
A Formal Approach for Testing Security Rules

Wissam Mallouli, Jean-Marie Orset, Ana Cavalli
GET/INT Evry, SAMOVAR, 9 rue Charles Fourier

91011 Evry Cedex, France
{wissam.mallouli, jean-marie.orset, ana.cavalli}@int-evry.fr

Nora Cuppens, Frederic Cuppens
GET/ENST Bretagne, 2 rue de la chataigneraie

35512 Cesson Sevigne Cedex, France
{nora.cuppens, frederic.cuppens}@enst-bretagne.fr

ABSTRACT
Nowadays, security policies are the key point of every mod-
ern infrastructure. The specification and the testing of such
policies are the fundamental steps in the development of a
secure system since any error in a set of rules is likely to harm
the global security. To address both challenges, we propose
a framework to specify security policies and test their im-
plementation on a system. Our framework makes it possible
to generate in an automatic manner, test sequences, in or-
der to validate the conformance of a security policy. System
behavior is specified using a formal description technique
based on extended finite state machine (EFSM) [13]. The
integration of security rules within the system specification
is performed by specific algorithms. Then, the automatic
test generation is performed using a dedicated tool, called
SIRIUS, developed in our laboratory. Finally, we briefly
present a weblog system as a case study to demonstrate the
reliability of our framework.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis; I.6.5 [Simulation and Modeling]: Model De-
velopment—Modeling methodologies

General Terms
Algorithms, Design, Security, Languages, Verification

Keywords
Security Policy, OrBAC, EFSM, Verification and Testing,
Test Generation, SDL

1. INTRODUCTION
Security is a critical issue in dynamic and open distributed

environments such as World Wide Web or wireless networks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’07, June 20-22, 2007, Sophia Antipolis, France.
Copyright 2007 ACM 978-1-59593-745-2/07/0006 ...$5.00.

To ensure that a certain level of security is always main-
tained, the system behavior must be restrained by a secu-
rity policy. A security policy is a set of rules that regulates
the nature and the context of actions that can be performed
within a system, according to specific roles. As an exam-
ple, such policy can tackle the interactions between a net-
work infrastructure and Internet or manage accounts and
rights toward an operating system or a database. Generally,
a security policy is written by the mean of a natural lan-
guage specification, containing statements such as “this file
must be accessible only to authorized users” or “all ports
are closed except for 21 (ftp), 22 (ssh) and 80 (www)”.

The main problem is that it is quite difficult to verify
whether a system implementation conforms to its policy.
However, if one cannot ensure this conformance, the global
security cannot be guaranteed anymore. Most current works
only concentrate on defining meta-languages in order to ex-
press security policies and provide unambiguous rules. [3]
and [9] are typical examples of such generic policy descrip-
tion models. Indeed, they do not depend on the functional
specification of the system. They suggest concepts to de-
scribe the security policy independently of the system im-
plementation. Once the security policy is formally specified,
it is essential to prove that the target system implements this
policy by (1) injecting this policy in the system considered
or (2) specifying formally the target system and generating
proofs that this system implements the security policy or
(3) by considering several strategies of formal tests.

In this paper, we propose an approach that makes it pos-
sible to validate security rules. This approach manipulates
three different inputs: a functional specification of the sys-
tem based on a well-know mathematically-based formalism:
Extended Finite State Machine (see section 3.2), a specifica-
tion of the security policy (based on the OrBAC model [3])
that we wish to apply to this system and finally an imple-
mentation of the system. We want to obtain a new specifica-
tion of the system that takes into account the security policy
(we can call it: secure functional specification), and then to
generate tests to check whether the implementation of the
system conforms with the secure functional specification.

This paper distinguishes itself from classical conformance
testing work (see for instance [4]) by several significant dif-
ferences. In fact, we propose an approach to integrate se-
curity rules within the functional specification of a system.
Thus, we describe how modalities such as prohibitions, au-
thorizations and obligations can be integrated in an EFSM

by restricting predicates or by adding transitions and states.
Then, we propose a method to automatically derive test se-
quences from a set of rules as well as an approach to restrict
the number of test objectives required to perform verifica-
tion. Besides, we do not address all issues. Checking the
consistency of the security policy is out of the scope of this
paper. We assume that this issue has been checked. There
are several techniques to achieve this goal (see for instance
[7]).

