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Abstract: The aim of this paper is to present developments of an advanced geospatial analytics algo-
rithm that improves the prediction power of a random forest regression model while addressing the
issue of spatial dependence commonly found in geographical data. We applied the methodology to a
simple model of mean household income in the European Union regions to allow easy understanding
and reproducibility of the analysis. The results are encouraging and suggest an improvement in the
prediction power compared to previous techniques. The algorithm has been implemented in R and is
available in the updated version of the SpatialML package in the CRAN repository.
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1. Introduction

Spatial adaptations of machine learning (ML) algorithms have become popular in the
past few years. From a prediction-oriented perspective, spatial data contain properties
that can be difficult to tackle with traditional statistical techniques due to issues with
non-linearity and variable selection. On the contrary, ML algorithms are more flexible due
to their non-parametric nature and better performance with highly dimensional data.

Recent efforts to construct reliable and interpretable spatial formulations of commonly
used ML algorithms for tabular data such as random forest (RF), presented as publicly
available scientific software, started with Hengl et al. [1] and Georganos et al. [2]. At the
same time, they represent the main conceptual differences within the spatial ML domain—
using spatial variables to inform spatial interactions versus using spatially local models.

Starting with the former, Hengl et al. [1] proposed the inclusion of geographical
variables in the forms of distances within a random forest (RF) framework to address spa-
tiotemporal heterogeneity with remarkable success over aspatial models. In this framework,
the ML algorithm is considered a satisfactory solution, but the problem lies in the lack of
appropriate data to learn the spatial interactions in place. Following on that track, other
adaptations have emphasized the use of spatial covariates as input to ML algorithms, to in-
crease predictive prowess [3]. Sekulić et al. [4] proposed the inclusion of distances between
observations as an additional variable to enhance the quality of a spatial interpolation task,
with some success when compared to popular interpolators such as kriging, while similar
work was proposed by Ahn [5]. Xia et al. [6] included spatiotemporal lags as input in the
RF model to model drug-related crime patterns in the US. Recently, Saha et al. [7] proposed
RF-GLS, an adaptation of RF that captures spatial interaction by estimating non-linear
effects in spatial data through Gaussian processes, which substantially outperformed the
default model. Similarly, Talebi et al. [8] developed spatial random forests (SRF), which
includes non-parametric higher-order spatial statistics in the formulation of RF. Notably,
Ancell and Bean [9] proposed the formulation of spatially aware autoregressive trees where
the spatial qualities of the data are captured while developing the tree by spatially guided
partitions. In general, relying on spatial covariates based on training data locations to
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improve the results shows remarkable potential but faces limitations such as overfitting if
the sampling of the training data is very skewed and imbalanced [10].

The alternative conceptual approach, proposed by Georganos et al. [2] and named
geographical random forest (GRF), suggests that the spatial interaction can be captured by
an ensemble of local models, rather than focusing on including extensive spatial predic-
tors in a single, global model. This process reflects the concept of geographically varying
models such as geographically weighted regression (GWR) [11], which have been very
popular in the field of geocomputation since the early 2000s. Although GRF was initially
deployed for population mapping through Earth Observation (EO) data, it has since been
used for leaf trait mapping using Sentinel 2 satellite data [12], modelling ice extent [13],
tree canopy height [14], locations of unconventional wells [15], agricultural draught assess-
ment [16] and landslide susceptibility [17]. It has also found merit in the field of spatial
epidemiology where it was used to predict the spatial distribution of type-two diabetes
prevalence across the US [18]. Similar methodological approaches have additionally been
proposed using spatial quantile random forests [19,20], inverse distance weighted forests or
boosting trees [21,22], interpretable spatiotemporal random forests [23] or mixed GWR-RF
approaches [24].

