
A

A formal approach to autonomic systems programming:
The SCEL Language

ROCCO DE NICOLA, IMT Institute for Advanced Studies Lucca
MICHELE LORETI, Università degli Studi di Firenze
ROSARIO PUGLIESE, Università degli Studi di Firenze
FRANCESCO TIEZZI, IMT Institute for Advanced Studies Lucca

The autonomic computing paradigm has been proposed to cope with size, complexity and dynamism of con-
temporary software-intensive systems. The challenge for language designers is to devise appropriate ab-
stractions and linguistic primitives to deal with the large dimension of systems, and with their need to
adapt to the changes of the working environment and to the evolving requirements. We propose a set of
programming abstractions that permit to represent behaviors, knowledge and aggregations according to
specific policies, and to support programming context-awareness, self-awareness and adaptation. Based on
these abstractions, we define SCEL (Software Component Ensemble Language), a kernel language whose
solid semantic foundations lay also the basis for formal reasoning on autonomic systems behavior. To show
expressiveness and effectiveness of SCEL’s design, we present a Java implementation of the proposed ab-
stractions and show how it can be exploited for programming a robotics scenario that is used as a running
example for describing features and potentials of our approach.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications; D.3.1
[Programming Languages]: Formal Definitions and Theory; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages

General Terms: Design, Languages, Theory

Additional Key Words and Phrases: Autonomic computing, Programming languages, Formal methods

ACM Reference Format:
Rocco De Nicola, Michele Loreti, Rosario Pugliese and Francesco Tiezzi, 2014. A formal approach to au-
tonomic systems programming: The SCEL Language. ACM Trans. Autonom. Adapt. Syst. V, N, Article A
(January YYYY), 29 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Modern software-intensive, cyber-physical systems have to deal with massive num-
bers of components, featuring complex interactions among components and with hu-
mans and other systems. Moreover, they have to operate in open and non-deterministic
environments, and to dynamically adapt to new requirements, technologies and envi-
ronmental conditions. They fall within none of the previously used classes of complex
systems, therefore it has been proposed to refer to them using a new term, namely
ensembles [Project InterLink 2007]. Sometimes ensembles are explicitly created by

This work has been partially supported by the EU projects ASCENS (257414) and QUANTICOL (600708)
and by the MIUR PRIN project CINA (2010LHT4KM).
Authors’ addresses: R. De Nicola and F. Tiezzi, IMT, Institute for Advanced Studies Lucca, Piazza San
Francesco 19, I-55100, Lucca, Italy; Michele Loreti and Rosario Pugliese, Università degli Studi di Firenze,
Viale Morgagni 65, I-50134, Firenze, Italy.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1556-4665/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi

design. Some other times they are assembled from systems that are independently
controlled and managed, while their interaction “mood” might be cooperative or com-
petitive; then one has to deal with systems coalitions or so-called systems of systems.
Due to their inherent complexity, today’s engineering methods and tools do not scale
well with ensembles and new engineering techniques are needed to address the chal-
lenges of developing, integrating, and deploying them [Sommerville et al. 2012].

A possible answer to the problems posed by such complex systems is to make them
able to self-manage by continuously monitoring their behavior and their working en-
vironment and by selecting the actions to perform for best dealing with the current
status of affairs. Self-management could be exploited also to face situations in which
humans intervention is limited or even absent and components have to collaborate
to achieve specific goals. This requires increasing systems’ self-management capabil-
ities and guaranteeing what now are known as self-* properties (self-configuration,
self-healing, self-optimization, self-protection) of autonomic computing [Kephart and
Chess 2003; IBM 2005].

The challenge for language designers is to devise appropriate abstractions and lin-
guistic primitives to deal with the large dimension of systems, to guarantee adaptation
to (possibly unpredicted) changes of the working environment, to take into account
evolving requirements, and to control the emergent behaviors resulting from com-
plex interactions. In this paper, we propose facing this challenge by taking as starting
point the notions of autonomic components (ACs) and autonomic-component ensembles
(ACEs) and defining programming abstractions to model their evolutions and their
interactions. Building on these notions, we define SCEL (Software Component En-
semble Language), a kernel language that takes a holistic approach to programming
autonomic computing systems and aims at providing programmers with a complete
set of linguistic abstractions for programming the behavior of ACs and the formation
of ACEs, and for controlling the interaction among different ACs. As shown in Sec-
tion 2, these abstractions permit describing autonomic systems in terms of Behaviors,
Knowledge and Aggregations, by complying with specific Policies.

SCEL is, somehow, minimal; its syntax fully specifies only constructs for modeling
Behaviors and Aggregations and is parametric with respect to Knowledge and Poli-
cies. This choice permits integrating different approaches to policies specifications or
to knowledge handling within our language and to easily superimpose ACEs on top
of heterogeneous ACs. Indeed, we see SCEL as a ‘kernel’ language based on which
different full-blown languages can be designed. Later in this paper, we will present a
simple, yet expressive, language for defining access control policies. We will also con-
sider a SCEL’s dialect where knowledge repositories are implemented as multiple dis-
tributed tuple-spaces. This dialect is supported by a Java runtime environment, to be
used for developing autonomic and adaptive systems according to the SCEL paradigm.
Specifically, the runtime environment provides a library that permits using SCEL con-
structs in Java programs for controlling computations and interactions of ACs, and for
defining the architecture of ACs and ACEs.

We consider our work as the blending of different concepts that have emerged in
different fields of Computer Science and Engineering. Indeed, we have learnt from
software engineering the importance of component-based design and of separation of
concerns [McKinley et al. 2004], from multi-agent systems the relevance of knowledge
handling and of spatial representation [Rao 1996; Bordini et al. 2005; Winikoff 2005;
Bellifemine et al. 2007; Dastani 2008], from middleware and network architectures the
importance of flexibility in communication [Mottola and Picco 2006; Costa et al. 2009;
Mamei and Zambonelli 2009; Nordström et al. 2009; Mottola and Picco 2012], from
distributed systems’ security the role of policies [NIST 2009], from actors and process
algebras the importance of minimality and formality [Agha 1990; Milner 1989]. What

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A formal approach to autonomic systems programming: The SCEL Language A:3

we consider as our main contribution is the actual choice of the specific programming
abstractions and their reconciliation under a single roof with a uniform formal seman-
tics. What we offer then is a new language with appropriate programming abstractions
for autonomic computing.

This work is an extended and revisited version of [De Nicola et al. 2012]. Here, ACEs
are dynamically ‘synthesized’ via group-oriented, attribute-based communication and
used as target of actions, while in [De Nicola et al. 2012] they are explicitly created by
an ensemble coordinator that exploits specific interface attributes. This change, apart
for permitting a more dynamic characterization of ensembles, avoids centralization
and single point of failures. It also simplifies the actual semantics, because interac-
tions do not require intervention of a third party (the ensemble coordinator). Another
key difference between the two contribution is that now policies can be dynamically
modified to take into account new requirements and to adapt to changing environ-
ments. Moreover, in [De Nicola et al. 2012] no specific policy language was considered
and there was no description of the supporting Java runtime environment.

Structure of the paper. The rest of the paper is organized as follows. Section 2 intro-
duces the design principles at the basis of SCEL; this section contains also a simple,
yet illustrative, scenario of autonomic computing borrowed from the robotics domain,
which will be used as a running example for describing the different features of the
language. Syntax and operational semantics of SCEL are presented in Section 3 and
Section 4, respectively. Section 5 outlines a language for defining access control policies
and shows how it can be integrated with SCEL. Section 6 illustrates expressiveness
and potentialities of SCEL by presenting the complete specification of the robotics
scenario. Section 7 describes the main features of the Java runtime environment and
shows how it can be used to execute, as Java code, the SCEL specification of the sce-
nario. Section 8 reviews more strictly related work. Finally, Section 9 concludes by also
touching upon directions for future work.

2. DESIGN PRINCIPLES
Autonomic Components (ACs) and Autonomic-Component Ensembles (ACEs) are our
means to structure systems into well-understood, independent and distributed build-
ing blocks that interact and adapt.

ACs are entities with dedicated knowledge units and resources; awareness is guar-
anteed by providing them with information about their state and behavior via their
knowledge repositories. These repositories can be also used to store and retrieve in-
formation about ACs working environment, and thus can be exploited to adapt their
behavior to the perceived changes. Each AC is equipped with an interface, consisting
of a collection of attributes, describing component’s features such as identity, function-
alities, spatial coordinates, group memberships, trust level, response time, etc.

Attributes are used by the ACs to dynamically organize themselves into ACEs. In-
deed, one of the main novelties of our approach is the way groups of partners are
selected for interaction and thus how ensembles are formed. Individual ACs can single
out communication partners by using their identities, but partners can also be se-
lected by taking advantage of the attributes exposed in the interfaces. Predicates over
such attributes are used to specify the targets of communication actions, thus permit-
ting a sort of attribute-based communication. In this way, the formation rule of ACEs
is endogenous to ACs: members of an ensemble are connected by the interdependency
relations defined through predicates. An ACE is therefore not a rigid fixed network but
rather a highly flexible structure where ACs’ linkages are dynamically established.

A typical scenario that gives rise to ACEs is reported in Figure 1. It suggests that
ACEs can be thought of as logical layers (built on top of the physical ACs network) that

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi

Physical
network
level

AC1

AC2

AC3

AC4

ACE1AC3

AC4

ACE2AC1

AC2
AC4

Fig. 1. Autonomic Component Ensembles

identify dynamic (overlay) subnetworks of ACs by exploiting specific attributes; in the
picture, these are the different colours associated to individual ACs.

We have thus identified some linguistic abstractions for uniformly programming the
evolution and the interactions of ACs and the architecture of ACEs. These abstractions
permit describing autonomic systems in terms of Behaviors, Knowledge and Aggrega-
tions, according to specific Policies.

— Behaviors describe how computations may progress and are modeled as processes
executing actions, in the style of process calculi.

— Knowledge repositories provide the high-level primitives to manage pieces of infor-
mation coming from different sources. Each knowledge repository is equipped with
operations for adding, retrieving, and withdrawing knowledge items.

— Aggregations describe how different entities are brought together to form ACs and to
construct the software architecture of ACEs. Composition and interaction are imple-
mented by exploiting the attributes exposed in ACs’ interfaces.

— Policies control and adapt the actions of the different ACs for guaranteeing accom-
plishment of specific tasks or satisfaction of specific properties.

By accessing and manipulating their own knowledge repository or the repositories
of other ACs, components acquire information about their status (self-awareness) and
their environment (context-awareness) and can perform self-adaptation, initiate self-
healing actions to deal with system malfunctions, or install self-optimizing behaviors.
All these self-* properties, as well as self-configuration, can be naturally expressed
by exploiting SCEL’s higher-order features, namely the capability to store/retrieve
(the code of) processes in/from the knowledge repositories and to dynamically trig-
ger execution of new processes (as shown by the example in Section 6). Moreover, by
implementing appropriate security policies, e.g. limiting information flow or external
actions, components can set up self-protection mechanisms against different threats,
such as unauthorised access or denial-of-service attacks.

