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A b s t r a c t .  Let V,, i = 1 , . . . , k ,  be independent gamma random variables 
with shape ai, scale /3, and location parameter %, and consider the partial 
sums Z1 = V1, Z2 = 171 + V2, . • •, Zk  = 171 + .  • • + Vk. When the scale parameters 
are all equal, each partial sum is again distributed as gamma, and hence the 
joint distribution of the partial sums may be called a multivariate gamma. This 
distribution, whose marginals are positively correlated has several interesting 
properties and has potential applications in stochastic processes and reliability. 
In this paper we study this distribution as a multivariate extension of the 
three-parameter gamma and give several properties that relate to ratios and 
conditional distributions of partial sums. The general density, as well as special 
cases are considered. 

K e y  words  and  phrases:  Multivariate gamma model, cumulative sums, mo- 
ments, cumulants, multiple correlation, exact density, conditional density. 

1. Introduction 

The  three-parameter  gamma with the density 

(x _ V)~_I exp ( x - 7 )  

(1.1) f ( x ;  a ,  /3, 7) = ~ , x > ' 7 ,  c~>O, / 3 > 0  

stands central  in the mult ivariate  gamma distr ibution of this paper.  
Mult ivariate  extensions of gamma distr ibutions such tha t  all the marginals are 

again gamma are the most common in the l i terature.  Such extensions involve the 
s tandard  gamma (/3 = 1, "y = 0), or the exponential  (a  = 1), see Johnson and Kotz  
(1972). Other  extensions include the mult ivariate  chi-square (Miller e t  al. (1958), 
Krishnaiah and Rao (1961) and Krishnaiah et  al. (1963)), while the part icular  case 
of a bivariate gamma received special consideration, see Kibble (1941), Eagleson 
(1964), Ghirt is  (1967), Moran  (1967, 1969) and Sarmanov (1970). The  bivariate 
gamma is par t icular ly  useful in modeling the lifetimes of two parallel systems, 
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see Freund (1961), Becker and Roux (1981), Lingappaiah (1984) and Steel and le 
Roux (1987). Other applications include uses of the distribution in rainmaking 
experiments (Moran (1970)). 

In this paper we consider a new form of a multivariate gamma that has po- 
tential applications in situations in which partial sums of independent, positive 
random variables are of interest• Such situations appear in the area of reliability 
and stochastic processes. Let V~, i = 1 , . . . , k  be the times between successive 
occurrences of a phenomenon, and let Zi = Zi-1 + Vi, i = 1 , . . . ,  k, with Z0 = 0. 
Then, Zi is the total time required until the i-th occurrence. In stochastic pro- 
cesses, it is usually assumed that the times Vi are also identically distributed. In 
this case, the occurrence time Zi, i C N can be viewed as a renewal process, and 
the times Vi can be called renewal times, see for example ~inlar (1975). Note that 
Z~ is the i-th partial sum of the Vi's. In actual practice the V~'s may be times 
between arrivals, or, for example, time delays of an airplane at several airports. 
Then, Zi is the total waiting time for the i-th occurrence, or the total delay at the 
i-th airport. 

As another example, consider the following application from reliability. An 
item is installed at time Z0 = 0 and when it fails, it is replaced by an identical 
(or different) item• Then, when the new item fails it is replaced again by another 
item and the process continues. In this case Zi = Zi-1 + V/ where V/is the time 
of operation of the i-th item, and Z~ is the time at which the i-th replacement is 
needed. Zk denotes the time interval in which a total of k items need replacement. 

The applications mentioned above, motivate the new form of a multivariate 
gamma that we consider in this paper. This is given in the form of a theorem. 

THEOREM 1.1. Suppose V1,...,Vk are mutually independent where V~ 
G(ai,/3, 7~), i = 1 , . . . ,  k (same/5) .  Let 

Z1 = g l , g 2  ~-- V1 n t- V 2 , . . .  , Z k  ~-- g l  n t - ' ' "  -I- gk .  