In this communication, we present the latest developments of the GRF algorithm
through the R package “SpatialML”. We tackle three issues: (i) spatial weighting,
(ii) bandwidth optimization and (iii) computational efficiency. In the initial formulation of
the “SpatialML” package, GRF was not parallelized, while no weighting was foreseen for
the sub-models, meaning that all observations within each local sub-model were weighted
equally. Additionally, no solutions regarding an approach to optimize the bandwidth and,
hence, the spatial scale of the analysis, have been presented yet. Consequently, in this work
we address these issues using a public dataset and presenting a comparative analysis with
other popular spatial analysis methods.

2. Materials and Methods
2.1. Dataset

The data analyzed for the purpose of this paper refer to the regions of the European
Union of 28 Member States (before Brexit). The geographical boundaries of the EU regions
are legally defined as the Nomenclature of Territorial Units for Statistics (NUTS) 2016, Level
2 (NUTS2). There are several versions of this geographical dataset (based on the publication
year, scale, coordinate system, etc.). The specific shapefile used here refers to 2016 and
has a geographical scale of 1:3,000,000 and the projection EPSG:3035—ETRS89/LAEA
Europe. The boundary data are available from the Geographic Information System of the
Commission (GISCO). The geographical coordinates used in the analysis of this paper refer
to the geometric centroids of the spatial polygons of this shapefile (geometric centroid of
each EU region) and were computed using QGIS functions.

This shapefile is linked to a table of four socioeconomic variables and together they
constitute the dataset for this analysis. During the data cleaning process, a small number
of regions were removed due to missing socioeconomic data. The final dataset comprises
264 observations. The dependent variable refers to the income of households by NUTS
2 regions (Eurostat table code NAMA_10R_2HHINC) (Available online: https://appsso.
eurostat.ec.europa.eu/nui/show.do?dataset=nama_10r_2hhinc&lang=en, accessed on 15
June 2022) and its calculation is based in the regional accounts of 2016. After preliminary
analysis, three independent variables were selected for the models: total unemployment
rate; the proportion of tertiary education of the population; and the rate of employment in
technology and knowledge-intensive sectors.

The total unemployment rate refers to people aged 20 to 64 years old and comes from
the table “Unemployment rates by sex, age and NUTS 2 regions (%) (code LFST_R_LFU3RT)”
(Available online: https://ec.europa.eu/eurostat/databrowser/view/LFST_R_LFU3RT/
default/table?lang=en, accessed on 15 June 2022). The source for these data is the EU
Labour Force Survey (EU-LFS) for the year 2016. The data on tertiary education came from

https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10r_2hhinc&lang=en
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the table “Population by educational attainment level, sex and NUTS 2 regions (%) (code:
EDAT_LFSE_04)” (Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?
dataset=edat_lfse_04&lang=en, accessed on 15 June 2022) and refer to people aged 25 to
64 years old. The values are annual averages of quarterly EU Labour Force Survey data
(EU-LFS) for the year 2016. The data of the third explanatory variable came from the
table “Employment in technology and knowledge-intensive sectors by NUTS 2 regions and
sex (code: htec_emp_reg2)” (Available online: https://appsso.eurostat.ec.europa.eu/nui/
show.do?dataset=htec_emp_reg2&lang=en, accessed on 15 June 2022). The latter is part of
the statistics on high-tech industry and knowledge-intensive services, which have multiple
raw data sources. The source of all these data is Eurostat, European Commission and they
are freely available through the Eurostat website. The spatial distribution of the variables is
illustrated in Figure 1.
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Figure 1. Spatial distribution of the independent and dependent variables used in this study
at the NUTS2 level: (A) household income, (B) tertiary education, (C) unemployment rate and
(D) employment in the tech sector for the year of 2016.