Our aim is to provide a common semantic framework for describing meaning and
interplay of the abstractions above, while minimizing overlaps and incompatibilities.
We shall illustrate the main features of SCEL in a step-by-step fashion by using a
running example from the swarm robotics domain that is described below.
A swarm robotics scenario. We consider a robot swarm where robots are dis-
tributed over a physical area and have to reach different target zones according to
the tasks assigned to them, such as rescue people in danger, help other robots, reach

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A formal approach to autonomic systems programming: The SCEL Language A:5

Knowledge
K

Processes

P

I Interface

Π
Policies

Fig. 2. SCEL component

a safe area, clear a minefield, etc. In the considered scenario, each robot of the swarm
has to fulfill one of two different tasks. Moreover, robots have limited battery lifetime,
hence the battery’s state of charge must be monitored during the course of robots ac-
tivities. If the state of charge drops to value low, self-healing actions are required, e.g.
reaching a charging station or sending a distress signal.

Robots are not informed about the position of the two target zones. Thus, to discover
the location of the target, each robot follows a random walk. As soon as a robot reaches
the assigned zone, it ‘publishes’ its location within the local knowledge repository. In
this way, robots with the same task can get informed about the location of the corre-
sponding target. Notice that, by relying on group-oriented queries, the identity of the
robot publishing the target location can be ignored. Informed robots can then move
directly towards the target, by saving time with respect to random walking (i.e., they
self-optimise their behaviour).

3. A FORMAL LANGUAGE FOR AUTONOMIC COMPUTING
In this section we introduce the constructs of our language, while their precise seman-
tics will be presented in the next one. We would like to stress that we have taken a
minimal approach and SCEL syntax fully specifies only constructs for modeling Be-
haviors and Aggregations and is parametric with respect to Knowledge and Policies.

Concretely, an AC in SCEL is rendered as the term I[K,Π, P]. This is graphically
illustrated in Figure 2 and consists of:

— An interface I publishing and making available structural and behavioral informa-
tion about the component itself in the form of attributes, i.e. names acting as refer-
ences to information stored in the component’s knowledge repository. Among them,
attribute id is mandatory and is bound to the name of the component. Component
names are not required to be unique; this allows us to easily model replicated service
components.

— A knowledge repository K managing both application data and awareness data, to-
gether with the specific handling mechanism. Application data are used for enabling
the progress of ACs’ computations, while awareness data provide information about
the environment in which the ACs are running (e.g. monitored data from sensors) or
about the status of an AC (e.g. its current location). The knowledge repository of a
component stores also the information associated to its interface, which therefore can
be dynamically manipulated by means of the operations provided by the knowledge
repositories’ handling mechanisms.

— A set of policies Π regulating the interaction between the different parts of a single
component and the interaction between components. Interaction policies and Ser-
vice Level Agreement policies provide two standard examples of policy abstractions.
Other examples are security policies, such as access control and reputation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi

Table I. SCEL syntax

SYSTEMS: S ::= C
∣∣ S1 ‖ S2

∣∣ (νn)S

COMPONENTS: C ::= I[K,Π, P]

PROCESSES: P ::= nil
∣∣ a.P

∣∣ P1 + P2

∣∣ P1[P2]
∣∣ X

∣∣ A(p̄)

ACTIONS: a ::= get(T)@c
∣∣ qry(T)@c

∣∣ put(t)@c
∣∣ fresh(n)

∣∣ new(I,K,Π, P)

TARGETS: c ::= n
∣∣ x

∣∣ self
∣∣ P

∣∣ p

Note: KNOWLEDGE K, POLICIES Π, TEMPLATES T , and ITEMS t are parameters of the language.

— A process P , together with a set of process definitions that can be dynamically ac-
tivated. Some of the processes in P execute local computations, while others may
coordinate interaction with the knowledge repository or perform adaptation and re-
configuration. Interaction is obtained by allowing ACs to access knowledge in the
repositories of other ACs.

SCEL syntax is presented in Table I. Its basic category is the one defining PRO-
CESSES that are used to build up COMPONENTS that in turn are used to define SYS-
TEMS. PROCESSES specify the flow of the ACTIONS that can be performed. ACTIONS
can have a TARGET to determine the other components that are involved in that ac-
tion. As stated in the Introduction, SCEL is parametric with respect to some syntactic
categories, namely KNOWLEDGE, POLICIES, TEMPLATES and ITEMS (with the last two
determining the part of KNOWLEDGE to be retrieved/removed or added, respectively).
Systems and components. SYSTEMS aggregate COMPONENTS through the compo-
sition operator ‖ . It is also possible to restrict the scope of a name, say n, by using
the name restriction operator (νn) . In a system of the form S1 ‖ (νn)S2, the effect
of the operator is to make name n invisible from within S1. Essentially, this operator
plays a role similar to that of a begin . . . end block in sequential programming and
limits visibility of specific names. Additionally, restricted names can be exchanged in
communications thus enabling the receiving components to use those “private” names.

Running example (step 1/7). The robotics scenario can be expressed in SCEL as a
system S defined as follows

S , I1[K1,Π1, P1] ‖ I2[K2,Π2, P2] ‖ I3[K3,Π3, P3] ‖ I4[K4,Π4, P4] ‖ . . .

The robots are rendered as components, identified by Ii.id (i.e., the values of attribute
id exposed in their interfaces Ii), that concurrently execute and interact.

Processes. PROCESSES are the active computational units. Each process is built up
from the inert process nil via action prefixing (a.P), nondeterministic choice (P1 + P2),
controlled composition (P1[P2]), process variable (X), and parameterized process invo-
cation (A(p̄)). The construct P1[P2] abstracts the various forms of parallel composition
commonly used in process calculi. Process variables can support higher-order commu-
nication, namely the capability to exchange (the code of) a process, and possibly execute
it, by first adding an item containing the process to a knowledge repository and then
retrieving/withdrawing this item while binding the process to a process variable. We
assume that A ranges over a set of parameterized process identifiers that are used in
recursive process definitions. We also assume that each process identifier A has a sin-
gle definition of the form A(f̄) , P . Lists of actual and formal parameters are denoted
by p̄ and f̄ , respectively.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A formal approach to autonomic systems programming: The SCEL Language A:7

Running example (step 2/7). The process P1 running on the first robot, i.e. compo-
nent I1[K1,Π1, P1], has the form a1. a2. P

′
1, meaning that actions a1 and a2 are sequen-

tially executed and thereafter the process continues as P ′1.

Actions and targets. Processes can perform five different kinds of ACTIONS. Actions
get(T)@c, qry(T)@c and put(t)@c are used to manage shared knowledge repositories
by withdrawing/retrieving/adding information items from/to the knowledge repository
identified by c. These actions exploit templates T as patterns to select knowledge items
t in the repositories. They heavily rely on the used knowledge repository and are im-
plemented by invoking the handling operations it provides. Action fresh(n) introduces
a scope restriction for the name n so that this name is guaranteed to be fresh, i.e.
different from any other name previously used. Action new(I,K,Π, P) creates a new
component I[K,Π, P].

Action get may cause the process executing it to wait for the wanted element if it
is not (yet) available in the knowledge repository. Action qry, exactly like get, may
suspend the process executing it if the knowledge repository does not (yet) contain
or cannot ‘produce’ the wanted element. The two actions differ for the fact that get
removes the found item from the knowledge repository while qry leaves the target
repository unchanged. Actions put, fresh and new are instead immediately executed
(provided that their execution is allowed by the policies in force).

Different entities may be used as the target c of an action. Component names are
denoted by n, n′, . . . , while variables for names are denoted by x, x′, The distin-
guished variable self can be used by processes to refer to the name of the component
hosting them. The possible targets could, however, be also singled out via predicates
expressed as boolean-valued expression obtained by logically combining the evaluation
of relations between attributes and expressions. Thus targets could also be an explicit
predicate P or the name p of a predicate that is exposed as an attribute of a component
interface whose value may dynamically change. We adopt the following conventions
about attribute names within predicates. If an attribute name occurs in a predicate
without specifying (via prefix notation) the corresponding interface, it is assumed that
this name refers to an attribute within the interface of the object component (i.e., a
component that is a target of the communication action). Instead, if an attribute name
occurring in a predicate is prefixed by the keyword this, then it is assumed that this
name refers to an attribute within the interface of the subject component (i.e., the
component hosting the process that performs the communication action). Thus, for ex-
ample, the predicate this.status = “sending” ∧ status = “receiving” is satisfied when
the status of the subject component is sending and that of the object is receiving.

In actions using a predicate P to indicate the target (directly or via p), predicates
act as ‘guards’ specifying all components that may be affected by the execution of the
action, i.e. a component must satisfy P to be the target of the action. Thus, actions
put(t)@n and put(t)@P give rise to two different primitive forms of communication: the
former is a point-to-point communication, while the latter is a sort of group-oriented
communication. The set of components satisfying a given predicate P used as the tar-
get of a communication action are considered as the ensemble with which the process
performing the action intends to interact. Indeed, in spite of the stress we put on en-
sembles, SCEL does not have any specific syntactic category or operator for forming
ACEs. For example, the names of the components that can be members of an ensem-
ble can be fixed via the predicate id ∈ {n,m, o}. When an action has this predicate as
target, it will act on all components named n, m or o, if any. Instead, to dynamically
characterize the members of an ensemble that are active and have a battery whose
level is higher than low, by assuming that attributes active and batteryLevel belong

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi

Table II. Semantics of processes

a.P ↓a P P ↓◦ P

P ↓α P ′

P + Q ↓α P ′
Q ↓α Q′

P + Q ↓α Q′
P{p̄/f̄} ↓α P ′

A(p̄) ↓α P ′
A(f̄) , P

P ↓α P ′ Q ↓β Q′

P [Q] ↓α[β] P
′[Q′]

bv(α) ∩ bv(β) = ∅
P ′ ↓α P ′′

P ↓α P ′′
P ≡ P ′

to the interface of any component willing to be part of the ensemble, one can write
active = “yes” ∧ batteryLevel > “low”.

Running example (step 3/7). By specifying actions a1 and a2 as a qry and a put
action, respectively, the process P1 becomes

qry(“targetLocation”, ?x, ?y)@(task = “task1”).
put(“targetLocation”, x, y)@self. P ′1

This process retrieves the target location from one of the informed robots in charge of
doing task1, binds the location’s coordinates to variables x and y, and publishes such
information in the local repository.

4. SCEL OPERATIONAL SEMANTICS
The operational semantics of SCEL is defined in two steps. First, the semantics of
processes specifies commitments, i.e. the actions that processes can initially perform
and the continuation process obtained after each such action; issues like process al-
location, available data, regulating policies are ignored at this level. Then, by taking
process commitments and system configuration into account, the semantics of systems
provides a full description of systems behavior.

4.1. Semantics of processes
Process commitments are generated by the following production rule

α, β ::= a
∣∣ ◦

∣∣ α[β]

meaning that a commitment is either an action a as defined in Table I, or the symbol
◦, denoting inaction, or the composition α[β] of the two commitments α and β. We use
P and Q to range over processes and write P ↓α Q to mean that “P can commit to
perform α and become Q after doing so”.

