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Abstract

Component adaptation is widely recognised to be one of the crucial problems in Component-Based Software Engineering

(CBSE). We present a formal methodology for adapting components with mismatching interaction behaviour. The three main

ingredients of the methodology are: (1) the inclusion of behaviour specifications in component interfaces, (2) a simple, high-level

notation for expressing adaptor specifications, and (3) a fully automated procedure to derive concrete adaptors from given high-level

specifications.

� 2003 Published by Elsevier Inc.
1. Introduction

Component adaptation is widely recognised to be one

of the crucial problems in Component-Based Software

Engineering (CBSE) (Campbell, 1999; Heineman, 1999),
and it has been the subject of increasing attention in the

last few years. The possibility for application builders to

easily adapt off-the-shelf software components to

properly work within their application is a must for the

creation of a true component marketplace and for

component deployment in general (Brown and Wallnau,

1998).

Available component-oriented platforms (e.g.,
CORBA, COM, JavaBeans, .NET) address software

interoperability typically using Interface Description

Languages (IDLs) to specify the functionality offered

(and required) by possibly heterogeneous software

components. IDL interfaces are important for software

integration, since they highlight signature mismatches

between components, in view of their adaptation or

wrapping. However, solving all signature problems does
not guarantee that the components will suitably inter-

operate. Indeed, mismatches may also occur at the

protocol level, due to the ordering of the messages ex-

changed, and also to blocking conditions (Vallecillo et

al., 2000), that is, because of behaviour mismatches of
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the involved components. Other than case-based testing

of the compatibility of components, more rigorous

techniques are needed to lift their integration from

hand-crafting to an engineering activity.

For instance, system developers would like to deter-
mine beforehand whether the inclusion of a third-party

component may introduce a deadlock into the applica-

tion under development. In order to rigorously verify

properties of systems consisting of large numbers of

dynamically interacting components, a formal descrip-

tion of the interactive behaviour of components is nee-

ded (Clarke et al., 1994).

In this paper, we focus on the problem of adapting
mismatching behaviours that components may exhibit.

A formal foundation for adaptation was set by Yellin

and Strom in their seminal paper (Yellin and Strom,

1997). There, they used finite state machines for speci-

fying component behaviours, and introduced formally

the notion of adaptor as a software entity capable of

letting two components with mismatching behaviour

interoperate.
The aim of this paper is to present a formal meth-

odology for behavioural adaptation, whose main as-

pects are the following.

1. Component interfaces. IDL interfaces are extended

with a description of the behaviour of the components.

Hence, an interface consists of two parts: A signature

definition (describing the functionalities offered and re-

quired by a component), and a behaviour specification
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(describing the interaction protocol followed by a

component). While signatures are expressed in the style

of traditional IDLs, behaviour specifications are ex-

pressed by using a subset of p-calculus (Milner et al.,

1992), a process algebra well-suited for the specification

of dynamic and evolving systems.
2. Adaptor specification. We present a simple notation

for expressing the specification of an adaptor intended

to feature the interoperation of two components. The

adaptor specification consists of a set of correspon-

dences between actions and parameters of the two

components. The distinguishing aspect of the notation is

that it produces a high-level, partial specification of the

adaptor. The meaning of the adaptor specification can
be formalised into a set of properties (expressed in p-
calculus), which constrains the automatic derivation of

correct adaptors.

3. Adaptor derivation. A concrete adaptor is fully

automatically generated, given its partial specification

and the interfaces of two components, by exhaustively

trying to build a component which satisfies the given

specification. The separation of adaptor specification
and derivation allows for automating the error-prone,

time-consuming task of generating a detailed imple-

mentation of a correct adaptor, thus simplifying the task

of the (human) software developer.