2.2. Models

The model defined in our analysis is a simple income model in which the regional
mean household disposable income is regressed over the total unemployment rate, the
proportion of economically active people with tertiary education and the proportion of
workers in technology and knowledge-intensive sectors. The purpose of this model is to
allow an easy-to-understand illustration of the application of the proposed methodology.
Based on social science theory and previous findings, we expect unemployment rate to
have a negative impact on household income and high educational attainment level to
have a positive impact on household income [25] at the regional level.
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2.2.1. Geographical Random Forest

The first implementation and development of GRF was presented in detail in Georganos
et al. [2]. GRF is an ensemble of locally calibrated random forest (RF) models. The equation
for the calibration is presented below [2].

Yi = a (ui, vi)xi + e, i = 1 : n (1)

where a (ui, vi)xi refers to the training of an RF model that is applied on location i with
(ui, vi) being the geographical coordinates. The locally developed RF models only use a
certain amount of neighboring data points to train the model. The way nearest data points
are included in the local models is through the nearest neighbor method, and the maximum
number of neighbors that are used to calibrate the local models is called the bandwidth.
For inference on a given spatial location, the nearest local RF model is used, with the choice
of having a global RF model using all data points to contribute to the prediction.

GRF Computational Efficiency

A point of interest is the computational efficiency of the algorithm. The first imple-
mentation of GRF on the “SpatialML” package was not parallelizable, which caused long
computing times when using large bandwidths or amounts of training data. In the new
implementation, we make use of the “ranger” R package to develop the local and global RF
models, which are parallelizable. Hence, we investigate the computational gains in terms
of computing time in various bandwidths to demonstrate its efficiency.

GRF Bandwidth Optimization

One of the challenges in GRF development is to adequately identify optimal band-
widths, which reflects the appropriate spatial scale to model the data. In GRF, bandwidth
optimization can be a tedious process based on trial-and-error approaches. To mitigate this
issue, we propose a procedure to select an optimal bandwidth using the out-of-bag (OOB)
accuracy of GRF. More specifically, we extract the OOB accuracy across various bandwidths
and select the one with the best performance. In this example, we selected a bandwidth
range starting from 20 to 50 as a proof of concept. Smaller bandwidth values can cause
unstable results as the local sub-models are trained with insufficient sample sizes to infer
robust parameters.

Spatial Weighting

One of the new developments presented here is the option to spatially weight the
local observations. A spatial weights matrix is constructed, used as input in each of the
local models. The spatial weights matrix is used as input to the “case.weights” parameter
of the “ranger” implementation, allowing data points with larger weights to be selected
with higher probability in the bootstrapping procedure of the decision trees [26]. We
hereby denote this implementation as GRF-W. The initial implementation of GRF suffered
from the shortcoming that all data points within the bandwidth were weighted equally.
Consequently, one of the aims is to compare the potential improvement of spatial weighting
in the prediction capability.

2.2.2. Benchmark Models and Validation Metrics

We used a set of well-known and commonly employed models to compare the pre-
dictive potential of the GRF algorithm with, namely geographically weighted regression
(GWR) [27], random forest (RF) [28] and ordinary least squares (OLS) regressors. GWR
has several established frameworks to optimize the bandwidth selection. In this work, we
used the optimization function from the “GWmodel” in R which identifies the appropriate
bandwidth value using the Akaike Information Criterion (AIC) as a performance indica-
tor. The parameters for RF were calibrated through the “caret” R package [29]. Finally,
for validation we used the mean absolute error (MAE), root mean squared error (RMSE)
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and coefficient of determination (R2), as they are commonly used to evaluate regression
analyses [30].

3. Results
3.1. GRF and GWR Bandwidth Optimization

Figure 2 illustrates the results of the bandwidth optimization for the GRF models.
Using the OOB R2 as an anchor, the peak performance was achieved using a bandwidth of
20 neighbors with a constant decline as the number of neighbors increased. We used the
same bandwidth parametrization for both GRF and GRF-W. The optimal bandwidth for
GWR, based on the AIC, was detected with 23 neighbors (Figure 3).
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3.2. Predictive Performance

The results of the validation analysis using various performance indicators are demon-
strated in Table 1. Evidently, aspatial models did not perform well, as both OLS and RF
exhibited moderate R2 (0.45 and 0.61, respectively), RMSE (5024.7 and 4104.6) and MAE
(3949.6 and 2578.7) values. On the contrary, spatial models performed remarkably better.
GWR and the traditional GRF implementation demonstrated highly accurate performances,
with the former exhibiting a higher R2 of 0.77 while the latter exhibited an R2 value of 0.79.
However, the newly proposed implementation (GRF-W) performed the best, with an R2

of 0.82, highlighting the merits of spatial weighting during the bootstrapping process in
highly heterogeneous datasets.