The relation ↓ defining the semantics of processes is the least relation induced by
the inference rules in Table II. The first rule says that a process of the form a.P is com-
mitted to do a and then to continue as process P . The second rule allows any process to
stay idle. The third and fourth rules state that P + Q non-deterministically behaves
as P or Q. The fifth rule says that a process invocation A(p̄) behaves as the invoked
process P , where the formal parameters f̄ have been replaced by the actual parame-
ters p̄. The sixth rule, defining the semantics of P [Q], states that a commitment α[β]
is exhibited when P commits to α and Q commits to β. However, P and Q are not
forced to actually commit to a meaningful action. Indeed, thanks to the second rule,
which allows any process to commit to ◦, α and/or β may always be ◦. The semantics
of P [Q] at the level of processes is indeed very permissive and generates all possible
compositions of the commitments of P and Q. This semantics is then specialized at the
level of systems by means of interaction predicates that take also policies into account.
Condition bv(α) ∩ bv(β) = ∅ ensures that the variables used by the two processes P

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A formal approach to autonomic systems programming: The SCEL Language A:9

and Q are different, to avoid improper name captures. In fact, bv(α) denotes the sets
of bound variables occurring in α, with get and qry being the only binding constructs
for variables. Similarly, the action fresh is a binding construct for names. The last
rule states that alpha-equivalent (≡) processes, i.e. processes differing only for bound
variables and names, can guarantee the same commitments.

Running example (step 4/7). The process P1 running on the first robot, apart for the
trivial case P1 ↓◦ P1, produces only the following meaningful commitment

P1 ↓qry(“targetLocation”,?x,?y)@(task=“task1”) P
′′
1

with P ′′1 , put(“targetLocation”, x, y)@self. P ′1.

4.2. Semantics of systems
The operational semantics of systems is defined in two steps. First, the possible behav-
iors of systems without occurrences of the name restriction operator are defined. This
is done in the SOS style [Plotkin 2004] by relying on the notion of Labeled Transition
System (LTS). Then, by exploiting this LTS, the semantics of generic systems is pro-
vided by means of a (unlabelled) Transition System (TS) only accounting for systems’
computation steps. This approach allows us to avoid the notational intricacies arising
when dealing with name mobility in computations (e.g. when opening and closing the
scopes of name restrictions).

The labeled transition relation of the LTS defining the semantics of systems with-
out restricted names is induced by the inference rules in Tables III and V. We write
S

λ- S′ to mean that “S can perform a transition labeled λ and become S′ in doing
so”. Transition labels are generated by the following production rule

λ ::= τ
∣∣ I : fresh(n)

∣∣ I : new(J ,K,Π, P)∣∣ I : t / γ
∣∣ I : t J γ

∣∣ I : t . γ
∣∣ I : t /̄J

∣∣ I : t J̄J
∣∣ I : t .̄J

where γ is either the name n of a component or a predicate P indicating a set of com-
ponents, and I and J range over interfaces1. The meaning of labels is as follows: τ
denotes an internal computation step, I : fresh(n) denotes the willingness of compo-
nent I to restrict visibility of name n, I : new(J ,K,Π, P) denotes the willingness of
component I to create the new component J [K,Π, P], I : t / γ (resp. I : t J γ) denotes
the intention of component I to withdraw (resp. retrieve) item t from the repositories
at γ, I : t . γ denotes the intention of component I to add item t to the repositories
at γ, I : t /̄J (resp. I : t J̄J) denotes that component I is allowed to withdraw (resp.
retrieve) item t from the repository of component J , I : t .̄J denotes that component
I is allowed to add item t to the repository of component J . Moreover, in the rules, we
use I.π to denote the policy in force at the component I and S[I.π := Π′] to denote the
replacement of the policy in force at the component I with the policy Π′.

The labeled transition is parameterised with respect to the following two predicates:

— The interaction predicate, Π, I : α � λ, σ,Π′, means that under policy Π and interface
I, process commitment α yields system label λ, substitution σ (i.e., a partial func-
tion from variables to values) and, possibly new, policy Π′. Intuitively, λ identifies

1Actually, the names of the attributes of a component are just pointers to the real values contained in
the knowledge repository associated to the component. This amounts to saying that in terms of the form
I[K,Π, P], I only includes the names of the attributes, as their corresponding values can be easily retrieved
from K. However, when I is used in isolation, we assume that it also includes the attributes’ values. For
example, given the component I[K,Π, P], we can use the condition n = I.id to check if the value associated
to the attribute id in the repository K is equal to the name n.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi

Table III. Systems’ labeled transition relation

P ↓α P ′ Π, I : α � λ, σ,Π′

I[K,Π, P]
λ- I[K,Π′, P ′σ]

(pr-sys)

I[K,Π, P]
I:fresh(n)- I[K,Π′, P ′] n 6∈ n(I[K,Π,nil]) Π′ ` I : fresh(n),Π′′

I[K,Π, P]
τ- (νn) I[K,Π′′, P ′]

(freshn)

I[K,Π, P]
I:new(J ,K′′,Π′′,P ′′)- I[K,Π′, P ′] Π′ ` I : new(J ,K′′,Π′′, P ′′),Π′′′

I[K,Π, P]
τ- I[K,Π′′′, P ′] ‖ J [K′′,Π′′, P ′′]

(newc)

I[K,Π, P]
I:t/n- I[K,Π′, P ′] n = I.id Π′ ` I : t /̄ I,Π′′ K	 t = K′

I[K,Π, P]
τ- I[K′,Π′′, P ′]

(lget)

Π ` I : t /̄J ,Π′ K	 t = K′

J [K,Π, P]
I:t /̄J- J [K′,Π′, P]

(accget)

S1
I:t/n- S′1 S2

I:t /̄J- S′2 J .id = n I.π ` I : t /̄J ,Π′

S1 ‖ S2
τ- S′1[I.π := Π′] ‖ S′2

(ptpget)

I[K,Π, P]
I:tJn- I[K,Π′, P ′] n = I.id Π′ ` I : t J̄ I,Π′′ K ` t

I[K,Π, P]
τ- I[K,Π′′, P ′]

(lqry)

Π ` I : t J̄J ,Π′ K ` t

J [K,Π, P]
I:t J̄J- J [K,Π′, P]

(accqry)

S1
I:tJn- S′1 S2

I:t J̄J- S′2 J .id = n I.π ` I : t J̄J ,Π′

S1 ‖ S2
τ- S′1[I.π := Π′] ‖ S′2

(ptpqry)

I[K,Π, P]
I:t.n- I[K,Π′, P ′] n = I.id Π′ ` I : t .̄ I,Π′′ K⊕ t = K′

I[K,Π, P]
τ- I[K′,Π′′, P ′]

(lput)

Π ` I : t .̄J ,Π′ K⊕ t = K′

J [K,Π, P]
I:t .̄J- J [K′,Π′, P]

(accput)

S1
I:t.n- S′1 S2

I:t .̄J- S′2 J .id = n I.π ` I : t .̄J ,Π′

S1 ‖ S2
τ- S′1[I.π := Π′] ‖ S′2

(ptpput)

the effect of α at the level of components, while σ associates values to the variables
occurring in α and is used to capture the changes induced by communication. Π′ is
the policy in force after the transition; in principle it may differ from that in force
before the transition. This predicate is used to determine the effect of the simultane-
ous execution of actions by processes concurrently running within a component that,
e.g., exhibit commitments of the form α[β].

— The authorization predicate, Π ` λ,Π′, means that under policy Π, the action gen-
erating the system label λ (which can be thought of as an authorization request)
is allowed and the policy Π′ is produced. Labels λ taken as argument by the au-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A formal approach to autonomic systems programming: The SCEL Language A:11

Table IV. The interaction predicate interleaving

Π, I : fresh(n) � fresh(n), {},Π
Ev[[T]]I = T ′ Ev[[c]]I = γ match(T ′, t) = σ

Π, I : get(T)@c � I : t / γ, σ,Π

Ev[[T]]I = T ′ Ev[[c]]I = γ match(T ′, t) = σ

Π, I : qry(T)@c � I : t J γ, σ,Π

Ev[[t]]I = t′ Ev[[c]]I = γ

Π, I : put(t)@c � I : t′ . γ, {},Π

Π, I : new(J ,K,Π, P) � new(J ,K,Π, Ev[[P]]I), {},Π

Π, I : α � λ, σ,Π
Π, I : α[◦] � λ, σ,Π

Π, I : α � λ, σ,Π
Π, I : ◦[α] � λ, σ,Π

thorization predicate are system labels of the form I : fresh(n), I : new(J ,K,Π, P),
I : t /̄J , I : t J̄J , or I : t .̄J . This predicate is used to determine the actions allowed
by specific policies, and the (possibly new) policy to be enforced. The authorization to
perform an action is checked when a computation step can potentially take place, i.e.
when it becomes known which is the component target of the action.

Many different interaction predicates can be defined to capture well-known process
computation and interaction patterns such as interleaving, monitoring, asynchronous
communication, synchronous communication, full synchrony, broadcasting, etc. In fact,
depending on the considered class of systems, one can prefer a communication model
with respect to the others.

A specific interaction predicate is defined in Table IV; it is obtained by interpreting
controlled composition as the interleaved parallel composition of the two involved pro-
cesses. In the table, function Ev[[·]]I denotes the evaluation of terms with respect to
interface I with attributes occurring therein being replaced by the corresponding value
in I. Moreover, match(T, t) denotes a partial function performing matching between a
template T and an item t; when they do match, the function returns a substitution σ
for the variables in T (we use {} to denote the empty substitution), otherwise it is un-
defined. We have a rule for each different kind of process action; for example, the third
rule states that, once the target γ of the action and an item t matching the template
T ′ through a substitution σ have been determined (by also exploiting the interface I
for evaluating c and T), an action qry at the level of processes corresponds to a proper
transition label at the level of systems semantics. The last two rules ensure that in
case of controlled composition of multiple processes only one process at a time can
perform an action (the other stays still).

Likewise the interaction predicate, many different reasonable authorization predi-
cates can be defined, possibly resorting to specific policy languages. One of such lan-
guages inspired by, but simpler than, the OASIS standard for policy-based access con-
trol XACML [OASIS-TC 2005], will be presented in Section 5. There, we will stress
also how the actual semantics of this policy language is intertwined and integrated
with SCEL semantics.

The labeled transition relation also relies on the following three operations that each
knowledge repository’s handling mechanism must provide:

—K 	 t = K′: the withdrawal of item t from the repository K returns K′;
—K ` t: the retrieval of item t from the repository K is possible;
—K ⊕ t = K′: the addition of item t to the repository K returns K′.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi

We now briefly comment the rules in Table III. Rule (pr-sys) transforms process com-
mitments into system labels by exploiting the interaction predicate. In particular, it
generates the following system labels: τ , I : fresh(n), I : new(J ,K,Π, P), I : t / γ,
I : t J γ and I : t . γ. As a consequence, a substitution σ is applied to the continua-
tion P ′ of the process that committed to α. When α contains a get(T) or a qry(T), σ
replaces in P ′ the variables occurring in T with the corresponding values. The applica-
tion of the rule also replaces, in the generated label, self with the corresponding name.
Moreover, due to the evaluation of the interaction predicate, the policy in force at the
component performing the action may change.

