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Abstract

Nondeterminism is pervasive in all but the simplest
action domains: an agent may flip a coin or pick
up a different object than intended, or an action
may fail and may fail in different ways. In this
paper we provide a qualitative theory of nondeter-
minism. The account is based on an epistemic ex-
tension to the situation calculus that accommodates
sensing actions. Our position is that nondetermin-
ism is an epistemic phenomenon, and that the world
is most usefully regarded as deterministic. Nonde-
terminism arises from an agent’s limited awareness
and perception. The account offers several advan-
tages: an agent has a set of categorical (as opposed
to probabilistic) beliefs, yet can deal with equally-
likely outcomes (such as in flipping a fair coin) or
with outcomes of differing plausibility (such as an
action that may on rare occasion fail).

1 Introduction

In standard accounts of reasoning about action, an agent (or
agents) carries out a sequence of actions, possibly including
sensing, where each action has a fixed, determined (though
possibly conditional) effect on the environment. The real
world of course is nothing like this. Not only will an agent
have incomplete information, it may also have inaccurate or
incorrect information. Actions may fail, perhaps because a
prerequisite condition is not satisfied, or an action may simply
fail with no known reason. Moreover, the outcomes of some
actions, such as flipping a coin, may be impossible to predict.
Such actions in which the outcome is not fully predictable
are called nondeterministic, in contrast to the traditional ac-
count, which concerns deterministic actions. Nondetermin-
ism in reasoning about action has often been addressed via
a quantitative account based on probability theory. In such
an account, action outcomes are given by a (known) proba-
bility distribution over the different ways that the world may
evolve.

Our goal in this paper is to provide a qualitative account
of nondeterminism. That is, we want to be able to say that
flipping a coin will have it come out heads or tails (and not
heads with probability 0.5 and the same for tails). We also
want to be able to state that pressing a light switch may fail,

but that the agent will disregard this possibility unless further
evidence (e.g., sensing that the room remains dark) indicates
otherwise. There are several advantages to a qualitative ac-
count of nondeterminism. First, it is intuitive; people in gen-
eral assume that a light switched on will go on, and don’t
consider the alternatives unless there is a need to. A quali-
tative approach is simpler than a probabilistic account, since
one does not need to manipulate probabilities. A qualitative
account also allows an agent to maintain a knowledge base of
categorical beliefs, rather than assertions with probabilities.
Consequently it may also offer computational advantages. A
common criticism of probabilistic accounts is that it is not
clear where the numbers come from, nor is it always easy to
judge whether a given probability is reasonable or not. On the
other hand, probabilistic accounts have proven to be highly
useful in many applications. Hence, any qualitative approach
should be compatible with a probabilistic approach (which
we argue is the case here). Overall then, we see a qualita-
tive approach as having independent interest and utility, and
complementing numeric approaches.

So what is qualitative nondeterminism? Our view is that
it is an epistemic notion, reflecting an agent’s limited aware-
ness of the domain and how it might evolve. That is, as in
the traditional account of reasoning about action, we assume
that the world is deterministic and that each state of the world
is determined by its predecessor. Thus, in flipping a coin, an
agent in fact executes an action that will correspond to a flip-
heads or a flip-tails action; however it will not know which, at
least until after the coin is observed. Since our account allows
action outcomes with different plausibility levels, the notion
of a failed action is subsumed by our approach, in that a failed
action is an unlikely or implausible nondeterministic outcome
of an action execution. This view of the world as being deter-
ministic is usually associated with Laplace [Laplace, 1814],
as the initial proponent. While this view of the universe is in-
correct, at least if one accepts quantum theory, at the level of
commonsense reasoning it provides a highly useful approxi-
mation in the context of reasoning about action.

Given our assumption of a deterministic world, a suf-
ficiently knowledgeable and perceptive agent would know
whether an unseen coin toss yields heads or tails. Our agent,
though, isn’t sufficiently perceptive, so all it knows is there
will be one of the two possible outcomes. We formalise this
notion by making use of an epistemic extension to the situa-



tion calculus, and broadly building on [Bacchus et al., 1999]

and [Delgrande and Levesque, 2012]. In common with these
papers, we express that an agent intending to execute an ac-
tion may inadvertently execute another. We also attach plau-
sibility values to such alternative actions. Hence in press-
ing a light switch, the agent may be very likely to press the
switch but may, implausibly, press the wrong switch. In the
approach, the agent will believe that it has pressed the switch
unless further evidence compels it to believe otherwise.

Arguably, the approach provides an intuitive, declarative,
qualitative approach to nondeterminism, including actions
with equally-plausible outcomes, as well as actions with im-
plausible outcomes. It allows for the specification of domain-
specific theories of types of action failure, thereby also shed-
ding light on the formal underpinnings of reasoning about ac-
tion. The next section presents background material, while
the following section discusses the approach. After this we
present the formal details of the approach, and explore its
properties and application. This is followed by a discussion
and a conclusion.