Table 1. Predictive performance of the models on validation data.

OLS RF GRF GRF-W GWR

RMSE 5024.7 4104.6 3071.2 2801.5 3259.00
MAE 3949.6 2578.7 1763.2 1580.4 1933.6

R2 0.45 0.61 0.79 0.82 0.77

3.3. Computational Improvements

Enabling parallelization through the “ranger” package in R drastically reduced com-
puting time in the training of the GRF models. The benefits of parallelization appear to
increase linearly with the bandwidth size. This was most evident in larger bandwidths,
where a GRF model running on eight computing threads and 200 neighbors required 18 s
to compute, whereas more than a minute was required when running on a single thread
(Figure 4). Nonetheless, the improvements are minimal in very small bandwidth sizes,
likely due to overhead issues.
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4. Discussion and Conclusions

In this communication, we present the latest developments in the widely used GRF
algorithm [2]. An important bottleneck of the algorithm was its high computational
complexity in comparison to simpler approaches such as a global RF or GWR models.
To mitigate this issue, we enabled multi-thread parallelization by replacing the “random
forest” RF implementation in R with the “ranger” package. Our analysis demonstrated
that parallelization is very beneficial, with moderate-to-large bandwidths, but provides
little to no benefit for very small ones. This is an artifact of the overhead limitations, as by
using small bandwidth values, the computation is very fast and efficient even with one
computing thread. A challenge that remains is the memory usage when the sample size
increases. As a local RF model is computed and stored for each training data point, the
memory requirements can become untenable for large sample sizes. One way this can be
solved is by avoiding the storage of the local models as objects during the training process,
but only saving necessary information for performance evaluations and inferences. Solving
this issue can enable GRF to scale adequately when using larger data volumes.

In our analysis, we demonstrated the importance of spatially weighting the obser-
vations within the kernels of the local models. Even though the initial GRF formulation
operates with spatial subsets of the training data, all observations within the kernels were
weighted equally. In typical GWR models, the observations closer to the training data
points receive higher weights than those further away, which essentially turns the local OLS
regressors into a spatially weighted OLS. In GRF, the model is the highly non-linear average
of several independent decision trees with bootstrapped samples and thus an alternative
approach was proposed—to select observations closer to the training data points more
frequently in the bootstrapping process rather than those further away. The weighted
variant significantly improved the results with roughly a 0.05 increase in the coefficient
of determination. Alternative weighting approaches may further improve the results and
should be investigated.

Identifying a suitable spatial scale (bandwidth parameter) in GRF can be a challenging
task. The proposed automatic optimization using the OOB accuracy metrics exhibited
good results, as the models identified as optimal outperformed benchmark approaches.
Nonetheless, while the OOB accuracy acts as a pseudo-independent metric, it can be
biased [31]. Alternative methods such as cross-validation could be better performing while
at the same time being applicable to other types of algorithms that do not have embedded
measures of performance such as RF.

ML algorithms are becoming increasingly applied in geospatial analytics instead of
more traditional statistical approaches. One challenge with ML approaches is the increased
difficulty to extract inferences. For instance, a typical OLS or GWR model can be interpreted
relatively easy using linear coefficients but the same cannot be said for RF. Future efforts
to improve spatial ML should focus on improving the interpretability of the predictive
variables in terms of coefficient and importance, as well as feature selection.
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