Actions fresh and new are decided by using the information within a single compo-
nent. However, since they affect the system, as they either create a name restriction or
a new component, their execution by a process is indicated by a specific system label
I : fresh(n) or I : new(J ,K,Π, P) (generated by rule (pr-sys)) carrying enough infor-
mation for the authorization request to perform the action to be checked according to
the local policy and for the modification of the system to take place (rules (freshn) and
(newc)). Notably, the authorization predicate is evaluated under the policy produced by
the interaction predicate (rule (pr-sys)); thus, the component performing the action will
enforce the (possibly new) policy so generated. Moreover, the scope of a new name n is
put in place (rule (freshn)) only if the name is not already used in the creating compo-
nent, possibly except for the process part (notation n(E) is used here to denote the sets
of names occurring in a syntactic term E); this condition can be always made true by
exploiting alpha-equivalence among processes.

The successful execution of the remaining three actions requires, at system level,
appropriate synchronization. For this reason, we have a pair of complementary labels
corresponding to each action. The rules in Table III model the variants of these actions
implementing point-to-point communication (the rules for group-oriented communica-
tion are shown in Table V).

Action get can withdraw an item either from the local repository (lget) or from a
specific repository with a point to point access (ptpget). In any case, this transition
corresponds to an internal computation step. The label I : t /̄J , generated by rule
(accget), denotes the willingness of component J to provide the item t to component I.
Notably, the label is generated only if such willingness is authorized by the policy in
force at the component J (by means of the authorization predicate Π ` I : t /̄J ,Π′)
and if withdrawing item t from the repository of J is possible (K	 t = K′). Thus, when
the target of the action denotes a specific remote repository (ptpget), the action is only
allowed if n is the name of the component J simultaneously willing to provide the
wanted item and if the request to perform the action at J is authorized by the local
policy (identified by notation I.π).

The semantics of action qry is modeled by rules (lqry), (accqry), and (ptpqry). This
action behaves similarly to get, the only difference being that it invokes the retrieval
operation of the repository’s handling mechanism (K ` t), rather than the withdrawal
operation. Therefore, if the action succeeds, after the computation step all repositories
remain unchanged.

Action put adds item t to one or more repositories. Its behavior is modeled by rules
(lput), (accput), and (ptpput), that are similar to those of actions get and qry, with the
major difference being that the addition operation of the repository’s handling mecha-
nism is invoked.

As we already said, SCEL also provides a form of group-oriented communication. It
is modeled by the rules in Table V. Thus, when the target of action get denotes a set of
repositories satisfying a given predicate (grget), the action is only allowed if one of these
repositories, say that of component J , is willing to provide the wanted item and if the
request to perform the action at J is authorized by the policy in force at the component

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A formal approach to autonomic systems programming: The SCEL Language A:13

Table V. Systems’ labeled transition relation (cnt.): rules for group communication

S1
I:t/P- S′1 S2

I:t /̄J- S′2 J |= P I.π ` I : t /̄J ,Π′

S1 ‖ S2
τ- S′1[I.π := Π′] ‖ S′2

(grget)

S1
I:tJP- S′1 S2

I:t J̄J- S′2 J |= P I.π ` I : t J̄J ,Π′

S1 ‖ S2
τ- S′1[I.π := Π′] ‖ S′2

(grqry)

S1
I:t.P- S′1 S2

I:t .̄J- S′2 J |= P I.π ` I : t .̄J ,Π′

S1 ‖ S2
I:t.P- S′1[I.π := Π′] ‖ S′2

(grput)

S
I:t.P- S′ (J 6|= P ∨ Π 6` I : t .̄J ,Π′)

S ‖ J [K,Π, P]
I:t.P- S′ ‖ J [K,Π, P]

(engrput)

S1
λ- S′1 λ /∈ {I : t . P , I : t .̄J}

S1 ‖ S2
λ- S′1 ‖ S2

(async)

performing the action. Relation J |= P states that the attributes of J satisfy predicate
P ; the definition of such relation depends on the kind of the used predicates. In any
case, if the action succeeds, this transition corresponds to an internal computation
step (denoted by τ) that changes the repository of component J . Rule (grqry) is similar,
but in the case of action qry the item is not removed from the repository. Differently
from the two previous actions that only interact with one target component arbitrarily
chosen among those satisfying the predicate P and willing to provide the wanted item,
put(t)@P can interact with all components satisfying P and willing to accept the item
t. In fact, rule (grput) permits the execution of a put for group-oriented communication
when there is a parallel component, say J , satisfying the target of the action and
whose policy authorizes this remote access. Of course, the action must be authorized
to use J as a target also by the policy in force at the component performing the action.
Notably, the resulting action is still a put for group-oriented communication, thus
further authorization actions performed by other parallel components satisfying the
target of the action can be simultaneously executed.

The capability of a component to perform a put for group-oriented communication is
not affected by those system components not satisfying predicate P , i.e. not belonging
to the ensemble, or not authorising the action (rule (engrput)). Therefore, when there is
a system component able to perform a put for group-oriented communication, by re-
peatedly applying rules (grput) and (engrput) it is possible to infer that the whole system
can perform such an action (which in fact means that a component produces an item
which is added to the repository of all the ensemble components that simultaneously
are willing to receive the item). Instead, rule (async) states that all actions different
from a put for group-oriented communication and an authorization for a put can be
performed by involving only some of the system’s components. Therefore, if there is a
system component able to perform the authorization for a put, there is no way to infer
that such component in parallel with any other one (hence the system as a whole) can
perform the action. This ensures that when a system component is going to execute a
put for group-oriented communication all potential receivers are taken into account.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi

Table VI. Systems’ transition relation

S
τ- S′

(tau)
(νn̄)S �−→ (νn̄)S′

S
I:t.P- S′

(put)
(νn̄)S �−→ (νn̄)S′

(νn̄, n′′)(S1 ‖ S2{n′′/n′}) �−→ S′ n′′ fresh
(top)

(νn̄)(S1 ‖ (νn′)S2) �−→ S′

(νn̄)(S2 ‖ S1) �−→ S′

(comm)
(νn̄)(S1 ‖ S2) �−→ S′

(νn̄)((S1 ‖ S2) ‖ S3) �−→ S′

(assoc)
(νn̄)(S1 ‖ (S2 ‖ S3)) �−→ S′

Running example (step 5/7). Let us suppose that I2.task = I3.task = “task1” while
I4.task = “task2” and that K3 contains an item indicating that the targetLocation has
position (3, 5). Now, by exploiting the operational rule (accqry), the third component can
generate the following labelled transition

I3[K3,Π3, P3]
I1:〈“targetLocation”,3,5〉 J̄ I3- I3[K3,Π3, P3]

while, by exploiting the operational rule (pr-sys), the first component can generate the
following labelled transition

I1[K1,Π1, P1]
I1:〈“targetLocation”,3,5〉J(task=“task1”)-

I1[K1,Π
′
1, (put(“targetLocation”, 3, 5)@self.P ′1)]

Hence, by exploiting the operational rule (grqry), the overall system can perform the
transition

S
τ- I1[K1,Π

′
1, (put(“targetLocation”, 3, 5)@self.P ′1)]

‖ I2[K2,Π2, P2] ‖ I3[K3,Π3, P3] ‖ I4[K4,Π4, P4] ‖ . . .

The unlabeled transition relation (�−→) of the TS providing the semantics of generic
systems is defined on top of the labeled one by the inference rules in Table VI. As a
matter of notation, n̄ denotes a (possibly empty) sequence of names and n̄, n′ is the se-
quence obtained by composing n̄ and n′. (νn̄)S abbreviates (νn1)((νn2)(· · · (νnm)S · · ·)),
if n̄ = n1, n2, · · · , nm with m > 0, and S, otherwise. S{n′/n} denotes the system obtained
by replacing any free occurrence in S of n with n′. When considering a system S, a
name is deemed fresh if it is different from any name occurring in S.

Rule (tau) of Table VI accounts for the computation steps of a system where all (pos-
sible) name restrictions are at top level. Rule (put) states that, besides those labeled by
τ , computation steps may additionally be labeled by I : t . P , corresponding to group-
oriented communication triggered by an action put(t)@P performed by component I,
and thus transforms them into transitions of the form�−→. Rule (top) permits to manip-
ulate the syntax of a system, by moving all name restrictions at top level, thus putting
it into a form to which one of the first two rules can be possibly applied. This manipu-
lation may require the renaming of a restricted name with a freshly chosen one, thus
ensuring that the name moved at top level is different both from the restricted names
already moved at top level (to avoid name clashes) and from the names occurring free
in the other (sub-)systems in parallel (to avoid improper name captures). Rules (comm)
and (assoc) state that systems’ composition is a commutative and associative operator.
Notably, by exploiting these two rules, we can manipulate systems and avoid adding
analogous rules to those defining the labeled transition relation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A formal approach to autonomic systems programming: The SCEL Language A:15

Running example (step 6/7). The robotics system can thus evolve as follows

S�−→I1[K1,Π
′
1, (put(“targetLocation”, 3, 5)@self.P ′1)]

‖ I2[K2,Π2, P2] ‖ I3[K3,Π3, P3] ‖ I4[K4,Π4, P4] ‖ . . .

�−→I1[(K1 ⊕ 〈“targetLocation”, 3, 5〉),Π′1, P ′1]

‖ I2[K2,Π2, P2] ‖ I3[K3,Π3, P3] ‖ I4[K4,Π4, P4] ‖ . . .

Notably, the group-oriented qry action involves the robots belonging to the ensemble
in charge of task1 (which includes the components identified by I2 and I3), while the
subsequent point-to-point put action only involves the first robot (i.e., the component
identified by I1). Recall that K1 ⊕ 〈“targetLocation”, 3, 5〉 means that the information
about targetLocation is added to the knowledge repository K1. The fourth robot (i.e., the
component identified by I4) is never involved in such communications, because it is in
charge of doing task2.

5. AN ACCESS CONTROL POLICY LANGUAGE FOR SCEL
Access control is a fundamental mechanism for restricting the operations users can
perform on protected resources. Many models of access control have been defined in
the literature. Here, we focus on the Policy Based Access Control (PBAC) model [NIST
2009], that is by now the de-facto standard model for enforcing access control policies
in service-oriented architectures. In this model, a request to access a protected re-
source is evaluated with respect to one or more policies that define which requests are
authorized. An authorization decision is based on attribute values required to allow
access to a resource according to policies stored in system’s components. Component
attributes are used to describe the entities that must be considered for authorization
purposes; they might concern:

— the subject who is demanding access: e.g., identity, role, age, zip code, IP address,
group memberships, citizenships, company, management level, certifications;

— the action that the user wants to perform: e.g., write, read, withdrawn;
— the object (or resource) impacted by the action: e.g., identity, location, size, value;
— the environment identifying the context in which access is requested: e.g., time, date,

location, battery level, system load, available memory, communication channel type.