Component interfaces and the notation for adaptor

specifications are described in Section 2 and Section 3,

respectively. Section 4 describes automated adaptor

generation. An example in Section 5 illustrates the whole
methodology. Related work and concluding remarks are

discussed in Section 6.
2. Component interfaces

Component interfaces consist of a set of roles (Canal

et al., 1999). Each role is an abstract description of a
specific facet of the behaviour that the component plays

in its interaction with any other component it will be

related to. The specification of a role is divided into two

parts: (1) a description of the component at the signa-

ture level (as usually done by IDLs), and (2) a descrip-

tion of the component interactive behaviour:

role role Name¼ {

signature input and output actions

behaviour interaction pattern }

The signature interface of a role declares a set of in-

put and output actions, that is, the set of messages sent

and received by the role, representing the methods that

the component offers and invokes, the values or excep-
tions returned, etc. Differently from typical IDLs, not

only the services that the component offers to its envi-

ronment (i.e., its output actions), but also the services
required by the component (i.e., its input actions) are

explicitly indicated. Both input and output actions may

have parameters, representing the data exchanged in the

communication. Parameters can be typed, allowing for

type-checking, but for the purpose of this paper only

two different types are used: Data and Link. The latter
identifies link names which can be sent and received by

the component, and then used for interacting with its

environment, while Data refers to generic data (any-

thing but links).

The behaviour description of a role consists of what

we call an interaction pattern (Bracciali et al., 2001).

Intuitively speaking, an interaction pattern describes

the essential aspects of the finite interactive behaviour
that a component may (repeatedly) show to its envi-

ronment. These patterns are described by means of a

sugared subset of the polyadic p-calculus, in which

tuples, and not only single names, can be communi-

cated. The p-calculus, allowing link names to be sent

and received as values, has proved to be a very

expressive notation for describing the behaviour of

software components in applications with changing
interconnection topology. Interaction patterns are de-

fined as follows:

E ::¼0 | a.E | (x)E | [x¼y]E | E||E | E + E

a ::¼tau | x?(d) | x!(d)

Input and output actions are, respectively, repre-
sented by x?(d) and x!(d), where x is the link along

which the actions are performed and d is a tuple of

parameters (either links or data), sent or received along

x. Non-observable actions (also called silent actions) are

denoted by tau. Actions are composed in expressions

(processes), where 0 represents inaction. Restriction,

e.g., (x)E, represents the creation of a new link name x

in an expression E. The matching operator [x¼y]E is
used for specifying conditional behaviour: [x¼y]E

behaves as E if x¼y, otherwise as 0. Finally, non-

deterministic choice (+) and parallel (k) operators are

defined: E+E0 may proceed either to E or to E0, while
EkE0 consists of expressions E and E0 acting in parallel

but, differently from the standard p-calculus parallel

operator (j), not synchronising (only expressions of

different components may communicate).
Notice that interaction patterns do not contain

recursion, since they are intended to specify finite frag-

ments of the interaction as an abstract way of repre-

senting component behaviours. In order to show the

implications of this choice, consider, for instance, a

reader component R that sequentially reads a file. File

items are received via an action read?(x), the end-of-

file being represented by a special value EOF. Moreover,
the component may decide to break the transmission at

any time via an action break!(). Such a behaviour

would be expressed in full (recursive) p-calculus as:
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R¼read?(x).([x!¼EOF]R + [x¼EOF]0)

+ tau.break!().0

i.e., the component repeatedly presents a read? action

until either an EOF is received, or it decides (by per-

forming a tau action) to break the transmission. The

encoding of this behaviour as a (non-recursive) inter-

action pattern, I1, is:

I1¼read?(x).0 + tau.break!().0

where some aspects of the behaviour, like recursion and

the alternative after the read? action, have been ab-

stracted by projecting them over time, collapsing re-

peated actions into a single one.

Indeed, trying to describe all the aspects of the
behaviour of a distributed system in one shot unavoid-

ably leads to complex formulations of low practical

usability. Instead, we focus on descriptions of finite

concurrent behaviours, making the verification of

properties more tractable. In some sense, the choice of

considering simple non-recursive interaction patterns

resembles the introduction of types in programming

languages. Even if type checking cannot in general
guarantee the correctness of a program, it does eliminate

the vast majority of programming errors. Similarly, even

if the compatibility of a set of interaction patterns does

not guarantee the correctness of a concurrent system, it

can eliminate many errors in system assembly (Bracciali

et al., 2001).

