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A FORECAST COMPARISON OF VOLATILITY MODELS:
DOES ANYTHING BEAT A GARCH(1,1)?

PETER R. HANSENa* AND ASGER LUNDEb

a Department of Economics, Brown University, Providence, USA
b Department of Information Science, Aarhus School of Business, Denmark

SUMMARY

We compare 330 ARCH-type models in terms of their ability to describe the conditional variance. The models
are compared out-of-sample using DM–$ exchange rate data and IBM return data, where the latter is based
on a new data set of realized variance. We find no evidence that a GARCH(1,1) is outperformed by more
sophisticated models in our analysis of exchange rates, whereas the GARCH(1,1) is clearly inferior to models
that can accommodate a leverage effect in our analysis of IBM returns. The models are compared with the
test for superior predictive ability (SPA) and the reality check for data snooping (RC). Our empirical results
show that the RC lacks power to an extent that makes it unable to distinguish ‘good’ and ‘bad’ models in
our analysis. Copyright  2005 John Wiley & Sons, Ltd.

1. INTRODUCTION

The conditional variance of financial time series is important for pricing derivatives, calculating

measures of risk, and hedging. This has sparked an enormous interest in modelling the conditional
variance and a large number of volatility models have been developed since the seminal paper of

Engle (1982); see Poon and Granger (2003) for an extensive review and references.

The aim of this paper is to examine whether sophisticated volatility models provide a better
description of financial time series than more parsimonious models. We address this question

by comparing 330 GARCH-type models in terms of their ability to forecast the one-day-ahead

conditional variance. The models are evaluated out-of-sample using six different loss functions,

where the realized variance is substituted for the latent conditional variance. We use the test for
superior predictive ability (SPA) of Hansen (2001) and the reality check for data snooping (RC)

by White (2000) to benchmark the 330 volatility models to the GARCH(1,1) of Bollerslev (1986).

These tests have the advantage that they properly account for the full set of models, without the use
of probability inequalities, such as the Bonferroni bound, that typically lead to conservative tests.

We compare the models using daily DM–$ exchange rate data and daily IBM returns. There

are three main findings of our empirical analysis. First, in the analysis of the exchange rate data

we find no evidence that the GARCH(1,1) is inferior to other models, whereas the GARCH(1,1)
is clearly outperformed in the analysis of IBM returns. Second, our model space includes models

with many distinct characteristics that are interesting to compare,1 and some interesting details



emerge from the out-of-sample analysis. The models that perform well in the IBM return data
are primarily those that can accommodate a leverage effect, and the best overall performance is
achieved by the A-PARCH(2,2) model of Ding et al. (1993). Other aspects of the volatility models
are more ambiguous. While the t-distributed specification of standardized returns generally leads
to a better average performance than the Gaussian in the analysis of exchange rates, the opposite
is the case in our analysis of IBM returns. The different mean specifications, zero-mean, constant
mean and GARCH-in-mean, result in almost identical performances. Third, our empirical analysis
shows that the RC has less power than the SPA test. This makes an important difference in our
application, because the RC cannot detect that the GARCH(1,1) is significantly outperformed by
other models in the analysis of IBM returns. In fact, the RC even suggests that an ARCH(1) may
be the best model in many cases, which does not conform with the existing empirical evidence.
The SPA test always finds the ARCH(1) model to be inferior, which shows that the SPA test has
power in these applications and is therefore more likely to detect superior models when such exist.

Ideally, we would evaluate the models’ ability to forecast all aspects of the conditional
distribution. However, it is not possible to extract precise information about the conditional
distribution without making restrictive assumptions. Instead we focus on the central component of
the models—the conditional variance—that can be estimated by the realized variance. Initially,
it was common to substitute the squared return for the unobserved conditional variance in out-
of-sample evaluations of volatility models. This typically resulted in a poor performance, which
instigated a discussion of the practical relevance of volatility models. However, Andersen and
Bollerslev (1998) showed that the ‘poor’ performance could be explained by the fact that the
squared return is a noisy proxy for the conditional variance. By substituting the realized variance
(instead of the squared return), Andersen and Bollerslev (1998) showed that volatility models
perform quite well. Hansen and Lunde (2003) provide another important argument for using the
realized variance rather than the squared return. They show that substituting the squared returns
for the conditional variance can severely distort the comparison, in the sense that the empirical
ranking of models may be inconsistent for the true (population) ranking. So an evaluation that
is based on squared returns may select an inferior model as the ‘best’ with a probability that
converges to one as the sample size increases. For this reason, our evaluation is based on the
realized variance.

Comparing multiple models is a non-standard inference problem, and spurious results are likely
to appear unless inference controls for the multiple comparisons. An inferior model can be ‘lucky’
and perform better than all other models, and the more models that are being compared the higher
is the probability that the best model (in population) has a much smaller sample performance
than some inferior model. It is therefore important to control for the full set of models and their
interdependence when evaluating the significance of an excess performance. In our analysis we
employ the SPA test and the RC, which are based on the work of Diebold and Mariano (1995)
and West (1996). These tests can evaluate whether a particular model (benchmark) is significantly
outperformed by other models, while taking into account the large number of models that are
being compared. In other words, these tests are designed to evaluate whether an observed excess
performance is significant or could have occurred by chance.

This paper is organized as follows. Section 2 describes the 330 volatility models under
consideration and the loss functions are defined in Section 3. In Section 4, we describe our
measures of realized variance and Section 5 contains some details of the SPA test and its
bootstrap implementation. We present our empirical results in Section 6 and Section 7 contains
some concluding remarks.