2 Background

2.1 The Situation Calculus

We describe the version of the situation calculus presented
in [Levesque et al., 1998; Reiter, 2001]. The language of
the situation calculus is first-order with equality, with sorts
for actions, situations, and objects (everything else). A situ-
ation represents a world history described by a sequence of
actions. Predicates and functions whose values are situation-
dependent (and whose last argument is a situation) are called
fluents. A set of initial situations expresses the ways the do-
main might be initially, while the constant S0 denotes the
actual initial state of the domain. The term do(a, s) de-
notes the unique situation that results from executing ac-
tion a in situation s. The notation 〈a1, . . . , an〉 specifies an
action sequence. This is also used to abbreviate the term
do(an, do(. . . , do(a1, s) . . .)) as: do(〈a1, . . . , an〉, s).

To axiomatise a dynamic domain, we use basic action the-
ories [Reiter, 2001] consisting of (1) axioms which describe
the initial states of the domain, including the initial beliefs
of the agents; (2) precondition axioms, giving the conditions
under which each action can be executed;1 (3) successor state
axioms, which describe how each fluent changes as the re-
sult of actions; (4) sensing axioms for each action, described
below; (5) unique names axioms for the actions; and (6)
domain-independent foundational axioms.

[Scherl and Levesque, 2003] axiomatises an agent’s knowl-
edge by treating situations as possible worlds. Two special
fluents were used, SF and B. An action returns a (binary)
sensing result, and SF(a, s) holds when action a returns sens-
ing value 1 in situation s. Sensing axioms give the conditions
under which SF(a, s) holds. The B fluent is the usual belief
accessibility relation: B(s′, s) holds when the agent in situa-
tion s thinks that situation s′ might be the actual situation.2 A

1For simplicity, we will assume all actions are always possible.
2Because B is a fluent, the order of the situation arguments is

reversed from the usual convention in modal logic.

successor state axiom for B is given by:3

B(s′, do(a, s)) ≡ (1)

∃s∗[B(s∗, s) ∧ s′ = do(a, s∗) ∧ (SF(a, s∗) ≡ SF(a, s))].

So the situations s′ that are B-related to do(a, s) are the ones
that result from doing action a in a previously related situa-
tion s∗, such that the sensor associated with action a has the
same value in s∗ as it does in s. Belief then is defined, as
usual, as truth in all accessible situations:4

Bel(φ, s)
.
= ∀s′.B(s′, s) ⊃ φ[s′].

2.2 Nondeterminism in Reasoning About Action

Most work in nondeterminism assumes that an action may
have indeterminate consequences: in a quantitative account,
the effect of an action is given by a probability distribution
over possible next states; in a qualitative account, the effect
of an action is a set of possible next states.

For quantitative approaches, in the planning community,
stochastic domains are often modelled using Markov Deci-
sion Processes [Puterman, 1994]; see for example [Cassandra
et al., 1994]. In a different vein, Poole’s Independent Choice
Logic [Poole, 2008] adds independent stochastic inputs to an
acyclic logic program. A probability distribution is given over
each set of alternatives, and states of the world are assigned a
probability derived from these distributions.

[Bacchus et al., 1999] introduces epistemic aspects to non-
determinism. A fluent OI , for observational indistinguisha-
bility, is introduced where OI(a, a′s) expresses that execu-
tion of actions a and a′ in situation s cannot be distinguished
by the agent. Actions a and a′ may be “noisy”; for exam-
ple, advance(3.0, 2.8) might be the action where an agent
attempting to move 3.0 units actually moves 2.8 units. Prob-
abilities are assigned to the initial situations, and these proba-
bilities are adjusted appropriately following the execution of
actions.

In qualitative approaches, nondeterminism can be mod-
elled by transition systems, that is, labelled, directed graphs
where vertices represent states of the world, and arcs are la-
belled by actions. Nondeterminism is expressed by having
more than one arc leaving a vertex with the same label. Tran-
sition systems provide a semantic basis for action languages
[Gelfond and Lifschitz, 1998]; see e.g. [Baral, 1995] for an
account of (among other issues) nondeterminism. Similar
work has been carried out in the planning community: for ex-
ample, in [Cimatti et al., 2003] an action is associated with a
set of possible next states; [Jensen et al., 2004] treats actions
as having an expected outcome along with a set of possible
unexpected outcomes (for example, failing).

In the circumscriptive event calculus [Shanahan, 1997], ac-
tions with nondeterministic effects depend on determining
fluents whose value is unknown. Hence this can be seen as

3Free variables are assumed to be universally quantified from
outside.