A component may exhibit more than one role or

pattern. Consider the behaviour of a more complex
reader, RW, which writes to disk the received file, using

actions fwrite! and fclose!:

RW¼read?(x).([x!¼EOF]fwrite!(x).RW

+ [x¼EOF]fclose!().0)

+ tau.break!().fclose!().0

This behaviour can be partitioned into two indepen-

dent roles: One for reading files, I1, and the other one,

I2, for interacting with the file system:

I2¼tau.fwrite!(x).0 + tau.fclose!().0

Each role represents the reader from the point of view
of the component to which the role is connected, facil-

itating a modular representation and analysis of

behaviour. Indeed, I2 expresses the point of view of the

file system, for which the reader seems to freely decide

which action to output.
3. Adaptor specification

Adaptation is a hard problem which involves a large

amount of domain knowledge and may require complex
reasoning. Hence our approach aims at providing a

methodology for specifying the required adaptation

between two components in a general and abstract way.

In this section we will illustrate a simple, high-level

language for describing the intended mapping among the

functionalities of two components to be adapted. This
description will be used for the automatic construction

of an adaptor that mediates the interaction of the two

components.

We first observe that adaptation does not simply

amount to unifying link names. Consider for instance a

component P1 that requests a file by providing an url,

and a server Q1 that first receives the url and then re-

turns the corresponding file. Their interfaces are,
respectively:

role P1¼{

signature request!(Data url);

reply? (Data page);

behaviour request!(url).reply?(page).0

}

role Q1¼{

signature query?(Data handle);

return! (Data file);

behaviour

query?(handle).return! (file).0 }

The connection between request! and query?,

and between reply? and return! could be defined by

means of a substitution r:

r¼{ u/request, u/query, v/reply,

v/return }

which allows the interaction of both components through

links u and v. However, after applying the substitution,

the communication between Pr and Qr would be direct

and unfiltered, since they would share link names.

Unfortunately, this contrasts with encapsulation princi-

ples as, in general, one would like neither to modify the

components, nor to allow them to communicate directly,
by-passing the adaptor. Moreover, this kind of adapta-

tion can solve only renaming-based mismatching of very

similar behaviours. We are instead interested in adapting

less trivial mismatches where, for instance, reordering

and remembering of messages is required.

Hence, we represent an adaptor specification by a

mapping that establishes a number of rules relating ac-

tions and data of two components. For instance, the
mapping expressing the intended adaptation for the

previous example consists of the following two rules:

M1¼{ request!(url) <> query?(url);

reply?(file) <> return!(file); }

where as a convention, all the actions in the left hand side
refer to the first of the components being adapted (in this
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case P1), while those in the right refer to the second one

(here, Q1). The intended meaning of the first rule of M1 is

that whenever P1 performs a request! output action,

Q1 will eventually perform a corresponding query?

input action. Similarly, the second rule indicates that

whenever Q1 performs a return! action, P1 will
eventually perform a reply? action. The parameters

url and file explicitly state the correspondence among

data. Parameters have a global scope in the mapping, so

that every occurrence of the same name, even if in dif-

ferent rules, refers to the same parameter.

Intuitively speaking, the mapping M1 provides the

minimal specification of an adaptor that will play the role

of a ‘‘component-in-the-middle’’ between P1 and Q1,
mediating their interaction according to the given specifi-

cation. It is important to observe that the adaptor speci-

fication defined by a mapping abstracts away from many

details of the components behaviours. The burden of

dealing with these details is left to the (automatic) process

of adaptor construction, that will be described in Section 4.

For instance, the behaviour of an adaptor A1 satisfying the

specification given by the above mapping M1 is:

A1¼request?(url).query!(url).

return?(file).reply!(file).0

This adaptor will maintain the name spaces of P1 and

Q1 separated and prevent them from interacting without

its mediation. Observe that the introduction of such an
adaptor to connect P1 and Q1 has the effect of changing

their communication from synchronous to asynchro-

nous. Indeed, the task of the adaptor is precisely to

adapt P1 and Q1 together, not to act as a transparent

communication medium between them.