Then, the joint  distribution of Z = ( Z 1 , . . . ,  Zk)'  is a multivariate gamma 

with density function 

(1.2) f ( q , . . . , z ~ )  = 
(2:1 -- ~ l ) a 1 - 1  

/3ot~ Hik=l F(o~i) 

• ( z 2  - z l  - ~ / 2 )  ~ 2 - 1 ' ' '  ( z k  - z k - 1  - ~ / k )  ~ k - 1  

• e-(Zk-(~l+--+~k))/~ 

for c~i > O, /3 > O, ~/i real, zi-1 +'~i < z~, i = 2 , . . . , k ,  zk < oc, 71 < zl ,  
ak = ~1 + "'" + ak, and zero elsewhere. 

Many applications exist in which the Vi's represent independent and identically 
distributed times. Here, they are assumed to be distributed as in (1.1), thus 
allowing maximum flexibility in shape, scale and location. 

The requirement of equal scale parameter 3 is to ensure that the marginals are 
of the same form. Basic properties of the distribution of Z,  including the moment 
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generating function, means, variances, properties of the covariance matrix and the 
reproductive property are given in Section 2. In Section 3 we give the moments 
and cumulants, and in Section 4 we discuss conditional distributions and special 
cases. 

Before discussing the properties of the model in (1.2) a brief description of the 
various methods of construction of multivariate gamma distributions will be given 
here. 

After giving a brief sketch of the historical development Dussauchoy and 
Berland (1974) define a multivariate gamma random variable Z = (Z1, . . . ,  Zn), 
in terms of the characteristic function defined by 

(1.3) l~i ¢~  (uj + E ; : j + l / 3 j k u k )  
C z ( U l , . - . , U n )  = I I  n 

where 

Czj(Uj)  = ( 1 -  i u j / a j )  -~j ,  j = l , . . . , n ,  i = x/~-f,  /3jk >_ O, 

aj k /3jkak > O, j < k = 1 , . . . ,  n, 0 < et <_ e2 <_ " .  <_ en. 

Various properties are studied with the help of (1.3) but explicit form of the density 
is not evaluated except for the bivariate case. 

Gaver (1970) considered a mixture of gamma variables with negative binomial 
weights and came up with a multivariate vector Z = ( Z 1 , . . . ,  Zm) ~ as that one 
with the Laplace transform of the density given by 

(1.4) { }k 
m Lz(Sl'""Sm)= (1 + a) 1-[j=l(s3 + 1) _ 1 

for k > 0, a > 0. He also looked at the possibility of generating a multivariate 
gamma as a mixture with Poisson weights. 

Kowalczyk and Tyrcha (1989) start with the three-parameter gamma in (1.1), 
denoting the random variable by F(a,/3, V)- They call the joint distribution of 
Zi = [ai(Vo + Vi - a ~ ) / v ' ~ ,  ] + #i ,  i = 1 , . . . ,  k as the multivariate gamma, where 
V0 = F(00, 1, 0), Vi = F(ai - 00, 1, 0), 0 _< 00 ~ m i n ( a l , . . . ,  ak), a~ > 0, #i a real 
number, i = 1 , . . . ,  k and V0, V1,. . . ,  Vk are assumed to be mutually independently 
distributed. They look at some properties including convergence to a multivariate 
normal and estimation problems. 

Mathai and Moschopoulos (1991) start with (1.1) and look at the joint distri- 
bution of Zi = (~j /3o)Vo + Vi, where Vi, i = 0 , . . . ,  k are mutually independently 
distributed as in (1.1) with different parameters. They look at the explicit form 
of the multivariate density and study various properties. 

None of the multivariate gamma models discussed above or the ones studied 
by others falls in the category of (1.2) defined for the present study. Hence, we 
will look at some properties of (1.2) here. 
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2. Properties 

Several properties of the distribution can be obtained from the definition, while 
others will follow from the moment generating function (m.g.f.). The m.g.f. of V,  
is 

From this we get the m.g.f. of Z as follows. 