2. THE GARCH UNIVERSE

Given a price process, pt, we define the compounded daily return by rt D log⊲pt⊳� log⊲pt�1⊳, t D
�RC 1, . . . , n. Later we split the sample into an estimation period (the first R observations) and
an evaluation period (the last n observations).

The conditional density of rt is denoted by f⊲rjFt�1⊳, where Ft�1 is the �-algebra induced
by variables that are observed at time t � 1. We define the conditional mean by �t � E⊲rtjFt�1⊳

(the location parameter) and the conditional variance by �2
t � var⊲rtjFt�1⊳ (the scale parameter),

assuming that both are well defined. Subsequently we can define the standardized return,
et � ⊲rt � �t⊳/�t, and denote its conditional density by g⊲ejFt�1⊳. Following Hansen (1994) we
consider a parametric specification, f⊲rj ⊲Ft�1; �⊳⊳, where � 2  ² �

q is a vector of parameters.
It now follows that the time-varying vector of parameters,  t �  ⊲Ft�1; �⊳, can be divided into
 t D ⊲�t, �

2
t , �t⊳, where �t is a vector of shape parameters for the conditional density of et. Thus,

we have a family of density functions for rt, which is a location-scale family with (possibly time-
varying) shape parameters, and we shall model �t, �

2
t and �t individually. Most GARCH-type

models can be formulated in this framework and �t typically does not depend on t.
The notation for our modelling of the conditional mean and variance is mt D �⊲Ft�1; �⊳ and

h2
t D �2⊲Ft�1; �⊳, respectively, and we employ two specifications for g⊲ej�t⊳ in our empirical

analysis. One is a Gaussian specification that is free of parameters g⊲ej�t⊳ D g⊲e⊳, and the other
is a t-specification that has degrees of freedom, �, as the only parameter, g⊲ej�t⊳ D g⊲ej�⊳.2 Our
specifications for the conditional mean are: mt D �0 C �1�

2
t�1 (GARCH-in-mean), mt D �0 and

mt D 0.
The conditional variance is the main object of interest and our analysis includes a large number

of parametric specifications for �t that are listed in Table I. The use of acronyms has not been
fully consistent in the existing literature, for example, A-GARCH has been used to represent four
different specifications. So to avoid any confusion we use ‘A-GARCH’ to refer to a model by
Engle and Ng (1993) and use different acronyms for all other models, e.g., we use H-GARCH to
refer to the model by Hentshel (1995). Several specifications nest other specifications, as is evident
from Table I. In particular, the flexible specifications of the H-GARCH and the Aug-GARCH, see
Duan (1997), nest many of the simpler specifications. An empirical comparison of several of the
models that are nested in the Aug-GARCH model can be found in Loudon et al. (2000).

The evolution of volatility models has been motivated by empirical findings and economic
interpretations. Ding et al. (1993) used Monte Carlo simulations to demonstrate that both the
GARCH specification (model for �2

t ) and the TS-GARCH specification3 (model for �t) are capable
of producing the autocorrelation pattern that is seen in financial data. So in this respect there is
no argument for modelling �t rather than �2

t or vice versa. More generally, we can consider
a modelling of �υt where υ is a parameter to be estimated, and this motivated the Box–Cox

transformations that involve �t and εt. The empirically observed leverage effect motivated the
development of models with an asymmetric response in volatility to positive and negative shocks.
The leverage effect was first noted by Black (1976) and is best illustrated by the news impact curve,
which was introduced by Pagan and Schwert (1990) and named by Engle and Ng (1993). This
curve is a plot of �2

t against εt�1 that illustrates how the volatility reacts to good and bad news.
In our analysis, we have included the four combinations of p, q D 1, 2 for the lag length

parameters, with the following exceptions: the ARCH is only estimated for q D 1; H-GARCH