Mappings can be used to specify different important

cases of adaptation, as shown in the examples below.

Multiple action correspondence. While the previous
example dealt with one-to-one correspondences between

actions, adaptation may in general require relating

groups of actions of both components. For instance,

consider two components P2 and Q2 involved in an

authentication procedure. Suppose that P2 authenti-

cates itself by sending first its user name and then a

password. Instead, Q2 is ready to accept both data in a

single shot:

role P2 ¼ { signature usr!(Data me);

pass! (Data pwd);

behaviour usr!(me).pass!(pwd).0 }

role Q2 ¼ { signature login?(Data acc, pin);

behaviour login?(acc, pin).0 }

The required adaptation is specified by the mapping:

M2¼ {usr!(me),pass!(pwd) <>
login?(me,pwd);}
which associates both output actions of P2 to the single

input action of Q2. The mapping also illustrates the use

of parameters (viz., me and pwd) to specify which data

the adaptor must store for later use.

Actions without a correspondent. Adaptation must

also deal with situations in which some actions of a
component do not have a correspondent in the other

one. For instance, consider a component P3 that fea-

tures a printing service, waiting for requests for printing

a number of copies of a document by means of an action

printn?(doc,n), and another component Q3, which

issues print requests in two steps: One for setting the

number of copies, and one for actually printing the

document. Their interfaces are, respectively:

role P3¼{ signature printn?(Data doc, n);

behaviour (. . .) }
role Q3¼{ signature setCopies!(Data n);

print!(Data doc);

behaviour (. . .) }

A suitable mapping for connecting P3 and Q3 can be

defined as follows:

M3¼{ none <> setCopies!(n);

printn?(doc,n) <> print!(doc);}

The first rule of M3 indicates that the action set-

Copies! in Q3 does not have a correspondent in P3.

The keyword none is used to explicitly represent this

asymmetry between components.

Notice that in this example the situation is different

from that described for multiple action correspondence.

Indeed, the mapping M3 does not indicate whether Q3

will set the number of copies for each printing request,

or whether a single setCopies! action will be issued
for printing a given number of copies of several docu-

ments. However, a correct adaptor would be developed

in either situation, depending on the actual behaviours

of the two components (deliberately omitted in the

example), which will be used for generating the adaptor,

as we shall see in Section 4. Notice also that one could

enforce the number of copies to be set for each printing

request by specifying the mapping:

M30 ¼ { printn?(doc,n) <> setCopies!(n),

print!(doc); }

Indeed, M30 specifies a multiple action correspon-

dence so that the adaptor will ensure that Q3 will per-

form both a setCopies! and a print! output action
for each printing request accepted by P3 with a

printn? input action.

Non-deterministic action correspondence. A difficult

case for adaptation arises when the execution of a

component action may correspond to different alterna-
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tive actions to be executed by the other component. In

such cases, adaptation should take care of dealing with

many possible combinations of actions independently

performed by the two components. In order to feature a

high-level style of the specification of the desired adap-

tation, we allow non-determinism in the adaptor speci-
fication.

For instance, consider a component P4 sending a file

by means of repeated data! actions. Suppose also that

the corresponding reader component Q4 receives the file

with read? input actions, while it may also decide to

interrupt the transmission at any time by issuing a

break! action. Their interfaces are represented by the

roles:

role P4¼{ signature data!(Data n);

behaviour data!(n).0}
role Q4¼{ signature read?(Data m);break!();

behaviour read?(m).0 + tau.break!(). 0}

The required adaptation can be simply specified by
the mapping:

M4¼{ data!(x) <> read?(x);

data!(x) <> break!(); }

The adaptor derivation process will be then in charge

of building an adaptor capable of dealing with all the
possible specified situations. Once more, our goal is to

allow the adaptor specification to abstract away from

many implementation details, and to leave the burden of

dealing with these details to the (automatic) adaptor

construction process. The use of non-deterministic ac-

tion correspondences will be further illustrated in Sec-

tion 5.