The remainder of this paper is organized as follows. In
section 2, we discuss the related work tackling with the de-
scription and the validation of security policies. Section 3
presents the basic notions used for the management of secu-
rity rules. In section 4, we expose the approach to integrate
these security rules within an existing specification in EFSM
as well as the relative algorithms. In section 5, we present
a case study: a weblog with security features, as well as the
results through generated test objectives. Finally, section 6
presents the conclusion and introduces the future work.

2. RELATED WORK
Most work related to security policy can be mainly di-

vided into two parts: the description of the policy itself and
the verification of the rules. Until recently, in many systems,
there was no real policy specification, only a description in
terms of low-level mechanisms such as access control lists.
Thereafter, the analysis of access-control leads to define a
number of access control models, which could provide a for-
mal representation of security policies and in some cases,
allow the proof of properties about access control. With
the great majority of models, security rules are defined with
three main modalities (permission, prohibition and obliga-
tion) that express the possible constraints on the behavior
of the system [8]. Among these models, we can mention for
instance the Policy Description Language (PDL) [14], Pon-
der [9] and OrBAC (Organisationnal Based Access Control)
[3].

Concerning the verification of the rules, most work in the
field deals with testing of firewall rules. First proposals con-
sisted in performing testing of rules by hand. This implies
that test construction is performed by human experts who
focus on detecting traces of known attacks. Most recently,
research tended to concentrate on the verification of security
rules in order to detect errors or misconfigurations such as
redundancy, contradiction or collision [11, 12].

Some approaches propose to focus on validation by check-
ing the conformance of a system with respect to a security
policy. In [15], authors show how an organisation’s net-
work security policy can be formally specified in a high-level
way, and how this specification can be used to automatically
generate test cases to test a deployed system. By contrast
to other firewall testing methodologies, such as penetration
testing, this approach tests conformance to a specified pol-
icy. These test cases are organisation-specific - i.e. they
depend on the security requirements and on the network
topology of an organisation - and can uncover errors both
in the firewall products themselves and in their configura-
tion. However, this model is limited to the network manage-
ment and specifically to network and transport layer of the
TCP/IP stack. Moreover, it is still a theoretical approach
and there exists no tool yet to automate the testing process
and to evaluate its effectiveness on a real case-study.

In [10], the authors choose another approach to achieve

testing of network security rules. They express the network
behavior using labeled transition systems formulae. Then,
for each element of their language and each type of rule, they
propose a pattern of test called a tile. Then, they combine
those tiles into “complete” test cases for the whole rule to
perform validation.

Our approach distinguishes itself from these propositions
by the assumptions on the policy and the method used to
generate test sequences. First, we make no assumption
about the description language of the policy. Instead, we
propose a framework to specify rules in a formal form, so
that we can apply them on our mathematical model. Then,
we generate the whole set of test cases and this, in an auto-
matic manner.

3. BASICS FOR SECURITY RULES
INTEGRATION

3.1 Assumptions
In this section, we define the relation between a security

policy and the specification of a system and give the as-
sumptions we rely on. First, we consider two parts in our
approach: the initial system and the security policy. Initial
system refers to the functionalities with no security consid-
eration. Later, a new context can evolve to meet security
considerations. Within this new one, the initial system is
not valid anymore since it cannot satisfy new requirements.
It has to be completed with a security policy, to fit the new
context.

In this paper, we propose to automatically integrate the
security policy rules into the initial specification in the form
of an EFSM, by the way of a specific methodology. We
take as an assumption that the specification of the security
policy is correct. This means that we do not search within
the policy for conflicts or redundancies. On the other hand,
we consider that the rules have to be provided by an ex-
pert of the organization, who guarantees their completeness
and soundness. Finally, the last assumption concerns the
semantics of the policy description language. We consider
that it can always be translated in the form of an alphabet
acceptable by the formalism. That means we consider that
no information is lost while deriving the formal model from
the set of rules.