2 We do not restrict � to be an integer.
3 See Taylor (1986) and Schwert (1990).



Table I. Specifications for the conditional variance

ARCH: �2
t D ω C

q
∑

iD1

˛iε
2
t�i

GARCH: �2
t D ω C

q
∑

iD1

˛iε
2
t�i C

p
∑

jD1

ˇj�
2
t�j

IGARCH �2
t D ω C ε2

t�1 C
q

∑

iD2

˛i⊲ε
2
t�i � ε2

t�1⊳C
p

∑

jD1

ˇj⊲�
2
t�j � ε2

t�1⊳

Taylor/Schwert: �t D ω C
q

∑

iD1

˛ijεt�ij C
p

∑

jD1

ˇj�t�j

A-GARCH: �2
t D ω C

q
∑

iD1

[˛iε
2
t�i C 
iεt�i] C

p
∑

jD1

ˇj�
2
t�j

NA-GARCH: �2
t D ω C

q
∑

iD1

˛i⊲εt�i C 
i�t�i⊳
2 C

p
∑

jD1

ˇj�
2
t�j

V-GARCH: �2
t D ω C

q
∑

iD1

˛i⊲et�i C 
i⊳
2 C

p
∑

jD1

ˇj�
2
t�j

Thr.-GARCH: �t D ω C
q

∑

iD1

˛i[⊲1 � 
i⊳ε
C
t�i � ⊲1 C 
i⊳ε

�
t�i] C

p
∑

jD1

ˇj�t�j

GJR-GARCH: �2
t D ω C

q
∑

iD1

[˛i C 
iI⊲εt�i>0⊳]ε
2
t�i C

p
∑

jD1

ˇj�
2
t�j

log-GARCH: log⊲�t⊳ D ω C
q

∑

iD1

˛ijet�ij C
p

∑

jD1

ˇj log⊲�t�j⊳

EGARCH: log⊲�2
t ⊳ D ω C

q
∑

tD1

[˛iet�i C 
i⊲jet�ij � Ejet�ij⊳] C
p

∑

jD1

ˇj log⊲�2
t�j⊳

NGARCH:a �υt D ω C
q

∑

iD1

˛ijεt�ijυ C
p

∑

jD1

ˇj�
υ
t�j

A-PARCH: �υ D ω C
q

∑

iD1

˛i[jεt�ij � 
iεt�i]
υ C

p
∑

jD1

ˇj�
υ
t�j

GQ-ARCH: �2
t D ω C

q
∑

iD1

˛iεt�i C
p

∑

iD1

˛iiε
2
t�i C

p
∑

i<j

˛ijεt�iεt�j C
p

∑

jD1

ˇj�
2
t�j

H-GARCH: �υt D ω C
q

∑

iD1

˛iυ�
υ
t�i[jet � �j � �⊲et � �⊳]� C

p
∑

jD1

ˇj�
υ
t�j

Aug-GARCH:b �2
t D

{

jυ�t � υC 1j1/υ if υ 6D 0
exp⊲�t � 1⊳ if υ D 0

�t D ω C
q

∑

iD1

[˛1ijεt�i � �j� C ˛2i max⊲0, � � εt�i⊳
�]�t�j

C
q

∑

iD1

[˛3if⊲jεt�i � �j, �⊳C ˛4if⊲max⊲0, � � εt�i⊳, �⊳]�t�j

C
p

∑

jD1

ˇj�
2
t�j

a This is the A-PARCH model without the leverage effect.
b Here f⊲x, �⊳ D ⊲x� � 1⊳/�.



and Aug-GARCH are only estimated for ⊲p, q⊳ D ⊲1, 1⊳, because these are quite burdensome to

estimate. It is well known that an ARCH(1) model is unable to fully capture the persistence in

volatility, and this model is only included as a point of reference, and to verify that the tests, SPA

and RC, have power. This is an important aspect of the analysis, because a test that is unable

to reject that the ARCH(1) is the best model cannot be very informative about which is a better

model. Restricting the models to have two lags (or less) should not affect the main conclusions

of our empirical analysis, because it is unlikely that a model with more lags would outperform

a simple benchmark in the out-of-sample comparison, unless the same model with two lags can

outperform the benchmark. This aspect is also evident from our analysis, where a model with

p D q D 2 rarely performs better (out-of-sample) than the same model with fewer lags, even

though most parameters are found to be significant (in-sample).

3. FORECAST EVALUATION

A popular way to evaluate volatility models out-of-sample is in terms of the R2 from a

Mincer–Zarnowitz (MZ) regression, r2
t D aC bh2

t C ut, where squared returns are regressed on

the model forecast of �2
t and a constant. Or the logarithmic version, log⊲r2

t ⊳ D aC b log⊲h2
t ⊳C ut,

that is less sensitive to outliers, as was noted by Pagan and Schwert (1990) and Engle and Patton

(2001).4 However, the R2 of a MZ regression is not an ideal criterion for comparing volatility

models, because it does not penalize a biased forecast. For example, a poor biased forecast may

achieve a higher R2 than a good unbiased forecast, because the bias can be eliminated artificially

through estimates of (a, b) that differ from (0, 1).

It is not obvious which loss function is more appropriate for the evaluation of volatility models,

as discussed by Bollerslev et al. (1994), Diebold and Lopez (1996) and Lopez (2001). So rather

than making a single choice we use the following six loss functions in our empirical analysis:

MSE1 � n�1
n∑

tD1

⊲�t � ht⊳
2 MSE2 � n�1

n∑

tD1

⊲�2
t � h2

t ⊳
2

QLIKE � n�1
n∑

tD1

⊲log⊲h2
t ⊳C �2

t h
�2
t ⊳ R2LOG � n�1

n∑

tD1

[log⊲�2
t h

�2
t ⊳]

2

MAE1 � n�1
n∑

tD1

j�t � htj MAE2 � n�1
n∑

tD1

j�2
t � h2

t j

The criteria MSE2 and R2LOG are similar to the R2 of the MZ regressions,5 and QLIKE

corresponds to the loss implied by a Gaussian likelihood. The mean absolute error criteria, MAE2

and MAE1, are interesting because they are more robust to outliers than, say, MSE2. Additional

discussions of the MSE2, QLIKE and R2LOG criteria can be found in Bollerslev et al. (1994).

4 Engle and Patton (2001) also point out that heteroskedastic returns imply (even more) heteroskedasticity in the squared
returns, r2

t . So parameters are estimated inefficiently and the usual standard errors are misleading.
5 Provided that a D 0 and b D 1, which essentially requires the forecasts to be unbiased.