Name passing. The special characteristics of mobility
which are present in the p-calculus allow for the creation

and transmission of link names which can be later used

for communication. Hence, we can address situations in

which the topology of the communication between

components is not necessarily static, but may change

over time. This determines that the signature interface of

a p-calculus interaction pattern is not fixed a priori (like

in other process algebras or in object-oriented environ-
ments), but instead it can be extended by link-passing.

For instance, consider a situation very similar to the

interaction described by components P1 and Q1. There,

we used predetermined links (reply/return) for the

return value of the request, but it is also possible to

indicate a newly created return link for each query:

role P5¼{

signature request!(Data url, Link reply) >

reply?(Data page);

behaviour (reply) request!(url,reply).

reply?(page).0}
role Q5¼{

signature query?(Data handle, Link ret) >

ret!(Data file);

behaviour query?(handle,ret).ret!

(file).0 }

Here, the situation is slightly different from that of P1

and Q1. Role P5 indicates that initially the component

presents an interface consisting only of the action re-

quest!. However, after performing this action, the

interface is enlarged with a new link name reply, which

must be also considered part of it. This fact is indicated

in the signature interface by using the operator �>’ (read
as ‘‘before’’) which explicitly represents the causal

dependency between the parameter sent in the action

request with the link used later for receiving the reply.

Symmetrically for Q5, the link name received as the
parameter ret in the query? input action will be used

later for sending the return value. The mapping for

connecting both components will be:

M5 ¼ {

request!(url,reply) <> query?(url,reply);

reply?(file) <> reply!(file); }
4. Adaptor derivation

In the previous section, we have presented a simple
notation for expressing a high-level specification of the

adaptation needed to let two mismatching components

interoperate. Given such a specification (mapping) M,

and the interaction patterns P and Q of two components,

a concrete adaptor (if any) is generated by means of a

fully automated procedure. Intuitively speaking, such

an adaptor will be a component-in-the-middle A such

that:

(1) The parallel composition P|A|Q will not deadlock,

and
(2) A will satisfy all the action correspondences and data

dependencies specified by M.

Space limitations do not allow us to present here the
algorithm for adaptor derivation in full details. We shall

however summarise the essence of the algorithm w.r.t.

points (1) and (2) above.
4.1. Deadlock elimination

The algorithm for adaptor generation has been ob-

tained as a specialisation of the algorithm we developed
(Bracciali et al., 2001) for checking the ‘‘so-far correct-

ness’’ of open contexts of components. Such algorithm,

given two patterns P and Q, returns a completion process
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A (if any) such that the parallel composition P|A|Q will

not deadlock.

To achieve (1), the algorithm tries to incrementally

build a completion A by progressively eliminating all the

deadlocks that may occur in the evolutions of P|A|Q.

Because of its inherent non-deterministic nature, the
construction has been naturally implemented in Prolog.

The algorithm is basically a loop which keeps track of

the completion A constructed so far, as well as of the

last action added to A. While the parallel composition

P|A|Q is not deadlock-free, the algorithm tries to ex-

pand A with an action that will trigger one of the

deadlocked states. Two cases are distinguished depend-

ing on whether P|A|Q may deadlock or not after exe-
cuting the last action included in the completion.

(a) If P|A|Q may deadlock after executing action
last, then an action a capable of triggering one

of those deadlocked states is non-deterministically

chosen (if any), and used to expand the completion

as one of the possible actions following last. The

construction process continues, being now a the

last action included in the completion.

If there is no suitable triggering action, or if P|A|Q

may both deadlock and succeed after executing action
last, 1 then the algorithm backtracks to the state

preceding the insertion of last in A.

(b) P|A|Q may deadlock, but no deadlock may occur

after executing action last of the completion. In

this case, there is no point in trying to expand fur-

ther the completion ‘‘after’’ last. The algorithm

hence tries to continue by considering the action

that precedes last as the new last action.

To grasp the idea of how the algorithm works, con-

sider for instance the simple case of the pattern

P¼a!().(tau.b!().0+tau.c!().0) and let
Q¼0 for simplicity. The completion is initially empty

and the parallel composition P|Q is stuck. Case (a)

applies, and action a?() can be chosen to trigger the

context, hence yielding the partial completion

A¼a?().0 and setting last to a?(). The new

context P|(a?().0)|Q presents now two deadlocks,

both of them occurring after executing action last.