Now that the assumptions are defined, we can introduce
the basic concepts and describe our algorithm.

3.2 The EFSM formalism
In order to model the initial system as well as the security

policy, we choose to use the Extended Finite State Machine
(EFSM) formalism. This formal description is used not only
to represent the control portion of a system but also to prop-
erly model the data portion, the variables associated as well
as the constraints which affect them.

Definition 1. An Extended Finite State Machine M is
a 6-tuple M = < S, s0, I, O, ~x, Tr > where S is a finite set
of states, s0 is the initial state, I is a finite set of input sym-
bols (eventually with parameters), O is a finite set of output
symbols (eventually with parameters), ~x is a vector denoting
a finite set of variables, and Tr is a finite set of transitions.
A transition tr is a 6-tuple tr =< si, sf , i, o, P, A > where si

and sf are the initial and final state of the transition, i and
o are the input and the output, P is the predicate (a boolean
expression), and A is an ordered set (sequence) of actions.

S0 S1

A/X, P, T

B/Y, T"

A/X

 P

 T’

_

Figure 1: Example of a simple EFSM with two
states.

We illustrate the notion of EFSM through a simple ex-
ample described in Figure 1. The ESFM shown in Figure 1
is composed of two states S0, S1 and three transitions that
are labeled with two inputs A and B, two outputs X and Y ,
one predicate P and three tasks T , T ′ and T ′′. The EFSM
operates as follows: starting from state S0, when the input
A occurs, the predicate P is tested. If the condition holds,
the machine performs the task T , triggers the output X and
passes to state S1. If P is not satisfied, the same output X is
triggered but the action T ′ is performed and the state loops
on itself. Once the machine is in state S0, it can come back
to state S1 if receiving input B. If so, task T ′′ is performed
and output Y is triggered.

3.3 The OrBAC syntax
Most security description languages use the same basic

concepts (that are obligation, permission and prohibition)
to describe access control rules. In this paper (framework
description and case study), we choose to rely on the OrBAC
[3] syntax to express the security policy (as an input).

OrBAC is an access and usage control model that allows
an organization to express its security policy. For this pur-
pose, OrBAC defines two abstraction layers. The first one
is called abstract and describes a rule as a role having the
permission, prohibition or obligation to perform an activity
on a view in a given context. A view is a set of objects to
which the same security rules apply. The second level is the
concrete one. It is derived from the abstract level and grants
permission, prohibition or obligation to a user to perform an
action on an object. Thus, according to our syntax, a typical
security rule has the following form:

Obligation (S, R, A, V, C)

This rule means that within the system S, the role R
is obliged to perform the activity A targeting the objects
of view V in the context C. The principle is similar for
permission and prohibition.

We argue that starting from such simple syntax, it is easy
to apply our approach to other languages such as Ponder or
PDL. In that manner, our framework remains independent
of any model for security description. The only restriction
is that some specific complementary conditions have to be
taken into account in the formal specification of the security
rules:
- A rule context is divided into two parts: an EFSM con-
text with conditions related to the position in the EFSM
(eg. input=signal1) and a variables context with conditions
related to variables values(eg. variable=value).
- If the roles and variables context are not already defined in
the initial specification, precise definitions have to be added
(type, default value, etc.).
- As an assumption, an activity within an obligation must
be a new partial EFSM which starts with an obligation
state (OS) and ends with one or many end obligation states
(EOS). All the new variables and signals have to be defined.

- An activity related to a permission or a prohibition must
correspond to one transition at once (can be on several dis-
tinct transitions but not on a sequence). Otherwise, we
cannot determine the predicate to be relaxed or restrained.
- The EFSM context is mandatory in an obligation.

4. INTEGRATION METHODOLOGY
In this section, we define algorithms to automatically in-

tegrate the security policy rules into the initial specification
in the form of an EFSM, by the way of a specific method-
ology. The process is twofold. At first, the algorithm seeks
for the rules to be applied on each transition of the spec-
ification and derives a simple automaton from this set of
rules. Then, it integrates the automaton within the initial
specification. At the end of the process, this integration
will generate a new specification that takes into account the
security requirements.