4. REALIZED VARIANCE

In our empirical analysis we substitute the realized variance for the latent �2
t . The realized variance

for a particular day is calculated from intraday returns, ri,m, where rt,i,m � pt�⊲i�1⊳/m � pt�i/m for
i D 1, . . . , m. Thus rt,i,m is the return over a time interval with length 1/m on day t, and we note
that rt D

∑m
iD1 rt,i,m. It will often be reasonable to assume that E⊲rt,i,mjFt�1⊳ ' 0 and that intra-

day returns are conditionally uncorrelated, cov⊲rt,i,m, rt,j,mjFt�1⊳ D 0 for i 6D j, such that �2
t �

var
(∑m

iD1 rt,i,mjFt�1

)
D ∑m

iD1 var⊲rt,i,mjFt�1⊳ ' ∑m
iD0 E⊲r

2
t,i,mjFt�1⊳ D E[RV

⊲m⊳
t jFt�1], where we

have defined the realized variance (at frequency m) RV
⊲m⊳
t �

∑m
iD1 r

2
t,i,m. Thus RV

⊲m⊳
t is approx-

imately unbiased for �2
t (given our assumptions above), and it can often be shown that

E[RV
⊲m⊳
t � �2

t ]2 is decreasing in m, such that RV
⊲m⊳
t is an increasingly more precise estimator

of �2
t as m increases.6 Further, the RV

⊲m⊳
t is (by definition) consistent for the quadratic variation of

pt, which is identical to the conditional variance, �2
t , for certain data generating processes (DGPs)

such as the ARCH-type models considered in this paper.7

Several assets are not traded 24 hours a day, because the market is closed overnight and over
weekends. In these situations we only observe f � m (of the m possible) intraday returns. Assume

for simplicity that we observe, rt,1,m, . . . , rt,f,m and define RV
⊲f/m⊳
t � ∑f

iD1 r
2
t,i,m. Since RV

⊲f/m⊳
t

only captures the volatility during the part of the day that the market is open, we need to extend

RV
⊲f/m⊳
t to a measure of volatility for the full day. One resolution is to add the squared close-to-

open return to RV
⊲f/m⊳
t , but this leads to a noisy measure because ‘overnight’ returns are relatively

noisy. A better solution is to scale RV
⊲f/m⊳
t , and use the estimator

O�2
t � Oc Ð RV⊲f/m⊳t where Oc �









n�1
n∑

tD1

⊲rt � O�t⊳2

n�1
n∑

tD1

RV
⊲f/m⊳
t









⊲1⊳

This yields an estimator that is approximately unbiased for �2
t under fairly reasonable assumptions.

See Martens (2002), Hol and Koopman (2002) and Fleming et al. (2003), who applied similar
scaling estimators to obtain a measure of volatility for the whole day.

5. TEST FOR SUPERIOR PREDICTIVE ABILITY

We divide the observations into an estimation period and an evaluation period:

t D
�RC 1, . . . , 0
︸ ︷︷ ︸

,

estimation period

1, 2, . . . , n
︸ ︷︷ ︸

evaluation period

6 In practice, m must be chosen moderately large, to avoid that intraday returns become correlated due to market
microstructure effects. In the technical appendix (Hansen and Lunde, 2001), we list the R2 values from two MZ regressions,

r2
t D aC bh2

t C ut and RV
⊲288⊳
t D aC bh2

t C ut , where the realized variance, RV
⊲288⊳
t , is defined in the next section. The

R2 of the former typically lies between 2 and 4%, whereas the R2 of the latter lies between 35 and 45%. This strongly

suggests that RV
⊲288⊳
t is a far more precise estimate of �2

t than is r2
t .

7 For other DGPs the RV
⊲m⊳
t is consistent for the integrated variance, see Meddahi (2002) and Barndorff-Nielsen and

Shephard (2001), which need not equal �2
t . However, this does not change our main argument for using the realized

variance, which is that RV
⊲m⊳
t is a more precise estimator of �2

t than is r2
t .



The parameters of the volatility models are estimated using the first R interday observations, and
these estimates are used to make one-step-ahead forecasts for the remaining n periods. During
the evaluation period we calculate the realized variance from intraday returns and obtain O�2

t using
(1). Thus model k yields a sequence of forecasts, h2

k,1, . . . , h
2
k,n, that are compared to O�2

1 , . . . , O�2
n,

using a loss function L. Let the first model, k D 0, be the benchmark model that is compared to
models k D 1, . . . , l. Each model leads to a sequence of losses, Lk,t � L⊲ O�2

t , h
2
k,t⊳, t D 1, . . . , n,

and we define the relative performance variables

Xk,t � L0,t � Lk,t, k D 1, . . ., l, t D 1, . . . , n

Our null hypothesis is that the benchmark model is as good as any other model in terms of expected
loss. This can be formulated as the hypothesis H0 : �k � E⊲Xk,t⊳ � 0 for all k D 1, . . . , l, because
�k > 0 corresponds to the case where model k is better than the benchmark. In order to apply
the stationary bootstrap of Politis and Romano (1994) in our empirical analysis, we assume that
Xt D ⊲X1,t, . . . , Xl,t⊳

0 is strictly stationary, EjXtjrCυ < 1 for some r > 2 and some υ > 0, and that
Xt is ˛-mixing of order �r/⊲r � 2⊳. These assumptions are due to Goncalves and de Jong (2003)
and are weaker than those formulated in Politis and Romano (1994). The stationarity of fXtg
would be satisfied if frtg is strictly stationary, because fXtg is a function of frtg. Next, the moment
condition is not alarming, because fXtg measures the difference in performance of pairs of models,
and it is unlikely that the predictions would be so different that the relative loss would violate
the moment condition, since the models are quite similar and have the same information. Finally,
the mixing condition for fXtg is satisfied if it holds for rt. It is important to note that we have
not assumed that any of the volatility models are correctly specified. Nor is such an assumption
needed, since our ranking of volatility models is entirely measured in terms of expected loss. The
assumptions about frtg will suffice for the comparison and inference, and it is not necessary to
make a reference to the true specification of the conditional variance. On the other hand, there is
nothing preventing one of the volatility models being correctly specified.8

The bootstrap implementation can be justified under weaker assumptions than those above.
For example, the stationarity assumption about frtg can be relaxed and replaced by a near-epoch
condition for Xt, see Goncalves and de Jong (2003). This is valuable to have in mind in the present
context, since the returns may not satisfy the strict stationarity requirement. A structural change
in the DGP would be more critical for our analysis. While a structural change need not invalidate
the bootstrap inference (if the break occurs prior to the evaluation period), it would make it very
difficult to interpret the results, because the models are estimated using data that have different
stochastic properties.