The m.g.f. exists if Iti + ti+l + . . . + tkl < 1/P for i = 1, . . . , k. From the definition 
directly or from the m.g.f. above we obtain the following properties: 

(i) The marginal distribution of Zi is gamma, 

where at = al + . . . + ai, 7: = 71 + . . , + 7~ 
(ii) The mean and variance of Zi are given by 

(iii) Zi and Zj are correlated. For i < j we have 

Clearly, the correlation is always positive. Now, the covariance matrix of Z is 
given by 

where a: = aiP2. A matrix of the above structure has several interesting proper- 
ties that hold regardless of the distribution of the V,'s. The determinant of C is 
the product of of, i = 1,. . . , k, i.e. 
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(iv) 

(2.9) IZl ~ 2, : G 10" 2 . . 0 -2" 

This is easily seen by adding ( -1)  times the first row to all other rows, then 
( -1 )  times the second row to all the following rows etc. It should be noted that  
the eigenvalues of E are not equal to o.?,, i = 1 , . . . , k .  Now if we let [IEII = 
m a x j  }-~k ~=1 la~Jl, where o.~j denotes the (i j)- th element of E, then we have: 

(v) 

(2.10) I lZl l  = t r ( E ) .  

In general ]IA]I need not be equal to the trace of A. Next, consider the determinants 
of the principal minors, starting from the last. These are as follows: 

2 (2.11) IZI~ =o.2 + + %  

. . . . .  "J- Gk_l ) (2.12) [E[k-i k - 1  = dee / o.12 + + O'~ -1 O"12 "~-" 2 

2 2 = (0 -2 -~.... hi- O.k_I)~k, 
2 2. 

IZ111 Izf ~ ~ 2 ~ G 10" 2 ...O'k. 

(2.13) 

(2.14) 

Now, consider the partitioning 

E = (  EuE21 E22E12) , w h e r e  Ell ----- a l l  = 0"12. 

Then, 

[ (1) 1 IE[ = ]E22] o.12-o.12(1,...,1)E~-~ " a2 or, 

1 
2 2 or: o.. . . . . . .  o.k [0.: (1 -- o.2 I " E Z ~  1)] or, 

(vi) 
1 

Note that  the sum of the elements of E221 is free of o.~ a 2 
" " "  ) k "  

From (vi) one can also get the multiple correlation of Z1 on Z2 , . . . ,  Zk in a 
nice form. Using the standard notation 

R~(2 k ) -  ~ 1 2 ~ # r ~ l ,  o.ll = o.2, 
o'11 

~ 1 2  ---- a2(1 , . . . ,  1) ,  

one has from (vi) 
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(vii) 

+ 

The partial correlation between Z1 and Z2 given Z 3 , . . . ,  Zk, denoted by Pn.(3...k) 
can be seen to have a nice form. Using s tandard  notations 

0.11 012 El3 ) 
E ~--- 0"21 0"22 Y]23 , 

E31 E32 E33 

p122.(3...k) = (0"12- ~13~331~32) 2 

r  rzz r3 ) 

where cr11 = 0.2, 0.12 = er~, a22 = a~ + cr 2 one has 

a n  - ElaE3alE31 = a~[1 - a~r'E~.aal"], 

G22 - -  Z23Z331~32 = (O'12 -f- a~)[1 - (al 2 + a~)rE331 1"], 

But  it is easy to note that  l 'E3a 1 1 = (a~ + a~ + 0"~)-1. Thus one has 
(viii) 

2 2 
p22. (3...k) = 0"1 0"3 

+ + 

(ix) (Reproductive property) Let 14q be a multivariate gamma with parame- 
ters a~, /3, 7i, i = 1 , . . . ,  k, and We independently distr ibuted as a multivariate 
gamma with parameters  a~, 3, 7~, i = 1 , . . . ,  k. Then,  it is clear from the m.g.f, in 
(2.1) that  W1 + W2 is also distr ibuted as a multivariate gamma with parameters  
ai  +a{ , /3 ,  7i +7~, i = 1 . . . . .  k. 