4The formula φ here is assumed to have a single free variable
of sort situation. It is usually written either with a distinguished
variable now as a placeholder, or else the variable is suppressed.
Either way, φ[t] denotes the formula with the variable replaced by t.



“nature” influencing the outcome of an action. Another ap-
proach to nondeterminism is provided by the Golog family
of languages [Levesque et al., 1997]). Nondeterminism there
is handled as a programming construct, like in dynamic logic
[Pratt, 1976]: every action is considered to be a program, and
given two programs α and β, the program [α|β] is the non-
deterministic choice of one of them. This idea is refined in
[Boutilier et al., 2000] where BestDo(α, s, s′) holds when
the final outcome maximizes utility.

[Delgrande and Levesque, 2012] addresses revision and
fallible actions in the situation calculus. There, an agent
intending to execute one action may inadvertently execute
another. This is expressed by a predicate Alt, where
Alt(a, a′, s) asserts that an agent intending to execute a may,
implausibly, execute a′ in s. Intended actions are believed
to have been executed, while alternative actions are taken as
being maximally implausible.

3 The Approach

As stated, our goal is to provide a logical theory of nondeter-
minism. Moreover, we take a Laplacian stance: the world is
in fact deterministic, and nondeterminism is an artifact of the
agent’s limited senses and limited knowledge. Examples of
nondeterminism that we account for include the following:

1. An agent flips a fair coin. Afterwards it believes that the
coin landed heads or tails. Perhaps also, the agent believes
that it is just possible that the flipping action failed, and it is
extremely implausible that the coin landed on its edge.

2. An agent throws a dart at a dartboard. Since it is a poor
player, it believes that it is equally plausible that the dart is
embedded in the dartboard or in the surrounding cork.

3. An agent intends to push a button. Afterwards it believes
that it pushed the button, but believes it is possible (but im-
plausible) that it pushed a nearby button.

4. An agent knows that a light is on, and toggles the light
switch twice. On observing that the light is off, it concludes
that one of the toggle actions failed.

Consider the first example, flipping a coin, but with out-
come heads or tails only. Call these actions f , for flip, and
fH and fT , for flipping heads and tails respectively. To begin,
there are two things that we do not mean by nondeterminism.
First, there is no notion of causality; we do not want to say
that a f action causes a fH . As well, we don’t want to say
that f is a composite action, made up of a nondeterministic
disjunction of fH and fT . As an account of nondeterminism,
such a specification is of course circular.

Arguably, f is a “real” action, to the extent that one can
talk about an agent flipping a coin, and it makes sense to talk
about what happens when a coin is flipped. Now, when an
agent attempts to execute a f action, either a fH or fT is
executed; an agent would know this but wouldn’t know which
is executed. We call an action such as f a virtual action,
by analogy with virtual memory. I.e., from a user’s point of
view, virtual memory behaves just like physical memory in
that it has addresses at which data is stored; however, where
the data is really stored is at some physical location (with its
own address) and beyond the control of the user.

Given that we take nondeterminism to be an epistemic phe-
nomenon, we focus on the evolution of an agent’s beliefs. For
simplicity we assume a single agent. An agent may carry
out a physical action or it may sense its environment. Physi-
cal actions may have nondeterministic consequences. Due to
space limitations, we assume that sensing is accurate, in that
an agent will believe the result returned by a sensor, though
maintaining the possibility that the sensor in fact failed in
some way.

Fundamental to our account is the notion of plausibility,
where a plausibility value is a non-negative integer. Plausibil-
ities are used in two related ways. First, an agent’s belief state
will be modelled by a plausibility ordering ([Spohn, 1988;
Darwiche and Pearl, 1997]) over a set of situations. That
is, situations are assigned plausibility values, where a lower
value means that a situation is considered to be more plau-
sible. Situations with plausibility 0 characterize the agent’s
categorical beliefs. Second, ordered pairs of actions may have
an associated plausibility in a situation. If plausibility p is as-
sociated with actions ai and a, this means that if the agent
intends to execute ai, then with plausibility p action a may
be executed. For example, for a f action, fH and fT will
each have plausibility 0, and a failed action, null may have
plausibility 1. These values are interpreted to be a qualitative
measure, where non-zero values capture “big step probabili-
ties” or large, orders-of-magnitude values.

Our goal then is to track the evolution of an agent’s belief
state, expressed as a plausibility ordering, following physical
and sensing actions. However, nondeterminism complicates
matters. Consider again flipping a coin. Following a f, the
world will evolve so that the coin lands heads, or so that it
lands tails. However the agent will believe only that the coin
shows heads or it shows tails. Consequently, when there are
nondeterministic actions, the actual physical actions that oc-
cur are not enough to determine the situations that the agent
considers possible; we need to also consider what the agent
believes what the outcomes may be. This means that in track-
ing the evolution of an agent’s belief state, we will need to
keep track of both those actions that actually were executed,
along with those actions that the agent intended to execute.
See [Delgrande and Levesque, 2012] for more on this.