As stated above, the null hypothesis is given by H0 : l � 0, where l D ⊲�1, . . . , �l⊳
0. The

SPA test is based on the test statistic, TSPAn � maxkD1,...,l Xk/ Oωkk , where Xk is the kth element of
X � n�1

∑n
tD1 Xt and Oω2

kk is a consistent estimator of ω2
kk � limn!1 var⊲

p
nXk,n⊳, k D 1, . . . , l.

Thus, TSPAn represents the largest t-statistic (of relative performance) and the relevant question
is whether TSPAn is too large for it to be plausible that l � 0. This is precisely the question that
the test for SPA is designed to answer, as it estimates the distribution of TSPAn under the null
hypothesis and obtains the critical value for TSPAn .

A closely related test is the RC of White (2000) that employs the non-standardized test statistic
TRCn � maxkD1,...,l Xk . The critical values of the SPA test and the RC are derived in different ways,

8 Even the IGARCH model produces a stationary returns series frtg, see Nelson (1990).



and this causes the latter to be sensitive to the inclusion of poor and irrelevant models, and to be
less powerful, see Hansen (2003) for details. Power is important for our application, because a
more powerful test is more likely to detect superior volatility models, if such exist.

Given the assumptions stated earlier in this section, it holds that n1/2⊲X � l⊳
d! Nl⊲0, �⊳,

where ‘
d!’ denotes convergence in distribution, where l D ⊲�1, . . . , �l⊳

0 and � � limn!1
E[n⊲X � l⊳⊲X � l⊳0]. This result makes it possible to test the hypothesis, H0 : l � 0.

5.1. Bootstrap Implementation

Unless n is large relative to l it is not possible to obtain a precise estimate of the lð l covariance
matrix, �. It is therefore convenient to use a bootstrap implementation, which does not require an
explicit estimate of �, and the tests of White (2000) and Hansen (2001) can both be implemented
with the stationary bootstrap of Politis and Romano (1994).9 From the bootstrap resamples,
⊲XŁ

b,1, . . . ,XŁ
b,n⊳, b D 1, . . . , B, we can construct random draws of quantities of interest, which

can be used to estimate the distributions of these quantities. In our setting we seek an estimate of
ω2
kk and estimates of the distributions of TSPAn and TRCn . First we calculate the sample averages,

X
Ł
b � n�1

∑n
tD1 XŁ

b,t, b D 1, . . . , B, and it follows from Goncalves and de Jong (2003) that the

empirical distribution of n1/2X
Ł
b converges to the true asymptotic distribution of n1/2X. The

resamples also allow us to calculate Oω2
kk � n

B

∑B
bD1⊲X

Ł
b,k � Xk⊳

2, which is consistent for ω2
kk . We

seek the distribution of the test statistics, TSPAn and TRCn , under the null hypothesis, l � 0, so we
must re-centre the bootstrap variables, such that they satisfy the null hypothesis.10 Ideally, the
variables should be re-centred about the true value of l, but since l is unknown we must use an
estimate and Hansen (2001) proposed the estimates:

O�lk D min⊲Xk, 0⊳, O�ck D Xk1fXk,n��Ak,ng and O�uk D 0

where Ak,n � 1
4
n�1/4 Oωkk . Thus we define Z

Ł,i
b,k D X

Ł
b,k � gi⊲Xk⊳, for i D l, c, u, where gl⊲Ð⊳ �

max⊲x, 0⊳, gc⊲x⊳ � x Ð 1fx>�Ak,ng and gu⊲x⊳ � x, and it follows that E[Z
Ł,i
b,kjX1, . . . ,Xn] D O�ik � 0 for

i D l, c, u. This enables us to approximate the distribution of TSPAn by the empirical distribution of

T
SPAŁ,i
b,n � max

kD1,...,l

n1/2Z
Ł,i
b,k

Oωkk
, b D 1, . . . , B, i D l, c, u ⊲2⊳

and we calculate the p-value: OpiSPA � B�1
∑B

bD1 1fTSPAŁ,i
b,n

>TSPAn g, for i D l, c, u. The null hypothesis

is rejected for small p-values. In the event that TSPAn � 0, there is no evidence against the null
hypothesis, and in this case we use the convention: OpSPA � 1.

The three choices for O�k will typically yield three different p-values, and Hansen (2001) has
shown that the p-value based on O�ck is consistent for the true p-value, whereas O�lk and O�uk provide
an upper and lower bound for the true p-value, respectively.11 We denote the three resulting tests
by SPAl, SPAc and SPAu, where the subscripts refer to lower, consistent and upper. The purpose

9 This procedure involves a dependence parameter, q, that serves to preserve possible time-dependence in Xt. We used
q D 0.5 and generated B D 10,000 bootstrap resamples in our empirical analysis.
10 The bootstrap variables are constructed such that E⊲X

Ł
bjX1, . . . ,Xn⊳ D X, and typically we have X 6� 0.