It is possible that the security policy defines some new
concepts that cannot be directly apprehended by the initial
specification. In particular, a rule can express an activity
that does not exist in the specification (new role, different
object, new action, etc.). In that case, the new activity must
firstly be created in the specification. That means some new
states might be created in order to make the EFSM accept
the new elements. In the security policy, this is specified by
an obligation.

The beginning of the algorithm is the same for the three
kinds of rules (permission, prohibition and obligation). It
parses the EFSM specification and for each transition, it
identifies the rules that map the activity (which can be a
state, an input, an output, a task or a logic combination of
these features) and the EFSM context in the case of permis-
sions and prohibitions, and only the EFSM context in the
case of obligations (Indeed, we consider in our work that the
activity introduced by an obligation is a new one). If no rule
maps the transition, the default one will be applied. Once
rules identified for each transition, we can proceed to their
integration. Notice that several rules may apply to the same
transition. In this case, the algorithm is recursively applied
to each relevant rule.

4.1 Permissions integration
The permissions are the easiest modality to integrate. In-

deed, by definition, a permission does not define what is
possible to do but instead, what is permitted to do. Thus,
permissions relate to activities which already exist in the
initial system. Considering the EFSM, a permission corre-
sponds to one (or many) transitions. If the transition related
to a permission contains no predicate, a predicate has to be
added. On the other hand, if a predicate is already defined
in the specification, it only needs to be further restrained
(the condition is stronger).

Algorithm 1 Permissions integration

Require: The transition Tr that maps the permissions.
Each permissioni applies to a rolei and possibly to a
variables contexti (may be empty).

1: if (∃ associated predicate P) then
2: P := P ∧ (∨i(variables contexti ∧ rolei))
3: else
4: create predicate P := ∨i(variables contexti ∧ rolei)
5: end if

The Figure 2 gives an example. In the left transition, the
system can pass from S1 to S2 if P is true, performing the
task T . If the permission involves a role R, allowed to per-
form task T in the context C, the transition will be modified
by strengthening the predicate, as in the left transition.

A/X

if (P)

T
S1 S2

A/X

if (P and (C and R))

T
S1 S2

Figure 2: Permission (S, R, T, , C)

4.2 Prohibitions integration
Like permissions integration, prohibitions integration con-

sists either of adding a new predicate or restraining an ex-
isting one (it becomes stronger).

Algorithm 2 Prohibitions integration

Require: The transition Tr that maps the prohibitioni.
1: if (∃ associated predicate P) then
2: P := P ∧i (¬variables contexti ∨ ¬rolei)
3: else
4: create predicate P := ∧i(¬variables contexti∨¬rolei)
5: end if

Here is an example in the Figure 3. In the left transition,
the system can pass from S1 to S2 if P is true, performing
the task T . If the rule specifies that a role R is prohibited
to perform task T in the context C, the transition will be
modified by the restriction of the predicate, as in the left
transition.

Figure 3: Prohibition (S, R, T, , C)

4.3 Obligation integration
In our model, we take as an assumption that an obligation

implies the creation of a new activity (if an activity already
exists in the initial specification, it only has to be allowed
or denied). This new activity describes a new functional
feature of the system. To make this possible, the new ac-
tivity has to be initially expressed through a partial EFSM
so that the algorithm can perform an automatic integration
of the rule within the EFSM. In this manner, an obligatory
activity is a partial EFSM which begins by a starting obli-
gation state and ends with an end obligation state. Thanks
to the EFSM context of the obligation, the algorithm iden-
tifies the transition which will be split into two (pre/post
transitions), to insert the partial EFSM of the obligation.
Then, the algorithm needs to know how the components of
this transition will be distributed relatively to the obliga-
tion (pre/post transitions). This can be determined using
the cut point, that corresponds to the last component of
the initial transition (state, input, task or output, but not a
predicate) which maps the EFSM context. Each component

until this cut point (included) will be attributed to the pre-
transition (through the obligation) while other ones will be
attributed to the post-transition. Finally, a last transition
has to be added to bypass the obligation in the case the
initial predicate is not satisfied (see Algorithm 3).