4 The Formal Framework

In this section we describe the new theory of reasoning about
and with nondeterministic actions. We begin with a basic
action theory, as summarised in Section 2. Due to space lim-
itations we omit the BAT axioms; however, see [Levesque
et al., 1998]. To a basic action theory, we add two pred-
icates, Alt, for describing alternative actions and B, for
capturing an agent’s belief state. These predicates gener-
alise similarly-named predicates in [Delgrande and Levesque,
2012], which in turn generalises [Bacchus et al., 1999;
Shapiro et al., 2011]; see Section 6 for a discussion.

We express the fact that an agent intending to execute
(physical) action a1 may in fact execute a2 with plausibility
p in situation s by the formula

Alt(a1, a2, p, s).
The plausibility p is a qualitative measure. If p = 0 then a1



and a2 are equally plausible. If p = 1 then a2 is implausible
wrt a1, and a2 would be a surprise, should the agent learn that
a2 was in fact executed. Higher values of p are also possible.
This then captures both qualitative nondeterminism (for p =
0) as well as unintended or unlikely actions (for p > 0).
Alt is not a “regular” fluent in that it does not have a suc-

cessor state axiom; rather Alt is defined in terms of other
fluents. (Thus Alt behaves much like Poss in basic action
theories.) For each action we assume an axiom of the follow-
ing form, where the free variables of A are among ~x, and ΨA

is uniform in s5 [Levesque et al., 1998] and does not mention
Alt or B:

Alt Axiom: Alt(A(~x), a, p, s) ≡ ΨA(~x, a, p, s)

Consider how our earlier examples may be expressed:

1. Flipping a coin: Let f be the flipping action and fH and
fT flipping heads and tails respectively:

Alt(f, a, p, s) ≡ (a = fH ∧ p = 0)∨ (a = fT ∧ p = 0)

f is a virtual action, and attempting to execute it results
in fH or fT . To say that the flipping action might fail, or
that the coin might land on its edge, one could disjoin:

(a = null ∧ p = 1) ∨ (a = fEdge ∧ p = 2)

2. Throwing a dart: Let tB be the action of throwing a dart
so it hits the dartboard; and tW the action where the
dart hits the adjacent wall. If the light isn’t dim, the dart
usually hits the board; if it is, it may also hit the wall.

Alt(tB, a, p, s) ≡
¬Dim(s) ⊃ (a= tB ∧ p=0) ∨ (a= tW ∧ p=1)) ∧
Dim(s) ⊃ ((a= tB ∧ p=0) ∨ (a= tW ∧ p=0))

3. Pushing a light switch:

Alt(push(x), a, p, s) ≡ (a = push(y) ∧ p = |x− y |)

4. Toggling (t) a light switch where the toggling may fail,
implausibly and for no known reason:

Alt(a, a′, p, s) ≡ (a = a′∧p = 0)∨(a = null∧p = 1)

Consider next the evolution of an agent’s belief state. A
belief state is made up of a set of situations along with a plau-
sibility value attached to each situation. Situations with plau-
sibility 0 are those that the agent considers may correspond to
the real world; situations with plausibility > 0 provide (rel-
atively) plausible alternatives, should the agent learn that its
beliefs are incorrect. We need to track such a belief state
given (1) a finite sequence of actions σ that at each point in
time the agent intended to execute, and (2) a situation repre-
senting the actual state of affairs. This is expressed using a
4-place fluent

B(s′, p, σ, s)

where for specific values of σ and s,B(·, ·, σ, s) characterises
a belief state.

It is straightforward to describe an initial belief state. An
initial situation is defined to be one with no predecessor:

Init(s)
.
= ¬∃a, s′. s = do(a, s′)

5Roughly, the fluents in ΨA are with respect to s only.

The following axioms describe initial situations; S0 by con-
vention represents the initial state of the actual situation. Re-
call that an action sequence is represented as a list of actions
surrounded by 〈. . . 〉. We assume some appropriate axiomati-
sation for lists; the concatenation of a to σ is given by σ ·a.

Axioms:
1. Init(S0)
2. Init(s) ⊃ ∃nB(s, n, 〈 〉, S0)
3. B(s′, n, σ, S0) ⊃ Init(s′) ∧ σ = 〈 〉
4. B(s′, n1, 〈 〉, S0) ∧B(s′, n2, 〈 〉, S0) ⊃ n1 = n2

Axiom 2 asserts that every initial situation has some plausi-
bility according to the agent. Axiom 3 asserts that only initial
situations are considered possible by the agent at S0, and the
agent believes that it has attempted no actions. The fourth
axiom states that at the initial “index” 〈 〉,S0, plausibility is a
function of a given situation.