11 The true p-value is defined as limn!1 P⊲TSPAn > t⊳, where t is the observed value of the test statistic and the probability
is evaluated using the true (but unknown) values of � and �.



of the correction factor, Ak,n, that defines O�ck , is to ensure that limn!1 P⊲ O�ck D 0j�k D 0⊳ D 1 and

limn!1 P⊲Z
Ł
b,k,n � 0j�k < 0⊳ D 1. This is important for the consistency, because the models with

�k < 0 do not influence the asymptotic distribution of TSPAn , see Hansen (2001). However, the
choice of Ak,n is not unique, and it is therefore useful to include the p-values of the two other
tests, SPAl and SPAu, because they define the range of p-values that can be obtained by varying
the choice for Ak,n. The p-values based on the tests statistic, TRCn , are obtained similarly. These
are denoted by RCl,RCc and RCu, where RCu corresponds to the original RC of White (2000).

6. DATA AND EMPIRICAL RESULTS

The models are estimated by maximum likelihood using the estimation sample, and the model’s
forecasts are compared to the realized variance in the evaluation sample.

The first data set consists of DM–$ spot exchange rate data, where the estimation sample
spans the period from October 1, 1987 through September 30, 1992 (1254 observations) and the
out-of-sample evaluation sample spans the period from October 1, 1992 through September 30,
1993⊲n D 260⊳. The realized variance data for the exchange rate have previously been analysed in
Andersen and Bollerslev (1998) and are based on m D 288 intraday returns per day. See Andersen
and Bollerslev (1997) for additional details. We adjust their measure of realized variance and use

O�2
t � Oc Ð RV⊲288⊳

t , where Oc D 0.8418 is defined in (1).
The second data set consists of IBM stock returns, where the estimation period spans the period

from January 2, 1990 through May 28, 1999 (2378 days) and the evaluation period spans the period
from June 1, 1999 through May 31, 2000 (n D 254). The realized variances were constructed from
high-frequency data that were extracted from the Trade and Quote (TAQ) database. The intraday
returns, rt,i,m, were constructed artificially by fitting a cubic spline to all mid-quotes of a given
trading day, using the time interval 9 : 30 EST–16 : 00 EST.12 From the splines we extract f D 130
artificial three-minute returns per day (out of the hypothetical m D 480 three-minute returns) and

calculate RV
⊲130/480⊳
t . There are several other methods for constructing the realized variance and

several of these are discussed in Andersen et al. (2003). Later we verify that our empirical results
are not influenced by our choice of estimator, as we reach the same conclusions by using six other
measures of the realized variance.

The estimate of the adjustment coefficient, (1), is Oc D 4.4938, which exceeds 480/130 ' 3.7.

This indicates that RV
⊲f/m⊳
t underestimates the daily variance by more than would be expected if

the daily volatility was evenly spread over the 24 hours of the day. There are several possible
explanations to the fact that we need to adjust the volatilities by a number different than 3.7.
First of all, it could be the result of sample variation, but this seems unlikely as n is too large
for sampling error to explain this large a difference. A second explanation is that our intraday
returns are positively autocorrelated. The autocorrelation can arise from the market microstructure
effects or can be an artifact of the way intraday returns are constructed. A third explanation is
that returns are relatively more volatile between close and open, than between open and close,
measured per unit of time. This requires that more information arrives to the market while it is
closed than while it is open. This contradicts the findings of French and Roll (1986) and Baillie
and Bollerslev (1989), so we find this explanation to be unrealistic. Finally, a fourth factor that can

12 This is done by applying the Splus routine called smooth.spline, which is a one-dimensional cubic smoothing spline
that has a basis of B-splines, as discussed in chapters 1–3 of Green and Silverman (1994).



create a difference between squared interday returns and the sum of squared intraday returns is the
omission of the conditional expected value E⊲rt,i,mjFt�1⊳, i D 1, . . . , m in the calculations. Suppose
that E⊲rt,i,mjFt�1⊳ D 0 for i D 1, . . . , f, but is positive during the time the market is closed. Then

r2
t would, on average, be larger than m

f

∑f
iD1 r

2
t,i,m, even if intraday returns were independent and

homoskedastic. Such a difference between expected returns during the time the market is open
and closed could be explained as a compensation for the lack of opportunities to hedge against
risk overnight. It is not important which of the four explanations cause the difference, as long as
our adjustment does not favour some models over others. Because the adjustment is made ex post

and does not depend on the model forecasts, it is unlikely that a particular model would benefit
more than other models.

6.1. Results from the Model Comparison

Table II contains the results from the model comparisons in the form of p-values.13 The p-values
correspond to the hypothesis that the benchmark model, ARCH(1) or GARCH(1,1), is the best
model. The naive p-value is the p-value that one would obtain by comparing the best performing
model to the benchmark without controlling for the full set of models. So the naive p-value is not
a valid p-value and it will often be too small, and therefore more likely to indicate an unjustified
‘significance’. The p-values of the SPA test and the RC control for the full set of models. Those
of SPAc and RCc are asymptotically valid p-values, whereas those with subscript l and u provide
lower and upper bounds for the p-values. Although the naive p-value is not valid, it can exceed
that of the SPAc, because the best performing model need not be the model that results in the
largest t-statistic.