In this section we instantiate the parameter of SCEL that deals with policies and
specifically with those for access control. Such policies refine components behavior to
guarantee accomplishment of specific tasks or satisfaction of specific properties (e.g.,
protection of private information, management of resource usage, activation of adap-
tation procedures, etc.). As an example of policy language for SCEL, we shall consider
SACPL (Simple Access Control Policy Language), a simple, yet expressive, language
for defining access control policies that has been much influenced by the OASIS stan-
dard for policy-based access control XACML [OASIS-TC 2005]. In the following, we
briefly present SACPL by focussing especially on its integration with SCEL.

5.1. SACPL syntax and semantics
According to the PBAC model, SACPL policies are evaluated to decide if authorisation
requests are granted or forbidden. A request ρ can be thought of as a function mapping
(attribute) names to elements, and is generated from a label produced by the SCEL
operational semantics in correspondence of a given action. For example, the request
corresponding to the tentative of executing action put(t)@n provides information about
the attributes of the request’s subject, i.e. the component performing the action, the
attributes of the request’s object, i.e. the component identified by n, the exchanged item

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi

Table VII. SACPL policy syntax

POLICIES: Π ::= 〈Decision ; target:{ Target } 〉
∣∣ Π p-o Π

∣∣ Π d-o Π

DECISIONS: Decision ::= permit
∣∣ deny

TARGETS: Target ::= MatchF (Designator ,Expr)
∣∣ Target or Target

∣∣ Target and Target

DESIGNATORS: Designator ::= action
∣∣ item

∣∣ subject.attr
∣∣ object.attr

t and, of course, the type of the action, i.e. put. Each SCEL action is executed only if it
is authorized by the policies in force at the component willing to perform the action and
at the target component(s). In particular, when the target of an action put denotes a set
of repositories satisfying a given target predicate, each insertion of the item in these
repositories must be authorized separately by the policy in force at the corresponding
component; such policy evaluation, however, does not affect the authorization of the
insertions in the other target repositories. Instead, in case of a group-oriented action
get or qry, only one authorization is required from the target side, since only one
repository is selected for the interaction. Thus, SACPL policies regulate (intra- or
inter-components) interactions by simply enabling or disabling behaviours.

SACPL syntax is presented in Table VII. Policies are hierarchically structured as
trees. Indeed, a policy is either an atomic policy or a pair of simpler policies combined
through one of the decision-combining operators p-o (permit override) and d-o (deny
override). To match a composed policy (Π1 p-o Π2), an authorization request is only
required to match one of Π1 and Π2, while it must match both Π1 and Π2, in order
to match the policy (Π1 d-o Π2). An atomic policy is a pair consisting of a decision
and a target. The target defines the set of requests to which the policy applies. If the
target is empty, any request matches the policy. The decision — permit or deny — is the
effect returned when the policy is ‘applicable’, i.e. the request belongs to the target.
Otherwise, i.e. when a request does not belong to the policy’s target, then the policy is
not-applicable (this is a third kind of decision that can be returned by the semantics).

A target is either an atomic target or a pair of simpler targets combined using the
standard logic operators or and and. To match a composed target (Target1 or Target2), a
request is only required to match one of Target1 and Target2, while it must match both
Target1 and Target2, in order to match the target (Target1 and Target2).

An atomic target is a triple denoting the application of a matching function MatchF
to values from the request and the policy, like e.g. greater-than(subject.skill, 30 −
object.dependability). To base an authorization decision on some characteristics of the
request, e.g. subjects’ or objects’ identity, atomic targets use designators (i.e. attribute
names) to point to specific values contained in the request. Specifically, the designa-
tor action refers to the action to be performed (such as get, qry, put, etc.). E.g., a
request matches an atomic target of the form equal(action,qry) if the request’s action
corresponds to the action qry identified by the target. Similarly, item permits refer-
ring to the item exchanged in the considered interaction and, hence, an atomic tar-
get pattern-match(item, (“targetLocation”, ?x, ?y)) is matched by all requests whose item
matches the template (“targetLocation”, ?x, ?y). Designators subject.attr and object.attr
refer to the specific attribute attr provided, respectively, by the request’s subject or
object (like, e.g., subject.skill and object.dependability).

Finally, Expressions are built from basic values, e.g. integers and strings, and at-
tributes through standard operators. The evaluation of an atomic target involving a
subject (resp. object) designator consists in obtaining the subject (resp. object) interface
from the request, retrieving the value of the attribute from the interface, evaluating
the expression by possibly retrieving other attribute values from the request elements
and, finally, calling the corresponding match function.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A formal approach to autonomic systems programming: The SCEL Language A:17

In practice, the semantics of SACPL can be formalised in terms of a judgement
Π ` ρ, defined by a set of inference rules and meaning that the authorization decision
returned by a policy Π in response to a request ρ is permit, i.e. access to the resource
requested in ρ is granted by Π.

5.2. Integration with SCEL
We now demonstrate how SACPL policies and requests, as well as the related evalua-
tion mechanism, integrate with SCEL. The fact that SCEL is parametric with respect
to the language used to specify the policies permits to regulate orthogonal aspects of
components’ behavior by means of different kinds of policies, which should be enforced
together but evaluated separately. Hence, the policy Π specified within a component
I[K,Π, P] can be better thought of as a tuple of policies. For example, Π can be of the
form (Πi,Πac), where Πi is one of the policies discussed in Section 4 (e.g., interleaving,
monitoring) for regulating the interaction among processes inside a component, while
Πac is a SACPL policy for regulating the access to the knowledge and resources of a
component.

The policy tuple is used as a whole in the definition of SCEL’s operational seman-
tics, while it is decomposed in its constituent elements, which are then used in different
ways, in the definition of the interaction and the authorization predicates. In partic-
ular, the interaction predicate over the policy tuple (Πi,Πac) can be simply defined as
the interaction predicate over the interaction policy Πi. Similarly, the authorization
predicate over the policy tuple (Πi,Πac) can be defined in terms of a judgement Πac ` ρ
by means of the following rule

Πac ` λ2ρ(λ)

(Πi,Πac) ` λ, (Πi,Πac)

which also implies that the policy in force does never change owing to eval-
uation of a request. The definition of the authorization predicate relies on
the function λ2ρ(·) that maps (a subset of) the SCEL labels to SACPL re-
quests. For example, the label I : t J̄J is converted into the authorization request
{(subject, I), (item, t), (action,qry), (object,J)}. Hence, the authorization of a SCEL re-
quest λ over the policy tuple (Πi,Πac) corresponds to establishing the authorization
decision returned by the policy Πac in response to the SACPL request ρ = λ2ρ(λ),
which is exactly the judgement Π ` ρ explained in Section 5.1.

Running example (step 7/7). In the robotics scenario, a robot component (with iden-
tifier n) could regulate the access to its knowledge by remote retrieving actions through
the use of the SACPL policy resulting from the composition, by means of the d-o (deny
override) operator, of the following policies:

〈permit ; target:{ } 〉 // permit all //

〈deny ; target:{ not-equal(subject.id,n) and // deny remote qry and get //
equal(object.id,n) and
(equal(action,qry) or equal(action,get)) and
not-in(subject.id,object.ListOfTrusted) } 〉

The composed policy says that all actions are permitted apart for those qry and get
actions whose target is the considered robot and whose subject is a robot that is not
trusted.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi

Table VIII. Tuple-space-based SCEL

KNOWLEDGE: ITEMS: TEMPLATES:
K ::= ∅

∣∣ 〈t〉 ∣∣ K1 ‖ K2 t ::= e
∣∣ c

∣∣ P
∣∣ t1, t2 T ::= e

∣∣ c
∣∣ ?x

∣∣ ?X
∣∣ T1, T2

Note: e is an EXPRESSION.

Table IX. Tuple-space operations (, `, ⊕)

〈t〉 	 t = ∅
K1 	 t = K′

(K1 ‖ K2)	 t = K′ ‖ K2

K2 	 t = K′

(K1 ‖ K2)	 t = K1 ‖ K′

〈t〉 ` t
K1 ` t

(K1 ‖ K2) ` t
K2 ` t

(K1 ‖ K2) ` t K⊕ t = K ‖ 〈t〉

6. A SWARM ROBOTICS SCENARIO IN SCEL
In this section, we describe how the SCEL language can be used to model the auto-
nomic computing scenario introduced in Section 3. To this aim we rely on a SCEL’s
dialect obtained by instantiating knowledge repositories as multiple distributed tuple-
spaces à la KLAIM [De Nicola et al. 1998], as shown in Table VIII. Specifically, knowl-
edge items are sequences of values, i.e. tuples, while templates are sequences of values
and variables (the latter ones are preceded by the symbol ‘?’). A value can be a tar-
get c or a process P , or can result from the evaluation of some given expression e.
We assume that expressions contain boolean, integer, float and string values and vari-
ables, together with the corresponding standard operators. A knowledge repository K
is thus a tuple space, i.e. a multiset of stored tuples 〈t〉 and empty tuples ∅ composed
by operator ‖ .

The three operations provided by the knowledge repository’s handling mechanism,
namely withdrawal (K 	 t), retrieval (K ` t) and addition (K ⊕ t) of an item t from/to
repository K, are inductively defined in Table IX. Notably, when a matching tuple is
removed from K, it is replaced by ∅.

Finally, concerning policies, in the considered dialect the interaction predicate is the
interleaving one (see Section 4) for any component, while the authorization predicate
is always satisfied, in other words we assume that the interaction among components
is always authorized.

The autonomic behaviour of each robot in the swarm is implemented by means of an
autonomic manager controlling the execution of a managed element. The autonomic
manager monitors, in a self-aware fashion, the state of charge of the robot’s battery
and verifies whether the target area has been reached or not. The managed element
can be seen as an empty “executor” which retrieves from the knowledge repository the
activities to be performed at the current control step.

Thus, each robot is a component I[K,Π, (AM [ME])], where the managed element
ME is as follows:

ME , qry(“controlStep”, ?X)@self. (get(“terminated”)@self.ME)[X] (1)

This process retrieves from the local knowledge repository the process implementing
the current control step and bounds it to variable X, executes the retrieved process
and waits until it terminates.

Therefore, self-adaptation is naturally expressed by exploiting SCEL’s higher-order
features, namely the capability to store/retrieve (the code of) processes in/from the
knowledge repositories and to dynamically trigger execution of new processes. As
shown in [Gjondrekaj et al. 2012], this form of higher-order communication enables a

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A formal approach to autonomic systems programming: The SCEL Language A:19

straightforward implementation of adaptive behaviours. The autonomic manager AM
can then replace the control step code from the knowledge repository to implement the
adaptation logic and therefore to change the managed element’s behavior. For exam-
ple, when a robot becomes informed, it self-adapts (i.e., self-configure) its behaviour
through its autonomic manager in order to directly move towards the target area.