Algorithm 3 Obligation integration

Require: The transition tr =< S1, S2, A, X, P, t1...tn >
that maps the obligation with an activity specified by
the mean of an EFSM with OS as a first state and EOS
as a last one

1: for all (transitions from OS) do
2: if (∃ associated predicate Q) then
3: Q := Q ∨ (variablescontext ∧ role)
4: end if
5: end for
6: determine the cut point CutPoint

7: delete the transition tr
8: create transitions C1, C2 and C3 such that
9: if (CutPoint == S1) then

10: C1 :=< S1, OS,−,−,−,− >
if (¬ ∃ EOS state in M) then C2 :=< EOS, S2, A, X,
P, t1...tn > end if
C3 :=< OS, S2, A, X,¬variables context ∨ ¬role,
t1...tn >

11: else
12: if (CutPoint == A) then
13: C1 :=< S1, OS, A,−, P,− >

if (¬ ∃ EOS state in M) then C2 :=< EOS, S2,−,
X,−, t1...tn > end if
C3 :=< OS, S2,−, X,¬variables context ∨ ¬role,
t1...tn >

14: else
15: if (CutPoint == ti where i ∈ {1, ..., n}) then
16: C1 :=< S1, OS, A,−, P, t1...ti >

if (¬ ∃ EOS state in M) then C2 :=< EOS, S2,
−, X,−, ti+1...tn > end if
C3 :=< OS, S2,−, X,¬variables context∨¬role,
ti+1...tn >

17: else
18: if (CutPoint == X) then
19: C1 :=< S1, OS, A, X, P, t1...tn >

if (¬ ∃ EOS state in M) then C2 :=< EOS,
S2,−,−,−,− > end if
C3 :=< OS, S2,−,−, ¬variables context ∨
¬role, − >

20: end if
21: end if
22: end if
23: end if
24: minimize the resulting EFSM by deleting silent transi-

tions (without input nor output nor action)

The Figure 4 shows an example of the process. In this
case, the initial transition is “A/X, if P, T”. The new ac-
tivity is a partial EFSM with two states (OS and EOS)
and one transition characterised by the input B, the task T ′

and the output Y . According to the EFSM context, the cut
point is the Input A. By the following, the transition C1
(pre-transition) is defined by the input A and the predicate
P . The transition C2 (post-transition) is defined by the task
T and the output X. Obligation integration is shown in the
Algorithm 3.

Figure 4: Obligation (S, R, new activity, , (Input
= A) and C).

4.4 Integration result
The security rules integration allows us to obtain a new

specification of the system that takes into account the se-
curity policy. This formal specification is described in the
EFSM formalism that is a well adapted one to model com-
municating systems. Using SDL (Specification Description
Language) [5] based on this formalism we can easily de-
rive test sequences to check whether the implementation of
the system conforms with the secure functional specifica-
tion. The classical test generation methodology is presented
in the ISO9646 standard [2].

5. CASE-STUDY: A WEBLOG

5.1 Weblog description
To prove the effectiveness of our framework, we choose

to carry out a case-study on a weblog (also called blog):
a blog is a website used to post stories or news (such as
in a journal or diary) to make them available for reading
by any other party. Here, we consider at first, a simple
weblog with various features, such as those commonly used
on the World Wide Web. First of all, the service is open.
That means anyone cannot only read but also post a content
in the form of news or stories. Then, other readers might
add comments relating to any content. Possibly, a blogger1

might take the decision to delete a posted content depending
of its freshness or its relevance. The weblog can thus be seen
as a mutable list of stories, which constitute themselves a
content associated with a mutable, possibly empty, list of
comments.

As one can notice, the initial model is voluntarily open
and as a consequence, presents obvious security flaws. In-
deed, no authentication is performed so that any user can
delete numerous posted contents, which leads to a kind of
denial of service attack. To tackle this problem, we specify a
security rule whose goal is to protect the information within
the organization, by preventing illegitimate users to delete
any content.

