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1. INTRODUCTION 

In this note, we are concerned with the existence of maximal vector-valued flows 
for a wide class of networks. In this generality, a measure theoretic setting turns 
out to be quite natural. Our main result immediately includes the well-known Ford-
Fulkerson theorem on maximal flows and minimal cuts in the classical situation of 
finite networks. But even in this special case, our approach substantially differs from 
the various known proofs involving a suitable combinatorical argument, a labehng 
process, or the Farkas lemma; see for instance [ l ] or [7]. Here, the main ingredient 
will be an appropriate version of the Hahn-Banach theorem, and correspondingly 
certain sublinear operators will play an essential role. Our techniques are related to 
those of Fuchssteiner [2] and König-Neumann [З] in somewhat different situations. 
It should be noted, however, that here we do not need any disintegration type 
argument. The present approach can also be used to handle rather general supply 
and demand problems from mathematical economics and to prove the existence of 
measures with given marginals in various situations. These aspects will be studied in 
another paper. The author is indebted to Professor Vlastimil Ptak for a stimulating 
remark. 

2. FLOWS AND CUTS IN INFINITE NETW^ORKS 

Throughout this note, let S be a non-empty set endowed with some algebra Z 
of subsets, and consider a pair of disjoint sets P, Qe I, Further, let X denote an 
ordered vector space which is assumed to be Dedekind complete in the sense that 
each upper bounded subset has a supremum. Finally, let us fix a pair of biadditive 
set functions а,т : I x I -> X satisfying а(Л, В) ^ Т(У1. В) at least for all disjoint 
sets A, В e I, In this situation, the tupel N := (S, I, P, g, X, a, т) is said to be 
a generalized network. 

Of course, S will be interpreted as the set of nodes of the given network, P and Q 
will be viewed as the sets of sinks and sources, respectively, and a^A, B), т(Л, В)еХ 
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will stand for the lower and upper capacities concerning all arcs starting in AeI 
and leading to Bel. This is a reasonable generalization of the classical situation, 
where S is some finite set, I is the whole power set ^ (5 ) , X is the real line U, and a, т 
are obtained by summation over the respective individual arc capacities; let us refer 
to [ l ] or [7] for the classical background material. The following definitions cor
respond to the classical notions as well. 

Definitions. A biadditive set function v : I x I -^ X is said to be a flow in N, 
if the following conditions are satisfied: 

(1) a(A, B) й у{Л, В) S T{Ä, В) for all disjoint A, В e I ; 

(2) v{A, S) = v{S, A) for all AGI with A a R .= P и Q , 

where the bar ~ denotes the complement with respect to S. The value of a flow v is 
defined to be /(v) := v(Q, S) — v{S, ß) , and v is termed maximal i f / (v) S f{y) 
holds for every flow v in iV. Finally, any Ael satisfying g c z ^ c z g u i ^ i s called 
a cut in iV; the corresponding cut capacity is given by g{A) :— т(Л, Ä) — (т(Л, A). 

Remarks. It is intuitively clear and easily verified that every flow v in N satisfies 
f(v) = v[S, P) — v(P, iS). Moreover, for every flow v and every cut Л in iV we have 
f{v) й g{A) because of /(v) - v{A, S) - v(S, A) = v{A, Ä) - v{Ä, A) й д{АУ 
Hence, if there is at least one flow in N, then 

с : = inf {g{A) : Ae I cut in N} GX 

exists according to the Dedekind completeness of X and satisfies /(v) ^ с for every 
flow V in N, Note, however, that flows do not exist in general. 

Theorem. There exists at least one flow in the network N if and only if the fol
lowing condition 

(3) т(Л, Ä) ^ a[Ä, A) for all A^G E with A cz R or with Ä a R is fulfilled. More
over, in this case we have: 

(4) max {/(v) : v flow in in N} = inf {g(A) : A cut in N}. 