Case (a) applies again, but there are now two possible
triggers, namely b?() and c?(). Suppose that the

algorithm (non-deterministically) chooses b?(), hence

expanding the completion into A¼a?().b?().0,

being b?() the new last. The new context

P|(a?().b?().0)|Q may still deadlock, but no

deadlock may occur after executing last (viz., b?()).

Case (b) then applies and the algorithm checks whether

deadlocks may occur after executing a?(). This is in-
1 Indeed in the latter case any attempt to extend A with a new action

‘‘after’’ last would spoil those successes––see example below.
deed the case, hence the algorithm selects the only

possible trigger c?() and adds it as a further choice

after a?() in the completion, which now becomes

A¼a?().(b?().0+c?().0)

The algorithm then terminates (as there are no other

deadlocks in P|A|Q) and returns the constructed com-

pletion A.

To understand why the algorithm backtracks in case

(a) when there is both a success and a deadlock after

last, it is enough to consider the pattern

P¼(a!().b!().0+a!().0), and let again Q¼0

for simplicity. It is easy to see that the only possible

trigger a?() introduces both a successful and a dead-

locked trace. But now no action can be added after

a?(), as it would spoil the success. The algorithm will

then backtrack and fail as there is no process A such that

P|A|Q will not deadlock.
4.2. Mapping satisfaction

In order to derive adaptors, rather than simply com-

pletions, the algorithm of (Bracciali et al., 2001) needed to

be specialised so as to take into account the constraints

specified by the mapping. Basically this amounts to suit-

ably constrain the way in which triggering actions are

chosen during the incremental construction of the adaptor.

Technically this is done by exploiting the properties
defined by the mapping, which define a set of constraints

on the possible actions that the adaptor may perform at

each moment. Each property is expressed as a p-calculus
process, where actions are represented from the point of

view of the adaptor, and combined according to the data

dependencies implicitly stated by the corresponding

mapping rule.

For instance, consider again the mapping M1. Its first
rule indicated a one-to-one correspondence between

actions request! and query?. Formally, this prop-

erty can be represented by the following process:

R1¼request?(url).(query!(url).0||R1)

+ tau.0

stating that whenever the adaptor performs a re-

quest? input action, then it will have to eventually

perform a corresponding query! output action.

Moreover, according to the data dependencies induced

by parameters in the mapping rule, the adaptor should

not perform an output action query!(url) until the

requested url is received by means of the corresponding

input action request?(url). Finally, the process
may eventually end via an internal tau move. Notice

how the property refers to the point of view of the

adaptor, not of the components. Thus, the sign (input/
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output) of the actions in the property is complementary

with respect to the mapping.

When trying to solve an existing deadlock in P|A|Q,

the algorithm may extend the current adaptor by

choosing an action which is capable of triggering the

deadlock while respecting the given properties. Consider
for instance the patterns:

P1¼request!(url).reply?(file).0

Q1¼query?(q).return!(r).0

along with mapping M1, which is represented by the

properties:

R1¼request?(url).(query!(url).0||R1)

+ tau.0

R2¼return?(file).(reply!(file).0||R2)

+ tau.0

The adaptor is initially empty, and the algorithm tries
to extend it with an action capable of triggering the

deadlocked composition P1|Q1. While both a re-

quest? and a query! action would trigger P1|Q1,

only the former can be selected since the latter does not

respect the expected behaviour specified by the proper-

ties. The algorithm then considers the new context

P1|(request?(url).0)|Q1 along with the prop-

erties updated according to the selection made:

R10 ¼query!(url).0||R1

R2¼return?(file).(reply!(file).0||R2)

+ tau.0

The new context is still deadlocked and it might be

triggered by both a reply! and a query! action. As
the former does not respect properties R10 and R2, only
the latter can be added to the current adaptor. Hence the

algorithm will consider the new context P1|(re-

quest?(url).query!(url).0)|Q1 along with

properties R1 and R2 again. The construction will then

continue similarly until all deadlocks will have been

eliminated, while satisfying the properties imposed by

the mapping. The returned adaptor will be

A¼request?(url).query!(url).

return?(file).reply!(file).0
5. An example of adaptation

We illustrate now an example of application of the

whole methodology. The problem to be solved regards

the adaptation needed to support a typical FTP trans-

mission in which a file is sent by a server to a client, when
the two parties employ different protocols. Simplified in

some aspects, the example shows only the relevant de-

tails, while hopefully keeping its realistic flavour.
In order to make a modular specification of the

problem, we will use two roles for each component.