For this purpose, the security rules will define a hierar-
chy of users, by defining three different roles. The first one
is the administrator (admin). It has the responsibility to
maintain the global organization of the website. It is the
only one authorized to delete a posted content or to sus-
pend the activity of the website (in the case of maintenance
for example). Beside the administrators, the policy will de-
fine another role: the bloggers. Bloggers are users which
can post stories and also commentaries, relating to their
own content or not. Moreover, they are allowed to perform
the delete action but only on their own content. Finally,

1Contraction for weblog user.

the normal users (called visitors or anonymous) can only
read stories and commentaries; that means delete and write
actions are prohibited for them.

To specify the Web application, we used ObjectGEODE
[17] and SIRIUS [6] tools. They are based on a language
specifically dedicated to the formal specification of interac-
tive systems: SDL which is a specification and description
language standardized as ITU2 (International Telecommu-
nication Union) Recommendation Z.100.

5.2 The security policy specification
and integration

Considering the syntax of the OrBAC language, the global
system on which relate all modalities in the security policy is
the Website. The objects will naturally correspond to each
of the components defined initially, that are the blog, the
posts and the comments. In the same manner, the first ac-
tions will be chosen among the existing in the initial system:
read, write and delete. As for the context, it defines the set
of conditions expressed by a rule, which have to hold to al-
low an activity. Based on these considerations, we specified
24 rules constituting the policy that manages the security
of our weblog. Here are 3 different examples of theses rules:

1. Obligation(Website, anonymous, Authentication, ,
input = AddPostReq)

2. Permission(Website, admin, ‘Reading Blog’, blog,)

3. Permission(Website, anonymous, ‘Reading Blog’,
blog,)

After the specification of all rules, we step to the second
phase of the process, which is their integration within the
extended finite state machine. This integration process re-
spects the methodolgy described in section 4 and leads to a
secure functional specification.

5.3 Test generation

5.3.1 Fixing the test objectives
In the Weblog case study, our aim was to test the security

rules. The first idea was to define for each rule one or several
test objectives. However, we noticed that one generated
test sequence can verify more than one security rule. Then,
we tried to minimize the number of the test objectives to
test the entire modified transitions. We specified at the
end 17 test objectives that represents more than 94% of the
specification transitions.

5.3.2 Generation with SIRIUS
SIRIUS is based on Hit-or-Jump [6], an algorithm espe-

cially used for components testing to perform test sequences
generation through the specification. This research is guided
by objectives which are illustrated by predicates on transi-
tions (and written in SDL). Research in the partial reach-
ability graphs is performed in depth, width or both at the
same time, and is restricted by a limited depth. In order to
initialize the generation of test sequences, several parame-
ters are necessary. Four main files must be developed. The
first is the service specification (component to be tested), the
second allows the initialisation of some variables if necessary,

2http://www.itu.int

the third one mentions the stop conditions (i.e. test objec-
tives) and finally the last one allows the expert to guide the
system at the beginning of the simulation, this file is called
preamble. This last one is very important; it allows reduc-
ing in a consequent way the length of the test sequence and
the duration of its generation.

5.4 Discussions
The results are obtained after a BFS (breadth-first search)

exploration of the reachability graph. This choice is due to
the specificity of the weblog service which has to take into
account, after each transition, all the possible inputs injected
by the user to analyze them and generate the right output.
The test objectives are reachable via short sequences accord-
ing to the specification size of the system and do not need
a DFS or BDFS exploration that tries to search in depth
of the reachability graph. The generated test sequences are
usable since they correspond to the test strategy mentioned
in section 5.3.1, they can be produced in TTCN [16] and
MSC [1] standard notations facilitating their portability.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a framework for testing a se-

curity policy in a formal manner. We proposed an algorithm
to automate the specification of security rules as an EFSM.
Then, we presented a scheme to derive test objectives from
the rules formal specification in order to test the confor-
mance of a security policy with respect to its implementa-
tion. We described the process of our framework through
a representative case-study. We showed that our approach
allows the specification of various modalities such as obli-
gation, permission and prohibition and makes it possible to
obtain relevant test objectives. It is important to notice that
our algorithm allows us to verify that the security policy has
no gap (missing rules) when no rule is found to be applied
on a functional specification transition.