We assume that robots publish within their interface the task that they have to fulfill
through attribute task. In this way, the predicate (task = “taski”), with i = 1, 2, iden-
tifies all robots in charge of doing taski. We also assume that robots are equipped with
a GPS sensor, with a sensor that permits verifying whether the target area has been
reached, and with a sensor that monitors the level of battery. These sensors publish
their values directly within the knowledge repository. For example, a tuple of the form
〈“batteryLevel”, l〉 in a robot’s repository indicates that the state of charge of robot’s
battery is l. The information stored in these tuples represents the awareness data
(called control data in [Bruni et al. 2012]) and is used to regulate the system’s adapta-
tion. Specifically, the autonomic manager detects run-time modifications of awareness
data and appropriately adapts the robot’s behaviour to deal with such changes, by
simply replacing the process stored in the “controlStep” tuple.

The autonomic manager AM is defined as follows:

AM , PbatteryMonitor [PdataSeeker [PtargetSeeker]]

where PbatteryMonitor monitors the state of charge of the robot’s battery, PdataSeeker tries
to retrieve data from the ensemble of robots with the same task in order to obtain the
actual position of the target area, and PtargetSeeker checks the awareness data and prop-
erly sets the “controlStep” tuple with either PrandomWalk , Pinformed , Pfound or PlowBattery .
Due to lack of space, we describe below only some of the processes above.

Process PdataSeeker is defined as follows:

PdataSeeker , qry(“targetLocation”, ?x, ?y)@(task = “taski”).
put(“targetLocation”, x, y)@self.
get(“informed”, false)@self.put(“informed”, true)@self

This process corresponds to the process P1 described in the running example shown
in Section 3. After it has retrieved the target location from the other robots doing the
same task, the process publishes such information within the local repository and sets
the informed tuple to true.

Process PrandomWalk , executed by the managed element, randomly selects a direction
followed by the robot to search the target area, while process Pinformed calculates a
direction towards a given location. Hence, they both add a tuple 〈“direction”, θ〉 to the
local repository, which will be retrieved by the actuator governing the robot wheels.
The two processes are defined as follows:

PrandomWalk , put(“direction”, random() · 2π)@self. put(“terminated”)@self

Pinformed , qry(“targetLocation”, ?x, ?y)@self.
put(“direction”, towards(x , y))@self. put(“terminated”)@self

7. A RUNTIME ENVIRONMENT FOR SCEL PROGRAMS
In this section we present jRESP2, a Java runtime environment providing a framework
for developing autonomic and adaptive systems according to the SCEL paradigm.
Specifically, jRESP provides an API that permits using in Java programs the SCEL

2jRESP (Java Run-time Environment for SCEL Programs) website: http://jresp.sourceforge.net/.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://jresp.sourceforge.net/

A:20 R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi

Hardware/Virtual Machine

N
etw

ork
s

Input devices/Sensors

(GPS, Temperature, Battery level,CPU load. . .)

Output devices/Actuators

SCEL Processes (Threads)

Policies

Knowledge

A
tt

r.

P
or

ts

Figure 1: Node architecture

cooperate.

Components The central element of RESP is the class Node. This class
provides the implementation for a generic SCEL component1. The overall
infrastructure of a generic node is reported in Figure 1.

We assume that each node is executed over a virtual machine or a phys-
ical device that provides the access to: input and output devices and net-
work connections. Each node contains: a knowledge; a set of running pro-
cesses/threads; and a policy.

Like for a SCEL components, structural and behavioural information
about a node can be collected into an interface. This is rendered in RESP
via a set of attribute collectors that, reading values from the knowledge,
publish and and make available attribute values in the interface.

Nodes interact with each other via ports. These provide mechanism for
supporting both one-to-one and gruop communications.

1From now on we will use node to refer to instances of class Node, while component
will indicate a SCEL component.

4

Fig. 3. Node architecture

linguistic constructs for controlling the computation and interaction of autonomic com-
ponents, and for defining the architecture of systems and ensembles.

The implementation of jRESP fully relies on the SCEL formal semantics. This close
correspondence enhances confidence on the behaviour of the jRESP implementation
of SCEL programs, once the latter have been analysed through the formal methods
made possible by the formal operational semantics.

We have already explained in the previous sections that SCEL is parametric with
respect to some aspects, e.g. knowledge representation, that may change to tailor to
different application domains. For this reason, also jRESP is designed to accommodate
alternative instantiations of the above mentioned features. Indeed, thanks to the large
use of design patterns, the integration of new features in jRESP is greatly simplified.

SCEL operational semantics abstracts from a specific communication infrastruc-
ture. A SCEL program typically consists of a set of (possibly heterogeneous) compo-
nents, each of which is equipped with its own knowledge repository. These components
concur and cooperate in a highly dynamic environment to achieve a set of goals. In this
kind of systems the underlying communication infrastructure can change dynamically
as the result of local component interactions. To cope with this dynamicity, jRESP com-
munication infrastructure has been designed to avoid centralized control. Moreover, to
facilitate interoperability with other tools and programming frameworks, jRESP relies
on JSON3. This is an open data interchange technology that permits simplifying the
interactions between heterogeneous network components and provides the basis on
which SCEL programs can cooperate with external services or devices.

7.1. jRESP’s main features

Components. SCEL components are implemented via the class Node. The archi-
tecture of a node is shown in Figure 3. Nodes are executed over virtual machines or
physical devices providing access to input/output devices and network connections.
A node aggregates a knowledge repository, a set of running processes, and a set of
policies. Structural and behavioral information about a node are collected into an in-
terface via attribute collectors. Nodes interact via ports supporting both point-to-point
and group-oriented communications.

3JSON (JavaScript Object Notation) website: http://www.json.org/.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.json.org/

A formal approach to autonomic systems programming: The SCEL Language A:21

Knowledge. The interface Knowledge identifies a generic knowledge repository and
indicates the high-level primitives to manage pieces of relevant information coming
from different sources. This interface contains the methods for withdrawing/retriev-
ing/adding piece of knowledge from/to a repository. Currently, a single implementation
of the Knowledge interface is available in jRESP, which relies on the KLAIM [De Nicola
et al. 1998] notion of tuple space. Thus, items are defined as tuples, i.e. sequences of
Objects, that can be collected into a knowledge repository. They can be retrieved/with-
drawn via pattern-matching through Templates, consisting of a sequence of actual and
formal TemplateFields.

External data can be collected into a knowledge repository via sensors. Each sensor
can be associated to a logical or physical device providing data that can be retrieved by
processes and that can be the subject of adaptation. Similarly, actuators can be used
to send data to an external device or service attached to a node. This approach allows
SCEL processes to control exogenous devices that identify logical/physical actuators.

The interface associated to a node is computed by exploiting attribute collectors.
Each of this collector is able to inspect the local knowledge and to compute the value
of the attributes. This mechanism equips a node with reflective capabilities allowing a
component to self-project the image of its state on the interface. Indeed, when the local
knowledge is updated the involved collectors are automatically activated and the node
interface is modified accordingly4.

Network Infrastructure. Each Node is equipped with a set of ports for interacting
with other components. A port is identified by an address that can be used to refer
to other jRESP components. Indeed, each jRESP node can be addressed via a pair
composed of the node name and the address of one of its ports.

The abstract class AbstractPort implements the generic behaviour of a port. It imple-
ments the communication protocol used by jRESP components to interact with each
other. Class AbstractPort also provides the instruments to dispatch messages to compo-
nents. However, in AbstractPort the methods used for sending messages via a specific
communication network/media are abstract. Also the method used to retrieve the ad-
dress associated to a port is abstract in AbstractPort. The concrete classes defining
specific kinds of ports extend AbstractPort to provide concrete implementations of the
above outlined abstract methods, so to use different underlying network infrastruc-
tures (e.g., Internet, Ad-hoc networks, . . .).

Currently, four kinds of port are available: InetPort, P2PPort, ServerPort and Virtual-
Port. The first one implements point-to-point and group-oriented interactions via TCP
and UDP, respectively. In particular, InetPort implements group-oriented interactions
in terms of a UDP broadcast. Unfortunately, this approach does not scale when the size
of involved components increases. To provide a more efficient and reliable support to
group-oriented interactions, jRESP provides the class P2PPort. This class realises in-
teractions in terms of the P2P and multicast protocols provided by Scribe5 [Castro et al.
2003] and FreePastry6 [Rowstron and Druschel 2001]. A more centralized implemen-
tation is provided by ServerPort. All messages sent along this kind of port pass through
a centralize server that dispatches all the received messages to each of the managed
ports. Finally, VirtualPort implements a port where interactions are performed via a
buffer stored in memory. A VitualPort is used to simulate nodes in a single application
without relying on a specific network infrastructure.

4This mechanism is implemented via the Observer/Observable pattern.
5Scribe is a generic, scalable and efficient system for group communication and notification.
6FreePastry is a substrate for peer-to-peer applications.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi

Behaviors. SCEL processes are implemented as threads via the abstract class Agent,
which provides the methods implementing the SCEL actions. In fact, they can be used
for generating fresh names, for instantiating new components and for withdrawing/re-
trieving/adding information items from/to shared knowledge repositories. The latter
methods extend the ones considered in Knowledge with another parameter identifying
either the (possibly remote) node where the target repository is located or the group of
nodes whose repositories have to be accessed. As previously mentioned, group-oriented
interactions are supported by the communication protocols defined in the node ports
and by attribute collectors.

Policies. Like in SCEL, in jRESP policies can be used to regulate the interaction be-
tween the different internal parts of components and their mutual interactions. When
a method of an instance of class Agent is invoked, its execution is delegated to the
policy associated to the node where the agent is running. The policy can then control
the execution of the action (for instance, by generating an exception when some access
right has been violated) and, possibly, of related extra actions. By default, each node is
instantiated with the policy allowing any operation. Different kinds of policies can be
easily integrated in jRESP by implementing the interface PolicyI.

7.2. The swarm robotics scenario in jRESP
We report here the relevant code7 of the jRESP implementation of the SCEL specifica-
tion, presented in Section 6, of the swarm robotics scenario. The Java classes reported
in this section permit appreciating how close SCEL processes are to their implemen-
tation in jRESP. Indeed, since programmers can directly use SCEL communication
primitives, the resulting classes are very compact. The jRESP code of the swarm robotic
scenario consists of only eight classes, each of which represents a specific behaviour.
The average number of lines per class, including class and method declarations, is 12.

Process ME , defined in Equation (1) at page 18, can be rendered as the agent Man-
agedElement defined below:

public class ManagedElement extends Agent {
public ManagedElement() {

super("ManagedElement");
}
protected void doRun() throws Exception {

while (true) {
Tuple t = query(new Template(new ActualTemplateField("controlStep"),

new FormalTemplateField(Agent.class)),
Self .SELF);

Agent X = t.getElementAt(Agent.class,1);
X.call ();

}
}

}

When an instance of class Agent is executed, it is invoked the method doRun() that
defines the agent behaviour. In the case of ManagedElement, the method consists of an
infinite loop where, at each iteration, the control step is first retrieved from the local
knowledge repository and then executed. The method query(), used to retrieve data
from a knowledge repository, is defined in the base class Agent and implements the

7The source code for the complete scenario, together with a simulation environment, can be downloaded
from http://jresp.sourceforge.net/.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://jresp.sourceforge.net/

A formal approach to autonomic systems programming: The SCEL Language A:23

SCEL action qry8. It takes as parameters an instance of class Template and a target,
and returns a matching tuple. In the case above, the target is the local component
(referred by Self.SELF) while the retrieved tuple is one consisting of two fields: the first
field is the constant “controlStep” and the second field is an instance of class Agent. The
latter is executed (via method call()) once the tuple is read from the tuple space.