3. Moments and cumulants 

The cumulant  generating function of Z is the logarithm of the m.g.f, in (2.2) 
and is given by 

k k 

(3.1) K , ( t ) = 7 1 E t i + 7 2 E t i + . . . + % t k  
i = l  i = 2  

k k 

Thus, the m-th  cumulant  of Z~ and the (ml,  m2)-th product  cumulant  of Zi and 
Zj are given by 

0 m ( * • 7i + / 3 % ,  if m = l  
(3.2) Km- 0T~ lnMz(t)b=o = / (m - 1)!/3ma~, if m > 2, 

(3.3) K,~l,m 2 - OtT~lOt~ lnM, ( t )L t=o  = (ml  + m2 - 1)!/3ml+maa *, 
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where r = min( i , j ) .  Next, we obtain the moments  of Zi. These are easier to get 
from the moments  of 17/. 

dmMvi(t) £ (~1) "- dkl 
dim kl =0 

Hence, put t ing  t = 0 we get the m-th moment  of Vi: 

m ~ ( ~  + 1)... (~  + k~ - 1)~<~2-k, (3.4) M } ~ ) = E ( ~ ) =  ~ kt 
kl =0 

?Tt fgkl ~ m - k 1  
- -  H Yi -- Z ]£1 (O~i) kl 

kl=O 

where (a)r  = a(a + 1 ) . . .  (a  + r - 1), (a)o = 1. Using the above, we now have, 

m! i 
(3.5) E ( Z ~ ) - - E ( V , + . . . + V 0  ~ =  ~ r , ! - - -  ! I ] E ( V ~ " )  

~(rl  ,...,r~ ,m) /=1 

rl!---ri! l-I{M[ r~)} 
l=l 

= E 
~(rl, . . . ,ri ,m) 

where M~ ~') is given in (3.4), 

/~(/'1,""' ,/'k, ?n) ~- { ( / '1 , ' " '  , rk) (~ N~ It1 + . . .  +rk = m}  

and N+ is the set of non-negative integers. Similarly, 

(3.6)  (zbz?) = [2 Z 
~(rl ..... r~,k~) ~(sl ..... s;,k2) rl!::-" ri! s l . . . '  sji Q 

where 

Q={ E(V1) m+~ .-.  E(Vi)~'+~'E(V~+I) ~'+' . . .  E (Vj )~  if j > i 
E(V1) rl+s~ .. .E(Vj)rJ+SJE(Vj+I)  r~+l..  .E(Vi)  r* if j < i 

E(Zi) kl+k~ if j = i. 

4. Densities 

From the joint distr ibution in (1.2) we can obtain the distr ibution of subsets  
of Z 1 , . . . ,  Zk. First, consider the density of ( Z 1 , . . . ,  Zk-1).  This is easily obtained 
by integrating out  Zk. Integration over Zk leads to the following integral 

E (4.1) (zk - zk-1 - %)~k--le--(zk--('~1+'"+'Yk))/~dzk 
k--z+~k 

-=- fO ~ Uak-- le-- (U+Zk-- l+~k--(~l+'"+Yk)) / f ldu 

= fl~r(ak)e-(Z~ , - ( ~ , + - - - + ~ - , ) ) / ~  
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Hence, the joint  density of Z 1 , . . . , Z k - 1  is of the same form as the density of 
Z1 . . . .  , Z~:. This is also clear from the definition of the Zi's. 