Panel A contains the results for the exchange rate data. The p-values clearly show that the
ARCH(1) is outperformed by other models, although the MSE2 criterion is a possible exception.
However, there is no evidence that the GARCH(1,1) is outperformed and a closer inspection of
the models reveals that the GARCH(1,1) has one of the best sample performances.

Panels B and C contain the results from the IBM return data, based on the SPA test and
the RC, respectively. From Panel B it is evident that both the ARCH(1) and the GARCH(1,l)
are significantly outperformed by other volatility models in terms of all loss functions, with the
possible exception of the R2LOG loss function. Thus there is strong evidence that the GARCH(1,1)
is inferior to alternative models. The p-values in Panel C are based on the (non-standardized) test
statistic TRCn . The results in Panel C are alarmingly different from those in Panel B, because
these p-values suggest the exact opposite conclusion in most cases. Panel C suggests that the
GARCH(1,1) is not significantly outperformed, and even the ARCH(1) cannot be rejected as
being superior to all other models for three of the six loss functions. The contradicting results are
explained by the fact that the TRCn is not properly standardized, and this causes the tests RCl,RCc
and RCu to be sensitive to erratic models. The problem is that a model with a relatively large
var⊲Xk⊳ has a disproportional effect on the distribution of TRCn , in particular the right tail which
defines the critical values, see Hansen (2003). The p-values in the right-most column (boldface)
are those of the original RC by White (2000), and these provide little evidence against the two
benchmarks. So the results in Table II confirm that the RC is less powerful than the SPA test.

The realized variance can be constructed in many ways and different measures of the realized
variance could lead to different results. To verify that our results are not sensitive to our choice

13 Additional results are given in a technical appendix (Hansen and Lunde, 2001).



Table II. Exchange rate data (DM/USD)

Panel A: Exchange rate data (DM/USD), SPA p-values

Benchmark: ARCH(1) Benchmark: GARCH(1,1)

Metric Naive SPAl SPAc SPAu Naive SPAl SPAc SPAu

MSE1 0.0077 0.0179 0.0179 0.0209 0.2911 0.3164 0.4589 0.7887
MSE2 0.0392 0.0695 0.0748 0.0797 0.2025 0.6006 0.7652 0.9279
QLIKE 0.0067 0.0169 0.0184 0.0194 0.2528 0.5831 0.7707 0.9639

R2LOG <0.0001 0.0002 0.0002 0.0002 0.0708 0.2144 0.3269 0.6627
MAE1 <0.0001 0.0002 0.0002 0.0002 0.0636 0.2274 0.3296 0.6309
MAE2 0.0002 0.0011 0.0011 0.0012 0.1832 0.2177 0.2920 0.5663

Panel B: IBM Data, SPA p-values

Benchmark: ARCH(1) Benchmark: GARCH(1,1)

Metric Naive SPAl SPAc SPAu Naive SPAl SPAc SPAu

MSE1 0.0052 0.0002 0.0002 0.0002 0.0355 0.0245 0.0300 0.0358
MSE2 0.0061 0.0001 0.0001 0.0001 0.0409 0.0260 0.0288 0.0316
QLIKE 0.0003 <0.0001 <0.0001 <0.0001 0.0213 0.0379 0.0463 0.0528

R2LOG 0.0108 0.0011 0.0011 0.0014 0.0166 0.0526 0.0630 0.0741
MAE1 0.0012 0.0080 0.0086 0.0104 0.0026 0.0040 0.0051 0.0058
MAE2 0.0014 0.0097 0.0100 0.0115 0.0026 0.0054 0.0065 0.0078

Panel C: IBM Data, RC p-values

Benchmark: ARCH(1) Benchmark: GARCH(1,1)

Metric Naive RCl RCc RCu Naive RCl RCc RCu

MSE1 0.0052 0.0164 0.0164 0.0164 0.0355 0.1000 0.1499 0.2811
MSE2 0.0061 0.0205 0.0205 0.0205 0.0409 0.1053 0.1056 0.1472
QLIKE 0.0003 0.0017 0.0017 0.0017 0.0213 0.0943 0.1153 0.3750

R2LOG 0.0108 0.0601 0.0713 0.0713 0.0166 0.2908 0.3535 0.6039
MAE1 0.0012 0.0972 0.1227 0.1399 0.0026 0.0505 0.1144 0.1522
MAE2 0.0014 0.1219 0.1649 0.1941 0.0026 0.0644 0.1135 0.1734

Notes: The table presents p-values of the SPA test and the RC for two null hypotheses: that the benchmark model,
ARCH(1) or GARCH(1,1), is the best model. Conclusions should be based on the SPAc test (boldface) in Panels A and
B. The naive ‘p-value’ compares the best performing model to the benchmark, but ignores the full set of models. So
the naive ‘p-value’ is not a valid p-value and the difference between it and that of SPAc⊲RCc⊳ shows the effects of
data mining. Panel C contains the p-values that are based on the RC non-standardized test statistic. The p-values of the
original RC are in boldface. A comparison of the results of Panels B and C shows that the SPA test is more powerful
than the RC, and the latter is unable to detect the inferiority of the GARCH(1,1), and the ARCH(1) in some cases.

of RV measure we repeat the empirical analysis of the IBM returns data using six other measures.

These measures include: one based on a different spline method and sampling frequency; one

based on the Fourier method by Barucci and Reno (2002); two based on the previous-tick method;

and two based on the linear interpolation method. The p-values of the SPAc test for the seven

different measures of the realized variance are presented in Table III. Fortunately, the p-values

do not differ much across the various measures of the realized variance, although most of the

alternative measures provide slightly stronger evidence that the GARCH(1,1) is outperformed in

terms of the R2LOG loss function, and slightly weaker evidence in terms of the MAE1 and MAE2

loss functions.