As a future work, we are currently investigating several
approaches to enhance this framework. At first, we consider
generalizing the algorithm so that it can accept policies spec-
ified in other languages (Ponder, PDL, etc.). Then, we will
extend our integration scheme to be able to take into account
more complex modalities (such as temporary/definitive del-
egations), temporal rules (which denote actions limited in
time) and interoperability of rules (that is testing if a rule
can be deployed on several systems). Finally, we are work-
ing on a test optimization approach which would allow us to
test only new transitions created/modified by the integra-
tion process.

7. REFERENCES
[1] IUT-T Rec. Z. 120 Message Sequence Charts, (MSC).

Geneva, 1996.

[2] I. 9646-1. Information Technology - Open Systems
Interconnection - Conformance testing methodology
and framework Part 1: General Concepts.

[3] A. Abou El Kalam, R. E. Baida, P. Balbiani,
S. Benferhat, F. Cuppens, Y. Deswarte, A. Miège,
C. Saurel, and G. Trouessin. Organization Based
Access Control. In 4th IEEE International Workshop
on Policies for Distributed Systems and Networks
(Policy’03), June 2003.

[4] A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar.
An optimization technique for protocol conformance
test generation based on uio sequences and rural
chinese postman tours. In IEEE Computer Society
Press. pages 427–438, 1995.

[5] A. Cavalli and D. Hogrefe. Testing and validation of
SDL systems : Tutorial. In SDL’95 forum, 1995.

[6] A. Cavalli, D. Lee, C. Rinderknecht, and F. Zäıdi.
Hit-or-Jump: An Algorithm for Embedded Testing
with Applications to IN Services. In Formal Methods
for Protocol Engineering And Distributed Systems,
pages 41–56, Beijing, China, october 1999.

[7] F. Cuppens, N. Cuppens-Boulahia, and M. B.
Ghorbel. High-level conflict management strategies in
advanced access control models. In Workshop on
Information and Computer Security (ICS), Timisoara,
Roumania, September 2006.

[8] N. Damiannnou, A. Bandara, M. Sloman, and
E. Lupu. Handbook of Network and System
Administration, chapter A Survey of Policy
Specification Approaches. Elsevier, 2007 (to appear).

[9] N. Damianou, N. Dulay, E. Lupu, and M. Sloman.
The ponder policy specification language. In POLICY
’01: Proceedings of the International Workshop on
Policies for Distributed Systems and Networks, pages
18–38, London, UK, 2001. Springer-Verlag.

[10] V. Darmaillacq, J.-C. Fernandez, R. Groz, L. Mounier,
and J.-L. Richier. Test generation for network security
rules. In TestCom, pages 341–356, 2006.

[11] J. Garćıa-Alfaro, F. Cuppens, and
N. Cuppens-Boulahia. Analysis of policy anomalies on
distributed network security setups. In ESORICS,
pages 496–511, 2006.

[12] J. Garćıa-Alfaro, F. Cuppens, and
N. Cuppens-Boulahia. Towards filtering and alerting
rule rewriting on single-component policies. In
SAFECOMP, pages 182–194, 2006.

[13] D. Lee and M. Yannakakis. Principles and methods of
testing finite state machines - A survey. In Proceedings
of the IEEE, volume 84, pages 1090–1126, 1996.

[14] J. Lobo, R. Bhatia, and S. A. Naqvi. A policy
description language. In AAAI/IAAI, pages 291–298,
1999.

[15] D. Senn, D. A. Basin, and G. Caronni. Firewall
conformance testing. In TestCom, pages 226–241,
2005.

[16] E. TTCN-3. TTCN-3 – Core Language.

[17] Verilog. ObjectGEODE Simulator, Reference manual,
1997.