The autonomic manager is implemented by the three Java classes corresponding to
processes PbatteryMonitor , PdataSeeker and PtargetSeeker . We report below, as an example,
the code of DataSeeker.
public class DataSeeker extends Agent {

public DataSeeker() {
super("DataSeeker");

}
protected void doRun() throws Exception {

Tuple t = query(new Template(new ActualTemplateField("targetLocation"),
new FormalTemplateField(Double.class),
new FormalTemplateField(Double.class)),

new Group(new HasValue("task",1)));
double x = t.getElementAt(Double.class,1);
double y = t.getElementAt(Double.class,2);
put(new Tuple("targetLocation",x,y), Self.SELF);
get(new Template(new ActualTemplateField("informed"),

new ActualTemplateField(false)),
Self .SELF);

put(new Tuple("informed",true), Self.SELF);
}

}

Method doRun() of DataSeeker implements exactly the same behaviour as PdataSeeker .
This is witnessed by the clear correspondence between the code listed above and the
definition of PdataSeeker given in Section 6. In particular, the method query() is per-
formed by contacting the components satisfying the predicate HasValue(“task”,1), i.e.
those components whose interface associates the value 1 to the task attribute. The
ports associated to each jRESP component will provide specific protocols that permit
discovering the nodes satisfying the target predicate. For instance, in the case of Inet-
Port this task is performed by relying on UDP broadcast.

Finally, the jRESP code of the processes PrandomWalk and Pinformed , executed by the
managed element, is the following:
public class RandomWalk extends Agent {

Random r = new Random();
public RandomWalk() {

super("RandomWalk");
}
protected void doRun() throws Exception {

put(new Tuple("direction",r.nextDouble()∗2∗Math.PI), Self.SELF);
}

}

public class Informed extends Agent {
public Informed() {

super("Informed");
}
protected void doRun() throws Exception {

8Class Agent also provides methods put() and get() that implements actions put and get, respectively.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi

Fig. 4. Simulation of the swarm robotic scenario in jRESP

Tuple t = query(new Template(new ActualTemplateField("targetLocation"),
new FormalTemplateField(Double.class),
new FormalTemplateField(Double.class)),

Self .SELF);
double x = t.getElementAt(Double.class,1);
double y = t.getElementAt(Double.class,2);
put(new Tuple("direction",towards(x,y)), Self.SELF);

}
}

The jRESP code presented in this section can be executed both on real robots and
within a simulation environment. In the first case, jRESP nodes would be directly ex-
ecuted on robots where a Java Virtual Machine is running. However, this may not
be always possible. For this reason, jRESP also provides modules that can be used to
simulate SCEL programs. Simulation modules enable the execution of virtual com-
ponents within a simulation environment that controls component interactions and
collects relevant simulation data. A screenshot of a simulation run of the robotic sce-
nario is reported in Figure 4, where blue and black circles represent the locations of the
two target zones. In the figure, the two groups of robots are represented via squares
and circles while their color denotes the battery level: green if the battery is completely
charged, red if the battery is empty.

By relying on the jRESP simulation environment, a prototype framework for statis-
tical model-checking has been also developed. Following this approach, a randomized
algorithm is used to verify whether the implementation of a system satisfies a specific
property with a certain degree of confidence. Indeed, the statistical model-checker is
parameterized with respect to a given tolerance ε and error probability p. The used al-
gorithm guarantees that the difference between the value computed by the algorithm
and the exact one is greater than ε with a probability that is less than p.

The model-checker included in jRESP can be used to verify reachability properties.
These permit evaluating, e.g., the probability to reach a configuration where a given
predicate on collected data is satisfied within a given deadline. Figure 5 shows the
probability that “at least 25% of robots reach the target when the time varies from 0 to
4000s”. The diagram shows that this goal can be reached only after 500s and that after
2500s with probability 1 at least 1

4 of robots reach their target.

8. RELATED WORK
Our proposal combines the notion of ensemble with concepts that have emerged
from different research fields, such as autonomic computing, multi-agent systems,
component-based design, context-oriented programming, network architectures and

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A formal approach to autonomic systems programming: The SCEL Language A:25

0 1000 2000 3000 4000
Time (t)

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y
(p

)

Fig. 5. Statistical model-checking of robotic scenario in jRESP

concurrency theory. Below, we list some of the closely related works developed within
these areas and stress their relationships with SCEL.

Declarative programming has been proposed to program ensembles, see e.g.
Meld [Ashley-Rollman et al. 2007; Ashley-Rollman et al. 2009] and Declarative Net-
working [Loo et al. 2009]. The underlying idea is that ensembles can be programmed
as a unified whole from a global perspective and then compiled automatically into fully
distributed local behaviors. In this context, SCEL could be used as the actual target
language.

Among the many works focussing on the self-adaptation capability of autonomic
systems, we want to mention [Khakpour et al. 2012]. This work proposes a policy-
based formalism that combines an actor-based model, for specifying the computational
aspects of system elements, and a configuration algebra, for expressing autonomous
managers in charge of enforcing adaptation policies. This formalism relies on a prede-
fined notion of policies expressed as Event-Condition-Action (ECA) rules. Adaptation
policies are specific ECA rules that change the manager configurations. SCEL, in-
stead, is parametric with respect to the policy language and, hence, more appropriate
for dealing with heterogenous systems and different application domains.

Multi-agent systems (as e.g. [Rao 1996; Bordini et al. 2005; Winikoff 2005; Bellifem-
ine et al. 2007; Dastani 2008]) share with SCEL the stress on knowledge representa-
tion and the way single agents can handle it. However, SCEL components can directly
access knowledge repositories of other components (provided this is allowed by the
related policies), while in agents system this requires additional message exchanges.
In general, the SCEL’s communication model, and its tuple-spaces-based implemen-
tation of the knowledge repositories, is more flexible and better suitable to, e.g., sup-
port adaptive context-aware activities in pervasive and mobile computing scenarios
(as those considered in [Mamei and Zambonelli 2009]).

Being our notion of ensemble based on components equipped with interfaces, our
work is also related to component-based design, that has been indicated as a key ap-
proach for adaptive software design [McKinley et al. 2004]. A relevant example in this
field is FRACTAL [Bruneton et al. 2006], a hierarchical component model with shar-
ing. This latter feature permits defining components whose boundaries are not com-
pletely fixed, which can be used to form systems with a less rigid structure than that
obtained with the standard component-based paradigm. However, communication be-
tween components is still defined via bindings (i.e. component connectors) and system
adaptation is obtained by adding, removing or modifying components and/or bindings.
These forms of communication and adaptation are therefore less flexible and expres-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi

sive then the corresponding mechanisms used in SCEL and not adequate to deal with
highly dynamic ensembles.

Context-Oriented Programming (COP) [Hirschfeld et al. 2008; Salvaneschi et al.
2012] has been advocated to program autonomic systems [Salvaneschi et al. 2011].
It exploits ad-hoc explicit language-level abstractions to express context-dependent
behavioral variations and their run-time activation. So far, most efforts have been di-
rected towards the design and implementation of concrete languages, as e.g. Erlang,
Java, JavaScript, Python, Ruby, and Smalltalk (a comparison can be found in [Ap-
peltauer et al. 2009]). Only few works provide a foundational account of programming
languages extended with COP facilities like, e.g., the object-oriented ones of [Clarke
et al. 2009; Hirschfeld et al. 2011; Aotani et al. 2011] and the functional one of [Degano
et al. 2012]. All these approaches are however quite different from ours, that instead
focusses on distribution and attribute-based aggregations and supports a highly dy-
namic notion of adaptation.

A few programming abstractions that are related to the ones provided by SCEL have
been recently proposed in the field of network architectures for mobile opportunistic
applications and for wireless sensor networks. For example, the Haggle network archi-
tecture [Nordström et al. 2009] provides a push-based data dissemination service that
notifies applications when data matching their interests is received. Applications need
not themselves implement essential mechanisms for opportunistic communication,
such as neighbour discovery and data dissemination, but only to register with Hag-
gle their interest. This, and other similar forms of communication adopted in publish-
subscribe architectures, can be easily rendered in SCEL by exploiting attributes for
registering components’ interests and by using predicates on those attributes for dis-
seminating data to the registered components. [Mottola and Picco 2006; Mottola and
Picco 2012] introduces the concept of logical neighbourhoods and the SPIDEY declar-
ative language for defining them. Logical neighbourhood replaces the physical neigh-
bourhood –i.e., the set of nodes in the communication range of a given device– provided
by wireless broadcast with a higher-level notion of proximity determined by applicative
information. Application programmers still reason in terms of neighbourhood relations
and broadcast messages, but can now specify declaratively which nodes to consider
as neighbours and, therefore, the span of communication. The communication mech-
anism enabled by the notion of logical neighbourhood is similar to the SCEL’s one:
predicates can indeed be thought of as a way of singling out the logical neighbours of a
given node according to the features indicated by the attributes used in the predicates
themselves. However, in [Mottola and Picco 2006; Mottola and Picco 2012] neighbour-
hood relations are statically defined through templates, while SCEL allows processes
to form and use new predicates on-demand. Moreover, the SPIDEY language is specific
for Wireless Sensor Networks (WSNs), while SCEL constructs are aimed at coordi-
nating a larger class of systems/applications. For example, the interface of a SCEL
component permits abstracting from the specific data source while it synthesises all
the relevant part of the (state of) component’s knowledge in a set of valued attributes.
In the SCEL approach, WSNs are no longer stand-alone sense-only systems but can
be easily integrated into a general framework where multiple concurrent applications
coexist and cooperate.

Finally, in the area of concurrency theory, calculi such as those defined in [Banâtre
et al. 2004] and in [Andrei and Kirchner 2009], relying on the (bio)chemical program-
ming paradigm, have been proposed for the specification of autonomic systems. Some
other formalisms, like e.g. those introduced in [Mezzetti and Sangiorgi 2006] and in
[Singh et al. 2010], aiming at modelling dynamically changing network topologies (a
feature common to many types of distributed systems and to ensembles) can also be
source of inspiration for linguistic primitives for specifying autonomic systems. Com-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A formal approach to autonomic systems programming: The SCEL Language A:27

pared to these proposals, SCEL allows one to provide high-level abstract descriptions
of systems that nevertheless have a direct correspondence with their implementation.

9. CONCLUSIONS AND FUTURE WORK
We have presented the kernel language SCEL, i.e. a set of linguistic abstractions for
programming autonomic systems, and its Java implementation. Our holistic approach
to programming autonomic computing systems permits to govern systems complex-
ity by providing flexible abstractions, by permitting transparent monitoring of the in-
volved entities and by supporting adaptation. Besides, the solid semantic ground of
SCEL lays the basis for developing logics, tools and methodologies for formally reason-
ing on systems behavior in order to establish qualitative and quantitative properties
of both the individual components and their ensembles.

