-the-art resonant force sensors

Reference Type Sensitivity expression Sensitivity (/N)

[5]
1DoF resonator with differential

sensing and leverage

∂(∆f/f)

∂T
8995

[16] 2DoF resonant sensor
∂(Eigenstates shift)

∂T
1478

Our work 3DoF resonator sensor
∂(Amplitude ratio)

∂T
4.9× 106

Table 5: Theoretical noise evaluation of the 3DoF sensor

Noise type
Measured

signal power

Evaluated

SNR (dB)

Evaluated

Noise power

Mechanical noise

(resonator 1)

0.53 (V2) 84.80
1.76× 10−9

(V2)

Mechanical noise

(resonator 3)

1.60× 10−2

(V2)

84.80
5.30× 10−11

(V2)

Electrical noise

(resonator 1)

0.53 (V2) 87.18
1.02× 10−9

(V2)

Electrical noise

(resonator 3)

1.60× 10−2

(V2)

71.98
1.02× 10−9

(V2)

Amplitude ratio

noise

33.11 71.72 2.23× 10−6
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