An agent may change its beliefs by sensing its environment
or by (attempting to) execute a physical action. For conve-
nience, and unlike [Scherl and Levesque, 2003], sensing and
physical actions are two distinct action types; thus we have
the axioms, with obvious intended interpretation:

Axiom 5: a. Action(a) ≡ (PhysAct(a) ∨ SenseAct(a))
b. ¬(PhysAct(a) ∧ SenseAct(a))

Consider physical actions, and where the agent intends to
execute action ai. Two things need to be tracked. First the
agent may intend ai but in fact executes a (thus a light switch
other than that intended may be pushed). As discussed, this
is kept track of in the last two arguments of the B fluent. But
second, the agent will also be aware of potential alternative
actions. Hence, in pushing a light switch, the agent will be-
lieve that it has pressed the correct switch, but it also knows
that it may possibly press the incorrect switch. Hence such al-
ternatives also need to be kept track of. Specifically, consider
where B(s′, p, σ, s) is true, and so in the belief state indexed
by σ, s, situation s′ has plausibility p. If the agent intends
to execute ai where Alt(ai, a, p

′, s) is true, then the situa-
tion do(a, s′) should be assigned plausibility p+ p′. Thus, if
B(s′, p, σ, s) and Alt(ai, ai, 0, s) are true, then for intended
action ai, the plausibility of situation do(ai, s

′) will be un-
changed. If Alt(ai, aj , 1, s) is true, then the plausibility of
situation do(aj , s

′) will be p + 1; i.e. under an unexpected
action the resulting situation will become less plausible.

For sensing, we adopt a simple model wherein the agent
believes the result of sensing, but also allows that (implau-
sibly) sensing may be incorrect. Plausibilities are modified
following the recipe of [Darwiche and Pearl, 1997]: If g is
sensed to be true, then the plausibility of all accessible B-
related situations where g is false is increased by 1. Thus all
¬g-situations are believed to be less plausible. Also, the plau-
sibility of situations in which g is true is uniformly reduced
so that some situation in which g is true has plausibility 0. As
a result, the agent believes g after sensing that it is true.

Two definitions are introduced to assist in the expression
of the successor state axiom for B. The first captures that the
sensing action a has the same result in situations s and s′:

Agree(a, s′, s)
.
= SF(a, s′) ≡ SF(a, s).

Recall from Section 2 that a is a sensing action associated
with some fluent; SF is the result of sensing that fluent in s.



The second abbreviation asserts that the minimum plausibil-
ity of φ at some belief state is d.

Min(φ, d, σ, s)
.
= ∃s′ [B(s′, d, σ, s) ∧ φ[s′]∧

∀s′′, d′((d′ < d ∧B(s′′, d′, σ, s)) ⊃ ¬φ[s′′])]

The successor-state axiom for B can be given as follows:

Axiom 6:

B(s′, n, σ, do(a, s)) ≡
∃s∗, n∗, a∗, σ∗, ai, p2.
B(s∗, n∗, σ∗, s) ∧ s′=do(a∗, s∗) ∧ σ=σ∗ ·ai ∧

∃p1Alt(ai, a, p1, s) ∧ Alt(ai, a
∗, p2, s

∗) ∧ (2)

[PhysAct(a) ∧ n=n∗ + p2 ] ∨ (3)

[SenseAct(a) ∧ a=ai ∧ a=a∗

((Agree(a,s,s∗) ∧ n=n∗−d ∧
Min(Agree(a,s,s∗),d,σ,s)) (4)

∨ (¬Agree(a,s,s∗) ∧ n=n∗ + 1)) ] (5)

The axiom gives the conditions for situation s′ to have plau-
sibility n in the belief state indexed by σ and do(a, s). The
right-hand side of the equivalence is made up of three parts,
a preamble (2), and parts for physical (3) and sensing (4,5)
actions. For the preamble (2), there is an intended action ai
and action sequence σ∗ where σ = σ∗·ai andAlt(ai, a, p1, s)
holds. That is, ai is intended but a is actually executed. As
well, s′ is the result of an action a∗ where Alt(ai, a

∗, p2, s
∗)

holds. So the agent intends to execute action ai but in fact
executes a. Action a∗ is also an alternative to ai.

For a physical action (3), the agent has no access to the ac-
tion a that was actually executed. Action ai was intended, and
so for alternative action a∗, the resulting (i.e. s′=do(a∗, s∗))
situation would have plausibility increased by p2. For the
“normal” case we would have a∗ = ai and p2 = 0.

Sensing connects the agent with the real situation. The ef-
fect of a sensing action is to, if necessary, uniformly decrease
the plausibility value of those situations in which the sensing
result agrees with that at s, such that some resulting situation
has plausibility 0 (4), and to increase the plausibility of other
situations by 1 (5).