Table III. Results for different measures of realized variance

Criterion Method for estimating realized variance

Spl-50
3 min

Spl-250
2 min

Fourier
M D 85

Linear
5 min

Previous
5 min

Linear
1 min

Previous
1 min

MSE1 0.0271 0.0230 0.0134 0.0125 0.0133 0.0111 0.0103
MSE2 0.0280 0.0213 0.0135 0.0168 0.0181 0.0082 0.0082
QLIKE 0.0457 0.0350 0.0166 0.0178 0.0175 0.0112 0.0118

R2LOG 0.0651 0.0998 0.0462 0.0409 0.0505 0.0375 0.0340
MAE1 0.0039 0.0635 0.0476 0.0690 0.0662 0.0960 0.0881
MAE2 0.0056 0.0888 0.0724 0.0510 0.0600 0.0707 0.0749

Notes: This table reports p-values of the SPAc test from the analysis of IBM returns where the GARCH(1,1) is used as
the benchmark. The p-values are obtained for seven different measures of the realized variance that are constructed with
different techniques (and sampling frequencies). Spl-50 and Spl-250 refer to a cubic spline method that use 50 and 250
knot points, respectively; the third measure is based on the Fourier method; and the last four measures are based on the
linear interpolation and previous-tick methods.
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Figure 1. Population of model performance: exchange rate data and MSE2 loss function. The x-axis is the
negative value of average sample loss
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Figure 2. Population of model performance: exchange rate data and MAE2 loss function. The x-axis is the
negative value of average sample loss

Figures 1–4 show the ‘population’ of model performances for various loss functions (and the
two data sets).14 The plots provide information about how similar/different the models’ sample

performances were, and show the location of the ARCH(1) and GARCH(1,1) relative to the full
set of models. The x-axis is the (negative value of) average sample loss, such that the right tail

represents the model with the best sample performance. Each figure contains four panels. The
upper left panel is the model density of all the models, whereas the last three panels show the
performance densities for different ‘types’ of models. The models are divided into groups according

to their type: Gaussian vs. t-distributed specification; models with and without a leverage effect;
and the three mean specifications.

Figures 1 and 2, which display the results for the exchange rate data, show that the GARCH(1,1)

is one of the best performing models, whereas the ARCH(1) has one of the worst sample
performances. There are no major differences between the various types of models, although

there is a small tendency that the t-distributed specification leads to a better performance than a
Gaussian specification in Figure 2.

14 To save space, we have only included the figures that correspond to the MSE2 and MAE2 loss functions. The figures
for all six loss functions are given in Hansen and Lunde (2001).
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Figure 3. Population of model performance: IBM data and MSE2 loss function. The x-axis is the negative
value of average sample loss

The results for the IBM return data are displayed in Figures 3 and 4. From the SPA test we

concluded that the GARCH(1,1) was significantly outperformed by other models, and the two
figures also show that the GARCH(1,1) is ranked much lower in this sample. It now seems that

the Gaussian specification does better than the t-distributed specification, on average. However,
the very best performing model in terms of the MAE2 loss function is a model with a t-distributed

specification. From our analysis of the IBM data it is evident that models that can accommodate
a leverage effect are superior to those that cannot, particularly in Figure 4.

Although the conditional mean �t D E⊲rtjFt�1⊳ is likely to be small, it cannot ex ante be
ruled out that a more sophisticated specification for �t, such as the GARCH-in-mean, leads to

better forecasts of volatility than the zero-mean specification. However, the performance is almost
identical across the three mean specifications, as can be seen from Figures 1–4.

7. CONCLUSIONS

We have compared a large number of volatility models, in terms of their ability to forecast the

conditional variance in an out-of-sample setting.
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Figure 4. Population of model performance: IBM data and MAE2 loss function. The x-axis is the negative
value of average sample loss

Our analysis was limited to DM–$ exchange rates and IBM stock returns and a universe of
models that consisted of 330 different ARCH-type models. The main findings are that there is
no evidence that the GARCH(1,1) model is outperformed by other models, when the models are
evaluated using the exchange rate data. This cannot be explained by the SPA test lacking power
because the ARCH(1) model is clearly rejected and found to be inferior to other models. In the
analysis of IBM stock returns we found conclusive evidence that the GARCH(1,1) is inferior, and
our results strongly suggested that good out-of-sample performance requires a specification that
can accommodate a leverage effect.

The performances of the volatility models were measured out-of-sample using six loss functions,
where realized variance was used to construct an estimate of the unobserved conditional variance.
The significance of relative performance was evaluated with the test for superior predictive ability
of Hansen (2001) and the reality check for data snooping of White (2000). Our empirical analysis
illustrated the usefulness of the SPA test and showed that the SPA test is more powerful than
the RC.

The SPA test and the RC are not model selection criteria and therefore not designed to
identify the best volatility model (in population). It is also unlikely that our data contain sufficient
information to conclude that the model with the best sample performance is significantly better



than all other models. Nevertheless, the use of a significance test, such as the SPA test, has clear
advantages over model selection criteria, because it allows us to make strong conclusions. In our
setting, the SPA test provided conclusive evidence that the GARCH(1,1) is inferior to other models
in our analysis of IBM returns. However, in the analysis of the exchange rate data, there was no
evidence against the claim that: ‘nothing beats a GARCH(1,1)’.
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