(5) Under the stronger assumption a ^ т on I x I, there exists a maximal flow v 
in N satisfying a^y-^xonHxZ, 

(6) If a, T '^ 0 on Z X I, then there exists a maximal flow v in N satisfying a ^ 

The p r o o f of this generalization of the Ford-Fulkerson theorem will be postponed 
to the last section. The main point will be the construction of a flow v in iV satisfying 
/(v) ^ с as well as certain additional estimates with respect to a and т, which are 
strong enough to ensure (5) and (6). If X is endowed with a vector space topology 
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such that the positive cone is normal [5; p. 61], and if G and т are both assumed to 
be bi-cr-additive, then the flows v from (5) and (6) are automatically bi-a-additive as 
well. These assertions are of particular interest in the context of measures on the pro
duct space S X 5. To demonstrate this fact, we assume Z = R, for simplicity, and 
suppose that the mappings G,T :I x I -^ R are canonically induced by finite mea
sures o,x :I ® I -^ и such that a ^ î on I ® I, where I ® I denotes the usual 
(j-algebra on S x S generated by Z x E. Thus, by definition, we have a^A, B) = 
= â(A X В) and Т(У4, B) = î(A x В) for all A, Bel. Now, standard measure theory 
confirms that every biadditive set function v : Z x Г -> [R satisfying cr ^ v ^ т on 
I X I canonically gives rise to a measure г' : Z ® 1 -> !R satisfying о ^ \ ^ î 
onl ® I as well as v{A, B) = v[A x B) for all A, В el. We conclude that our main 
result contains a Ford-Fulkerson type theorem for finite measures on Г (x) i; as 
a special case. 

3. AUXILIARY RESULTS ON SUBLINEAR OPERATORS 

Our principal tool will be the subsequent easy consequence of the vector-valued 
version of the Mazur-Orlicz theorem [4; Th. 2.41]. We note that the elegant proof 
of the latter result due to Ptak [6] immediately carries over to the case of X-valued 
mappings; see also Peressini [5; p. 79]. Lemma 1 can also be deduced from a suitable 
extension version of the Hahn-Banach theorem. 

Lemma 1. Let H he a linear subspace of some real vector space G, and let и e G. 
Further, consider a sublinear mapping Q : G -^ X, a linear mapping JLL : H -^ X, 
and some x eX. Then the following assertions are equivalent: 

(7) tx + ß(v) ^ Q[tu + v) for all real t ^ 0 and all v e H . 

(8) There exists a linear mapping ^ : G -> X such that ^ S Q on G, ^ = ji on H, 
and ^{u) ^ X. 

In the following, let E be the space of all Г-measurable simple functions ф : S -^ U, 
and let F consist of all I о J-measurable simple functions ф : S x S -> U, where 
l o i denotes the canonical algebra on 5 x 5 generated by 2' x Г. Given a subset A 
of S or S X S, XA will stand for the corresponding characteristic function. Now, 

в(ф) (a, b) : = max {ф{а) — ф(Ь), 0} for all феЕ and a, b e S 

defines a sublinear operator в : E -> F. Assertion (9) of the following lemma indicates 
the relevance of this operator to the theory of networks. 

Lemma 2. The operator 9 : E -> F has the following properties: 

(9) 0{XA) = ХЛХЛ and 0(-Хл) = ХЯ>СА for all A e l , 
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(10) в{ф + t) = в{ф) for all феЕ and te U, 

(11) е{ф - ф) = в[ф) + в{~ф) for all ф,феЕ+ satisfying фф = 0. 

(12) 0{taÄ, + ... + Î^XAJ = ^в{хл,) + .. . + t„e{xAj for all real t,, ..., Г, ^ 0 and 
all Ai, ..., Aj^e Z satisfying A^ a ... cz A„ or A^ ZD ... з A^. 

Proof. (9) and (10) are obvious. In order to prove (U), fix an Ae I such that 
Ф = 0 on Л and Ф = 0 on A. Then the desired identity can be easily checked point-
wise on A X A, Ä X Ä, A X Ä, and Ä x A. For the proof of (12) we may assume 
that S = ^1 =) ... => Д = 0. Then, given a,beS, there is a greatest integer к 
such that a e A,^ and a smallest integer / such that b e Л .̂ By means of (9) we conclude 
that the functions from the left and right hand side of (12) both assume at the 
point (a, b) the value ti + ... + tj,if I ^ k, resp. 0 if / > /c. 

Next, let G denote the space of all I о Z-measurable simple functions ф : S x S -> 
-> E and define 

(13) д{ф) : = Г в{ф{а, b)) (а, b) dÀ(a, b) for ail феО, 
J SxS 

where X : I о I -^ X is SL given additive set function, and the X-valued integral is 
understood in the usual elementary sense. 

Lemma 3. The operator Q : G -> X is sublinear provided that X(A x Б) ^ 0 
holds for all disjoint A, В e Z. 

Proof. First note that any ф e G can be written in the form 
n 

Ф = Yu Ф11А1ХВ1 with ф^еЕ, A^ x В^еИ x I pairwise disjoint. 