To assess to which extent SCEL meets our expectations, we have used it to tackle a
number of case studies from the robotics and service provision domains (see, e.g., [De
Nicola et al. 2013]). We plan to extend the above experimentation to other application
domains, such as Cloud-computing (transiently available computers) and e-Mobility
(cooperative e-vehicles).

We also want to develop a methodology that enables components to take decisions
about possible alternative behaviors by choosing among the best possibilities while be-
ing aware of the consequences. By relying on an abstract model of the evolving environ-
ment, each component will be able to locally verify the possibility (or the probability)
of guaranteeing the wanted properties or of achieving the wanted goals by analyzing
the possible outcome of its interactions with the abstract model. This information will
be then used to take decisions about the choices that the component has to face.

Along the same lines we have started investigating the integration of SCEL with
“reasoners” to be invoked by processes when facing choices. Having two different lan-
guages, one for computation and coordination the other for “reasoning”, does guarantee
separation of concerns. Also, it may be beneficial to have a methodology for integrating
with a given programming language different reasoners or meta-reasoners designed
and optimised for specific purposes. What we envisage is having SCEL processes that
whenever need to take decisions have the possibility of invoking a reasoner by provid-
ing it with information about the relevant knowledge they have access to and receiving
in exchange informed suggestions about how to proceed.

Moreover, we plan to define a high-level programming language that, by enriching
SCEL with standard constructs (e.g. control flow constructs such as while or if-then-
else), simplifies the programming task. We intend to implement an integrated envi-
ronment for supporting the development of adaptive systems at different levels of ab-
straction: from a high-level perspective, based on SCEL, to a more concrete one, based
on jRESP. (Semi-)Automatic analysis tools, based on the SCEL’s formal semantics,
will be integrated in this toolchain.

ACKNOWLEDGMENTS

We would like to thank Martin Wirsing and all friends of the ASCENS project, without their contributions
and stimuli SCEL would not have been conceived. We would also like to thank GianLuigi Ferrari for former
collaborations and discussions, and Guido Salvaneschi for comments on a previous version of this paper.

References
Gul A. Agha. 1990. ACTORS - a model of concurrent computation in distributed systems. MIT Press. I–IX,

1–144 pages.
Oana Andrei and Hélène Kirchner. 2009. A Higher-Order Graph Calculus for Autonomic Computing. In

Graph Theory, Computational Intelligence and Thought. Springer, 15–26.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 R. De Nicola, M. Loreti, R. Pugliese, F. Tiezzi

Tomoyuki Aotani, Tetsuo Kamina, and Hidehiko Masuhara. 2011. Featherweight EventCJ: a core calculus
for a context-oriented language with event-based per-instance layer transition. In COP. ACM, 1:1–1:7.

Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and Michael Perscheid. 2009. A compar-
ison of context-oriented programming languages. In COP. ACM, 6:1–6:6.

Michael P. Ashley-Rollman, Seth Copen Goldstein, Peter Lee, Todd C. Mowry, and Padmanabhan Pillai.
2007. Meld: A declarative approach to programming ensembles. In IROS. IEEE, 2794–2800.

Michael P. Ashley-Rollman, Peter Lee, Seth Copen Goldstein, Padmanabhan Pillai, and Jason Campbell.
2009. A Language for Large Ensembles of Independently Executing Nodes. In ICLP (LNCS 5649).
Springer, 265–280.

Jean-Pierre Banâtre, Yann Radenac, and Pascal Fradet. 2004. Chemical Specification of Autonomic Systems.
In IASSE. ISCA, 72–79.

Fabio L. Bellifemine, Giovanni Caire, and Dominic Greenwood. 2007. Developing Multi-Agent Systems with
JADE. John Wiley & Sons.

Rafael H. Bordini, Jomi F. Hübner, and Renata Vieira. 2005. Jason and the Golden Fleece of Agent-Oriented
Programming. In Multi-Agent Programming. Multiagent Systems, Artificial Societies, and Simulated
Organizations, Vol. 15. Springer, 3–37.

Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-Bernard Stefani. 2006. The
FRACTAL component model and its support in Java. Softw., Pract. Exper. 36, 11-12 (2006), 1257–1284.

Roberto Bruni, Andrea Corradini, Fabio Gadducci, Alberto Lluch-Lafuente, and Andrea Vandin. 2012. A
Conceptual Framework for Adaptation. In FASE (LNCS 7212). Springer, 240–254.

Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony I. T. Rowstron. 2003. Scalable
Application-Level Anycast for Highly Dynamic Groups. In ICQT (LNCS 2816). Springer, 47–57.

Dave Clarke, Pascal Costanza, and Éric Tanter. 2009. How should context-escaping closures proceed?. In
COP. ACM, 1:1–1:6.

Paolo Costa, Luca Mottola, Amy L. Murphy, and GianPietro Picco. 2009. Tuple Space Middleware for Wire-
less Networks. In Middleware for Network Eccentric and Mobile Applications. Springer, 245–264.

Mehdi Dastani. 2008. 2APL: a practical agent programming language. Autonomous Agents and Multi-Agent
Systems 16, 3 (2008), 214–248.

Rocco De Nicola, GianLuigi Ferrari, Michele Loreti, and Rosario Pugliese. 2012. A Language-based Ap-
proach to Autonomic Computing. In FMCO 2011 (LNCS 7542). Springer, 25–48. http://rap.dsi.unifi.it/
scel/.

Rocco De Nicola, GianLuigi Ferrari, and Rosario Pugliese. 1998. KLAIM: A Kernel Language for Agents
Interaction and Mobility. IEEE Trans. Software Eng. 24, 5 (1998), 315–330.

Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. 2013. SCEL: a Language for Auto-
nomic Computing. Technical Report. (July 2013). http://rap.dsi.unifi.it/scel/pdf/SCEL-TR.pdf.

Pierpaolo Degano, GianLuigi Ferrari, Letterio Galletta, and Gianluca Mezzetti. 2012. Types for Coordinat-
ing Secure Behavioural Variations. In COORDINATION (LNCS 7274). Springer, 261–276.

Edmond Gjondrekaj, Michele Loreti, Rrosario Pugliese, and Francesco Tiezzi. 2012. Modeling adaptation
with a tuple-based coordination language. In Proceedings of the ACM Symposium on Applied Comput-
ing, SAC 2012, Riva, Trento, Italy, March 26-30, 2012, Sascha Ossowski and Paola Lecca (Eds.). ACM,
1522–1527.

Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. 2008. Context-oriented Programming. Journal of
Object Technology 7, 3 (2008), 125–151.

Robert Hirschfeld, Atsushi Igarashi, and Hidehiko Masuhara. 2011. ContextFJ: a minimal core calculus for
context-oriented programming. In FOAL. ACM, 19–23.

IBM. 2005. An architectural blueprint for autonomic computing. Technical Report. Third edition.
Jeffrey O. Kephart and David M. Chess. 2003. The Vision of Autonomic Computing. Computer 36, 1 (2003),

41–50.
Narges Khakpour, Saeed Jalili, Carolyn L. Talcott, Marjan Sirjani, and Mohammad Reza Mousavi. 2012.

Formal modeling of evolving self-adaptive systems. Sci. Comput. Program. 78, 1 (2012), 3–26.
Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Hellerstein, Petros Maniatis,

Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. 2009. Declarative networking. Commun. ACM
52, 11 (2009), 87–95.

Marco Mamei and Franco Zambonelli. 2009. Programming pervasive and mobile computing applications:
The TOTA approach. ACM Trans. Softw. Eng. Methodol. 18, 4 (2009).

P.K. McKinley, S.M. Sadjadi, E.P. Kasten, and B. H C Cheng. 2004. Composing adaptive software. Computer
37, 7 (2004), 56–64.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://rap.dsi.unifi.it/scel/
http://rap.dsi.unifi.it/scel/
http://rap.dsi.unifi.it/scel/pdf/SCEL-TR.pdf

A formal approach to autonomic systems programming: The SCEL Language A:29

Nicola Mezzetti and Davide Sangiorgi. 2006. Towards a Calculus For Wireless Systems. Electr. Notes Theor.
Comput. Sci. 158 (2006), 331–353.

Robin Milner. 1989. Communication and concurrency. Prentice Hall. I–XI, 1–260 pages.
Luca Mottola and Gian Pietro Picco. 2006. Logical Neighborhoods: A Programming Abstraction for Wireless

Sensor Networks. In DCOSS (LNCS 4026). Springer, 150–168.
Luca Mottola and Gian Pietro Picco. 2012. Middleware for wireless sensor networks: an outlook. J. Internet

Services and Applications 3, 1 (2012), 31–39.
NIST. 2009. A survey of access control models. (2009). http://csrc.nist.gov/news events/

privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf.
Erik Nordström, Per Gunningberg, and Christian Rohner. 2009. A Search-based Network Architecture for

Mobile Devices. Technical Report 2009-003. Uppsala University, Computer Systems.
OASIS-TC. 2005. eXtensible Access Control Markup Language (XACML) version 2.0. (2005). http://docs.

oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip.
Gordon D. Plotkin. 2004. A structural approach to operational semantics. J. Log. Algebr. Program. 60-61

(2004), 17–139.
Project InterLink. 2007. http://interlink.ics.forth.gr. (2007).
Anand S. Rao. 1996. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In MAA-

MAW (LNCS 1038). Springer, 42–55.
Antony I. T. Rowstron and Peter Druschel. 2001. Pastry: Scalable, Decentralized Object Location, and Rout-

ing for Large-Scale Peer-to-Peer Systems. In Middleware (LNCS 2218). Springer, 329–350.
Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. 2011. Context-Oriented Programming: A Program-

ming Paradigm for Autonomic Systems. CoRR abs/1105.0069 (2011).
Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. 2012. Context-oriented programming: A software

engineering perspective. Journal of Systems and Software 85, 8 (2012), 1801 – 1817.
Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. 2010. A process calculus for Mobile Ad Hoc Networks.

Sci. Comput. Program. 75, 6 (2010), 440–469.
Ian Sommerville, Dave Cliff, Radu Calinescu, Justin Keen, Tim Kelly, Marta Z. Kwiatkowska, John A.

McDermid, and Richard F. Paige. 2012. Large-scale complex IT systems. Commun. ACM 55, 7 (2012),
71–77.

Michael Winikoff. 2005. JACKTM Intelligent Agents: An Industrial Strength Platform. In Multi-Agent Pro-
gramming. Multiagent Systems, Artificial Societies, and Simulated Organizations, Vol. 15. Springer,
175–193.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://csrc.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf
http://csrc.nist.gov/news_events/privilege-management-workshop/PvM-Model-Survey-Aug26-2009.pdf
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip
http://docs.oasis-open.org/xacml/2.0/XACML-2.0-OS-NORMATIVE.zip
http://interlink.ics.forth.gr

	Introduction
	Design Principles
	A formal language for autonomic computing
	SCEL operational semantics
	Semantics of processes
	Semantics of systems

	An Access Control Policy Language for SCEL
	SACPL syntax and semantics
	Integration with SCEL

	A swarm robotics scenario in SCEL
	A runtime environment for SCEL programs
	jRESP's main features
	The swarm robotics scenario in jRESP

	Related work
	Conclusions and future work