This characterises how an agent’s belief state evolves given
an intended and actually-executed action. The agent’s cate-
gorical beliefs are characterised by 0-ranked situations:

Bel(φ, σ, s)
.
= ∀s′. B(s′, 0, σ, s) ⊃ φ[s′]. (6)

5 Properties of the Framework

Σ below will denote a basic action theory (BAT) as given in
the previous section. We use s′ ⊑ s to express that s′ is a
subhistory of s. First, B can be interpreted as a plausibility
ordering indexed by the last two arguments of B:

Theorem 1 Σ |= (B(s′, p1, σ, s)∧B(s′, p2, σ, s)) ⊃ p1=p2

Ignoring nondeterminism, action progression reduces to that
of [Scherl and Levesque, 2003] (SL) for knowledge:

Theorem 2 Let Σ be a BAT entailing B(S0, 0, 〈〉, S0) and
with sole Alt axiom: Alt(a, a′, p, s) ≡ a = a′ ∧ p = 0. Then
there is a SL BAT6 Σ′ s.t. for any σ and s = do(σ, S0):

Σ |= B(s′, 0, σ, s) iff Σ′ |= B(s′, s)

6I.e. Using (1) for B and not mentioning Alt.

Assume every fluent has a corresponding sensing action,
and that for any fluent formula φ there is a corresponding
sensing action senseφ defined in the obvious fashion. Then,
a revision operator can be defined in terms of sensing:

Theorem 3 Define, in the case where Σ |= φ(S0):
BS(Σ∗φ)

.
= {ψ|Σ |= Bel(ψ, 〈senseφ〉, do(senseφ, S0))}

Then (where defined) BS(Σ ∗ φ) satisfies the AGM revision
postulates [Gärdenfors, 1988].

A virtual action was defined as an action av such that no in-
stance of Alt(ai, av, p, s) is entailed. The last result shows
that such actions play no role in the evolution of a situation
indexing an agent’s belief state, nor in the situations charac-
terizing the belief state:

Theorem 4 Let av be a virtual action wrt Σ and let Σ |=
B(s′, p, σ, s). Then s′, s do not mention av .

We next go through two extended examples, to show the
framework in action.

Flipping a Coin There is just one fluentH indicating that the
coin is showing heads; tails is given by the negation of H .

The four actions, f , fH , fT , null, represent a flip, flip
heads, flip tails, and the null action respectively. There is
a sensing action, sH for sense heads. S0 is the sole initial
situation. The basic action theory is given by the following:

H(S0), B(S0, 0, 〈〉, S0)
H(do(a, s)) ≡ (a = fH ∨ (a = null ∧H(s)))
Alt(f, a, p, s) ≡ (a = fH ∧ p = 0) ∨

(a = fT ∧ p = 0) ∨ (a = null ∧ p = 1)
SF (a, s) ≡ H(s) ∨ a 6= sH

The following are entailed in the case where f is intended and
fH is actually executed:

B(do(fH, S0), 0, 〈f〉, do(fH, S0)),
B(do(fT , S0), 0, 〈f〉, do(fH, S0)),
B(do(null, S0), 1, 〈f〉, do(fH, S0))

The agent believes it executed a fH or fT action. The agent
admits the possibility that the flip action failed, but this pos-
sibility isn’t part of the agent’s set of beliefs. Following a
sensing action sH , the result of the flip can be learned. This
is all illustrated in Figure 1.

S0: fH

fT

null sH

sH

sH

0:

¬H

〈〉
〈〉

〈f〉
〈fH〉

〈f, sH〉
〈fH, sH〉

H H

H

H

H

¬H
1:

Figure 1

The bottom of the figure shows the evolution of two se-
quences of actions, the agent’s intended actions above, and
below them the evolution of the actual situation. Each black
dot represents a situation and each such situation lies in a
numbered stratum, giving that situation’s plausibility. Thus a
“column” of black dots, or situations, represents an instance
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of the agent’s belief state. Finally, arcs represent situation
transitions, labelled by the appropriate action.

Thus we see that initially (as illustrated by the left-
most dot) S0 is the only possible situation, according
to the agent. Following an intended f , but where fH
was actually executed, the agent believes that either a
fH or fT was executed (plausibility 0) or, implausibly,
the action failed (plausibility 1). Last, the sensing ac-
tion yields the true state of affairs to the agent. Con-
sequently we also have that ¬Bel(H, 〈f〉, do(fH, S0) but
Bel(H, 〈f, sH〉, do(sh, do(fH, S0)) are entailed.

Toggling a Light Switch A light is initially on, and this is
known by the agent. Toggling the switch changes the state of
the light from on to off or vice versa. The agent toggles the
light switch twice, and observes that the light is off. It con-
cludes only that one of the toggling actions must have failed.