Next, consider the joint  density of Z1,. • . ,  Z,i-1, Zi+l,  •. •, Zk. This is obta ined 
by integrating out  Zi, which leads to the following integral: 

(4.2) . . . .  (gi Z i - 1  " T i ) a { - l ( z i + l  Z i "T i+ l ) °~ i+ l - ld z i  
d z i  1 +~/ i  

f 
Zi+l --'~i+1 - - z i  1 --"Yi 

: Uc~ i - - l ( z i+ l  --  "7i+1 - -  Zi--1 -- "7i -- t t ) c ~ i + l - l d u  
J0  

I~ ( °~ i )F ( °~ i+ l )  ( Z i + l  "7i-F 1 z i - 1  " 7 i ) ( ~ i + a i + l -  1. 

Note tha t  the location parameter  of z i + l -  zi-1 is ~1 + "  " "-]-'7i+1 --("71 + ' ' "  " ~ 7 i - 1  ) ~-- 
Yi + "7i+] and the shape parameter  is c~i + a i+ l ;  hence, the joint  distr ibution of 
the subset Z] . . . .  , Zi-1, Zi+l,  . . . .  Zk is also of the same form as the density of the 

Zl,...,Zk. 
The  above discussion shows that  the joint  density of all subsets of Z 1 , . . . ,  Zk 

is of the same functional form. We now establish several interesting results con- 
cerning conditional densities and densities of ratios of the Zi's. 

(a) The  conditional density of Z i +  1 given Zi -- zi is evidently a gamma with 
parameters  a i+ l , /3 ,  zi + '7i+1, i.e. Zi+l I Zi ~ G(ai+l , /3 ,  zi + '7i+1). We note tha t  
for j > i we have 

(b) - "7; 
zj- ; - -  ~ Beta ( (~ ,  (~ - (~*) type-1. 

(c) - "7; 
z j  - + - " 7 ;  

Beta(aT,  c~; - a*) type-2. 

Also, since (Vi - '7i)//~ ~ G(a i ,  1, 0), as a consequence of a well known result (see, 
for example Wilks (1962)), we have the following: 

Z1 - 71, Y2 - Z2 - Z~ - 72 ., Yk-1 = Zk - Zk-1 - Yk 
(d) Y1 - Zk '7* Zk - "7; " "  Zk -- "7* k k 

joint ly have the Dirichlet density with parameters  c~1, • • •, ak and they  are inde- 
pendent  of Zk. The  Diriehlet density is 

r( i) k-, } { o1 1 Yk-1) h ( y ] , y 2 , . . . , y k - 1 ) -  l_ik F(~I) Yl ( 1 -  * -k 
/ = 1  

. k - 1  
where yi = Yl -F -. .  -F Yi _> 0, i ----- 1 , . . . ,  k - 1 and ~-~-i=] Yi _< 1. Clearly, each Y/ 
is a Beta  type-1 (see (b)). 
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Finally we note the following results that concern the special case in which 
each of the V~'s is exponential (c~i = 1,/3 = 1, 7i = 0). From the density above we 
have: 

(e) h ( y l , Y 2 , . . . , Y k _ l )  = ( ~  -- 1)! 

and hence Y1,... ,Yk-1 a r e  distributed like the order statistic from the uniform 
U(0, 1)-distribution. In this case, the joint density of Z1 , . . . ,  Zk reduces to 

f ( z l , . . .  , zk)  = e -zk ,  0 • z1 'Q z2 "~ "'" "~ Z k - 1 ,  0 < Zk "Q 00.  

The transformation 

Z1 Z2 Z k - 1  Wk = Zk 
w l  =  ,w2 = . . , w k - 1  - zk 

is one-to-one with Jacobian J(Z W) k-1 ---* = W£ . Thus, the joint density of 
W I  , . . . , W k _  I is 

~0 (X3 
g ( W l , . . . , W k _ l )  =-- wk-le-Wkdwk = ( k -  1)!. 

Hence, W1, . . . ,  Wk-1 are also distributed like the order statistic from the uniform 
U(0, 1)-distribution. 
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