And for every representation of this type we have 

^-^ J AiXBi 

Hence it suffices to show that 

f в{ф + ф)аЛй f 0{ф) dA + Г в{ф) ÛÀ 
J АХВ J АхВ J АхВ 

holds for all ф, ф e E and A, Bel. Now, for suitable 5j, tj e U and pairwise disjoint 
Cj G Z we have C^ u ... u C,„ = S, 

m m 

Ф =Y. ^jXcj and Ф = Y, tjXcj, 
j = i j = i 

and therefore 

L в{ф + ф)аХ= ^ max {sj + tj - s^ - t^, 0} Я((Л n Cj) x {B n Q)) 
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On the right hand side, the scalar factor vanishes for j = k, w^hereas for j =¥ к our 
assumption on A implies ?L[[A n Cj) x [B n Q ) j ^ 0. Hence an obvious estimation 
finishes the proof. 

4. PROOF OF THE THEOREM 

First suppose that there exists some flow v in N. Then every Ae E with A a R 
satisfies 

T{A, Ä) - (7(1, A) à v{A, Ä) - v(Ä, A) = v{A, S) - v(S, A) = 0 , 

And in the case Ä c: R WQ have similarly 

т(Л, A) - a-{Ä, A) ^ v{A, Ä) - v{Ä, A) = v(S, Â) - у(Л, 5) = 0 , 

so that condition (3) turns out to be necessary. For the remainder of the proof, we 
assume that (3) is fulfilled. We claim that every cut A e I satisfies (T{Q, Q) — 
— "̂ (0? 6) й g{^)- Indeed, writing A = Q vj В with some Б с Я, we obtain 

T{A, A) + т(е , Q) - т (е , Ä) + т(Л, Q) + т(Б, В) and 

(т(Л, А) + (т(о, ö j = К о ' ^ j + К ^ ' Q) + < 5 ' ^ ) ' 

so that the desired inequahty is immediate after (3) and our basic assumption on a 
and T. Now the Dedekind completeness of Z ensures the existence of с : = int {g(A) : 
: Ae I cutinN} E X. We proceed to the construction of some flow v in iV satisfying 

/(v) ^ c, which will establish the identity (4). In a natural way, the biadditive set 
function T — a on I X I induces an additive set function À : I о I -> X via the 
formula 

i = 1 i = 1 

for every finite system of pairwise disjoint rectangles Ai x В^е! x I, Let Q : G ^ X 
denote the corresponding sublinear operator given by (13). We identify the elements 
of £ with the constant functions in G so that E a G, Consider now the linear subspace 
H := {f] e E : f] = 0 on P и Q] ot G, thQ linear mapping ц : H -^ X given by 

n{rj) := \ Г} rjd(T{S, -) - rjda{-,S) for all rj E H , 
s 

and finally и \= XQEG and x : = с + cr(5, g) — a{Q, S)EX. We claim that in this 
situation condition (7) is fulfilled. To prove this assertion, let t ^ 0 and /7 e Я be 
arbitrarily given, and let ф and i/̂  denote the positive and negative part of tXq + Ц, 
respectively. Thus tXq + rj = ф — ф with ф^ф E E+ and фф = 0. We arrange all 
values of ф and ф into an increasing sequence of real numbers 0 = 5o < ŝ  < .. . 
. . . < s„ and define 
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Ar^= {аеЗ:ф{а)^8^] , В, := {a e S :il/{a) ^ s,} , t,:=s,-Si^, 

for i = 1 , . . . , n. Then it follows that 

n n 

Ф = Y. ^iXA, and Ф = Y. hlBi ' 

For all / = 1, ..., П we have B^ a R and hence т(В,-, Б,) ^ (^{B^, S j in view of (3). 
Further, note that t = Sj for exactly one j = 0, I, ..., n. If / > j , then certainly 
Ai cz R. Using (3) again, we arrive at T{AI, Äf) ^ cr(J,-, A^) for г = 7 + 1, ..., п. 
In the remaining case i ^ j , the set Ai turns out to be a cut in Â  which implies 
T[AI, Äi) ^ <y{Äi, Ai) + с for / = 1, ..., j according to the definition of c. We finally 
observe that t = t^ + ... + tj. Combining all these facts with the properties of в 
from lemma 2, we conclude that 