There is one fluentOn indicating that the light is on. There
are three actions, t, sL, and nullwhich toggle the light switch,
sense the light, and do nothing, respectively. There is one
initial state S0 in which the light is On. The basic action
theory is given as follows:

On(S0), B(S0, 0, 〈〉, S0)
On(do(a, s)) ≡ (a= t∧¬On(s))∨(a 6= t∧On(s))
SF (a, s) ≡ On(s) ∨ a 6= sL
Alt(t, a, p, s) ≡ (a= t∧p=0)∨ (a=null∧p=1)

The agent intends to execute two toggle actions; thus for any
x, y ∈ {t, null}, B(do(〈t, t〉, S0), 0, 〈t, t〉, do(〈x, y〉, S0)) is
entailed.7 More perspicuously, we obtain

Bel(On, 〈t, t〉, do(〈x, y〉, S0))
The agent believes that the light is On, regardless of whether
toggles were or were not in fact executed.

Further, for any x, y ∈ {t, null} the following are entailed.

B(do(〈null, t〉, S0), 1, 〈t, t〉, do(〈x, y〉, S0)),
B(do(〈t, null〉, S0), 1, 〈t, t〉, do(〈x, y〉, S0)),
B(do(〈null, null〉, S0), 2, 〈t, t〉, do(〈x, y〉, S0))

Thus the agent allows for the unlikely possibility that a toggle
failed, and even more implausibly, that it failed twice.

Next consider the specific situation where the agent exe-
cutes two toggle actions, and observes that the light is not
On. Assume that in fact the first toggle action failed. This is
illustrated by Figure 2.

7Recall that do(〈x, y〉, S0)) abbreviates do(y, do(x, S0)).

Again, an agent’s belief state is indicated by a column of
black dots, divided into strata which give the plausibility of
each situation, and with the index of that belief state given
below each column of dots. It can be seen that for the first two
toggle actions, the agent believes that the toggling succeeds,
even though the first in fact fails. Also, the agent considers it
implausible (with plausibility 1) that one of the toggles failed,
and even more implausible (plausibility 2) that both failed.

The agent’s incorrect beliefs get sorted out following the sL
sensing action. It is discovered that the light is in fact notOn;
consequently the situations where ¬On is true are “moved
down” in the plausibility ranking so that the minimum ¬On
situations have plausibility 0. As well, the plausibility ofOn-
situations is increased by 1.

More formally, we have that the following are entailed:

B(do(〈null, t, sL〉, S0), 0, 〈t, t, sL〉, do(〈null, t, sL〉, S0)) (7)
B(do(〈t, null, sL〉, S0), 0, 〈t, t, sL〉, do(〈null, t, sL〉, S0)) (8)

As a result, the agent knows that one of the toggles – but not
which – failed. Hence we do not obtain recency, that is, where
more recent actions are assumed to be more plausible. This
is in contrast with most work in belief revision, where a more
recent formula for revision takes precedence over an earlier
one, if the formulas conflict (see e.g. [Peppas, 2008]).

Finally, up to this point, the agent’s initial belief state
was characterized by the situation S0, and so it is inconceiv-
able to the agent that the light is initially not On. Assume
there is a second initial situation S1, and that ¬On(S1) and
B(S1, 1, 〈〉, S0) hold. Thus the agent believes that the light
is On, but that it is not impossible (just implausible) that the
light is not On. If now the agent intends to toggle the light
switch twice and the first toggle fails, we obtain in addition
to (7), (8) that the following is entailed:

B(do(〈t, t, sL〉, S1), 0, 〈t, t, sL〉, do(〈null, t, sL〉, S0))

Thus, the agent allows for an additional possibility where the
toggles succeeded, but the light was not initially On. Finally
if it were deemed that it was highly unlikely that the light was
off, and so S1 had plausibility> 1, then the agent would again
believe only that a toggle had failed.

6 Discussion

Related Work One branch of work involving nondetermin-
ism makes use of probabilities. The closest such work to the
present is [Bacchus et al., 1999]. Somewhat analogous to
our use of Alt with plausibility 0, they employ, first, “noisy
actions” defined in terms of Golog constructs, and second an
“observation indistinguishability” predicate to assert when an
agent cannot distinguish one action from another. In addition,
quantitative information is added by introducing fluents that
assign probabilities to (accessible) situations and to actions.
Given that the approach deals with nondeterminism via prob-
abilities, it would not handle the case where an agent turns
a light on, observes that it is off, and concludes categorically
that the switching action must have failed.

The closest work to the present is [Delgrande and
Levesque, 2012], although the focus there was on belief re-
vision, which we do not consider here. The Alt predicate is



used, but in a restricted setting: Intended actions have plau-
sibility 0, and unintended actions are assigned plausibilities
higher than any existing plausibility; as a result, recency is
obtained. In contrast, one may have an arbitrary plausibil-
ity relation between intended and actual actions here, and
recency is not obtained. Last, our treatment of physical ac-
tions in the B fluent is simpler than that of [Delgrande and
Levesque, 2012], while also significantly more general.

Other work addressing nondeterminism, including [Baral,
1995; Shanahan, 1997; Levesque et al., 1997; Giunchiglia et
al., 2004], generally assumes that the world itself is nonde-
terministic. As well, nondeterministic outcomes are equally
likely and there is no incorporation of plausibility.

The Qualification Problem The qualification problem [Mc-
Carthy, 1977] as regards actions refers to the fact that in a re-
alistic setting, it is impossible to list all preconditions for an
action. Solutions to the problem have used meta-level consid-
erations (e.g. [Ginsberg and Smith, 1988]), or employed non-
monotonic formalisms (e.g. [Thielscher, 2001]). The present
approach arguably resolves (or at least accommodates) the
qualification problem, and within first-order logic: Actions
are expressed with respect to their “usual” preconditions. As
well, using Alt, known ways in which an action may fail or
have unusual effects can be encoded. Further, the evolution
of an agent’s beliefs can allow for the fact that (implausibly)
an action may fail and indeed may fail for no known reason.
The fact that an action failed or had an unexpected outcome
is something that would presumably be discovered by subse-
quent sensing.

Relation with Probabilistic Approaches One of the goals
of the approach was that it be “compatible” with probabilistic
approaches. Arguably the approach is compatible. Specifi-
cally, there is nothing about the plausibility arguments in Alt
and B that says that they have to refer to plausibilities. Thus,
Alt(a1, a2, p, s) could have the intended reading that an agent
meaning to execute a1 will execute a2 with probability p in
situation s. Then, the relevant part of the successor state ax-
iom for B could be replaced by an encoding for dealing with
probabilities (as in [Bacchus et al., 1999]). This would po-
tentially yield an approach which combines qualitative and
quantitative aspects. Also of interest is the fact that, if the
present approach were re-expressed in terms of probabilities,
then the separation of the two senses of Alt, as suggested be-
low, would accommodate both subjective and objective prob-
abilities in the same framework.

Further Work Clearly sensors may fail or report an incor-
rect result. The present approach would seem to extend read-
ily to fallible sensors (and in fact the approach already deals
with sensors expected to be correct but which may fail). Intu-
itively, an incorrect sensor reading can be regarded as a cor-
rect reading of some other fluent, perhaps unknown to the
user. However, once all actions (physical or sensing) are po-
tentially fallible, the issue arises as to how to deal with actions
or classes of actions with differing reliability.

In a quite different direction, it can be noted that in the
successor state axiom for B, the two instances of Alt in (2)
have distinct senses: the first states what action is actually ex-
ecuted in place of the intended action ai. Plausibility doesn’t

play a role here and the plausibility argument plays no role
in determining the agent’s next belief state. The second in-
stance of Alt is purely epistemic. Plausibility is relevant here
and, as the axiom makes clear, we’re dealing with subjective
plausibilities. Thus the successor state axiom could be gen-
eralised, renaming the first occurrence of Alt as BAlt (for
believe Alt). This new version would allow a more nuanced
approach to reasoning about nondeterministic actions, in that
one can separate what actions are unknowingly executed in
place of others, from those actions that the agent believes
may be executed in place of others. We could then express
the case where a dart player believes that he always hits the
board, though in fact he is a poor player who is as likely to
not hit the board as to hit it.

In this paper we have dealt with a single agent. Given
our stance that nondeterminism is an epistemic phenomenon,
there is no reason why the approach could not be extended to
address actions from other agents, involving perhaps an ac-
count of concurrency such as given in [Reiter, 2001].

Finally, we note that there is nothing special about the sit-
uation calculus with regards to the approach to nondetermin-
ism. Hence the approach could be readily re-expressed, for
example, in terms of an epistemic action language such as
[Son and Baral, 2001] where the semantics of the approach is
based on a deterministic transition system.

7 Conclusion

This paper has presented a qualitative theory of nondetermin-
ism. The central intuition is that the world is, in fact, deter-
ministic, and that nondeterminism is an artifact of an agent’s
limited knowledge and perception. The account is based on
an epistemic extension to the situation calculus that deals with
physical and sensing actions. The account offers several ad-
vantages: an agent has categorical (rather than probabilistic)
beliefs, yet can deal with equally-likely outcomes (such as
in flipping a fair coin), or with outcomes of differing plau-
sibility (such as an action that may on rare occasion fail),
or even actions which normally fail and where the desired
outcome is the implausible result (such as striking a flint to
get a fire). Thus the approach allows for the specification of
domain-specific theories of types of action failure, thereby
also shedding light on the formal underpinnings of reasoning
about action.
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