QitlQ + п)-и[ф-Ф)=\ в(ф - .A) dA = [ {0{ф) + в{-ф)) dX = 

= I в{ф)аХ + I e{ti + ... + f„ ~ i/.)dA -

i = 1 i = 1 

è fc + X г;((г(Л„ A,) - a{A,, Ä.) + a{B,, S,-) - a{B, B,)) = 
1 = 1 

= (c + f f,(ff(S, Л,.) - a{Ai, S) + (j{B„ S) - a{S, B,)) = -

= rc + (Ф - iA)cia(S, •) - (^ - 'Aj M * ' Sj = rx + /i(?/j. 
Js Js 

Hence lemma 1 supplies us with some hnear mapping ^ : G -^ X with the properties 
stated in (8j. We now define 

a{A, B) : = ^(}1/A,B) for all A.Bel, 

where i/̂ ^ в e G denotes the function being constant to Хл on 5 x В and constant to 0 
on S X B. The mapping a : I x 2" -> Z is certainly biadditive. Furthermore, from 
^ ^ Q on G we obtain the estimates 

(14) (ö- - T) ( I , ^ n 5 j ^ oc{A, 5 j ^ (T - (jj (Л, Л n Б) for all A, В e I . 

In particular, these estimates imply that a(S, A) == 0 for all Л G Г as well as 

0 й OL{A, B) u{r - cr) {A, B) for all disjoint A, В E Z . 

161 



On the other hand, from ^{u) ^ x and ^ = fi on H wo conclude that 

a(Ô, S) = ^{XQ} ^ с + (7(5, Ô) - (7(0, S ) , 

a[A, S) = ^{хл) = <^{S, Л) - (j{A, S) for all AeZ with Л с î  . 

Thus V : = a + СГ turns out to be a flow in Л/' satisfying/(v) ^ c, which completes the 
proof of (4). It should be noted that this flow satisfies v S т on I x I whenever 
a ^ T on I X I, but because of oc(A, A) = — а(Л, À) for all A el, we cannot 
expect that the estimate о ^ v will hold on Г x I'm general. Consequently, a certain 
modification of a and v has to be taken into account for the proof of (5) and (6). 
In order to give a unified approach to these assertions, let us assume that ß : 1 x 
X 2" -> X is a positive biadditive mapping satisfying т — a-^ßonlxl. From 

(14) we obtain 0, 6t ^ ß on I о I, where a and ß denote the respective additive set 
functions on I о I. Hence the Dedekind completeness of X ensures the existence of 

y{V) : = sup {Ôt{U) lUeloE with U ŒV}GX 

for every Ve I о Z. This definition yields an additive mapping у : I о I -^ X satisfying 
^uyußonlol. Moreover, from a{A, B) ^ 0 for аИ disjoint A, В e I one easily 
deduces that y[A x Ä) = a(A, A) holds for all A e I. Now, the mapping v : I x 
X I -^ X given by 

v{A, B) := y{A X B) + a{A, B) lor all A, В e I 

is biadditive and fulfills c r ^ v ^ ö - + / ? o n I ' x 2 ' . And from v(A, Ä) = v{A, Ä) 
for all Ael/it is obvious that v is a maximal flow again. Now, the assertions (5) 
and (6) are readily obtained by choosing j^ to be т — cr and т, respectively. Let us 
finally note that the present approach reveals a maximal flow v in iV satisfying a ^ 
^ V ^ (7 + (T — (7)"̂  as soon as the positive part (т — a)^ exists in a reasonable 
sense. 

References 

[1] Ford, L. R., Fidkerson, D. R.: Flows in Networks. Princeton, New Jersey. Princeton University 
Press 1962. 

[2] Fuchssteiner, В.: An Abstract Disintegration Theorem. Pacific J. Math. 94, 303—309 (1981). 
[3] König, H., Neumann, M.: Mathepiatische Wirtschaftstheorie, Vorlesungsaiisarbeitung. Saar

brücken 1976. 
[4] Mazur, S., Orlicz, W.: Sur les espaces métriques linéaires II. Studia Math. 13, 137—179 

(1953). 
[5] Peressini, A. L.: Ordered Topological Vector Spaces. New York—Evanston—London. 

Harper and Row 1967. 
[6] Ptàk, v.: On a Theorem of Mazur and Orlicz. Studia Math. 75, 365-366 (1956). 
[7] Vogel, W.: Lineares Optimieren. Leipzig. Akad. Verlagsgesellschaft Geest & Portig 1970. 

Author's address: Fachbereich Mathematik, Universität Essen, D-4300 Essen, GFR. 

162 