First, we will describe the interaction for creating and

closing a FTP session, and also for requesting a file

transmission. Second, we will describe the details of file

transmission using a separate pair of roles.
Each role-to-role connection needs a different map-

ping, from which a corresponding adaptor will be pro-

duced. The first pair of roles, IServer and IClient,

describe the interface of the server and the client

regarding the use of FTP commands.

role IServer¼{

signature open?(Link ctl);

user?(Data name,pwd, Link ctl);

put?(Data fn, Link ctl);

get?(Data fn, Link ctl);

close?(Link ctl);

behaviour open?(ctl).user?(name,pwd, ctl).

(put?(fn,ctl).close?(ctl).0

+ get?(fn,ctl).close?(ctl).0

+ close?(ctl).0))}

Role IServer indicates how, for opening a session,

a socket (here named ctl) must be provided. This

socket will be used both for identifying the source FTP
commands (allowing thus multiple parallel sessions),

and also for data transmission, as it will be shown in the

second part of the example. Once the connection is

opened, clients must authenticate themselves with a

name and password. Then, put and get commands for

file transmission can be issued. Finally, the connection

can be ended with close.

role IClient¼{

interface login!(Data usr);

pass!(Data pin);

getfile!(Data file);

logout!();

behaviour login!(usr).pass!(pin).

getfile!(file).logout!().0}

On the other hand, the role IClient specifies that

the client connects with a login message, followed by a

password in a separate message (however no control

socket is provided). Then, the client will ask for a certain

file, and finally log out.

Despite the different behaviours of the two compo-

nents, their adaptation can be simply specified by the
following mapping:

MA¼{ login!(usr), pass!(pin)

<> open?(ctl)user?(usr,pin,ctl);

getfile!(file) <> get?(file,ctl);

logout!() <> close?(ctl); }

The first rule of MA establishes the intended corre-

spondence between log-in actions in both components,

while the second rule adapts the file transmission com-
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mands. The third rule describes the correspondence be-

tween the log-out actions. The mapping also uses action

parameters to specify data dependencies among different

actions.

Starting from an action login?(usr), the explo-

ration of the derivation tree for constructing the adaptor
is mainly guided by the behaviour described in IC-

lient. As shown in Section 4, once an action on which

IClient is deadlocked is matched by the adaptor, the

mapping will trigger the matching of the corresponding

action(s) in IServer, yielding in the end the adaptor:

AA¼login?(usr).pass?(pin).

(ctl)open! (ctl).user!(usr,pin,ctl).

getfile?(file).get!(file,ctl).

logout?().close!(crtl).0

Notice that, even if the actual action ordering of the

components’actions is not specified in the mapping, the

exploration of the derivation tree of the two components

implemented returns an adaptor which will enable both

components to interoperate successfully, while at the

same time respecting the mapping MA.

Let us now consider the file transmission phase.
Typically, the server will create a separate thread (dae-

mon) for the transmission of the file. In order to model

this facet of the interaction, another pair of roles is used,

IGetDaemon and IGettingFile.

role IGettingFile¼{

interface read?(Data x);

break!();

behaviour read?(x).0 + tau.break!().0 }

role IGetDaemon¼{

interface ctl!(Link data, Link eof) >
data!(Data x), eof!();

behaviour (data,eof)ctl!(data,eof).

(tau.data!(x).0 + tau.eof!().0)}

The mapping for adapting both roles will be:

MB¼{ none <> ctl!(data,eof);

read?(x) <> data!(x);

read?(EOF) <> eof!();

break!() <> data!(y);

break!() <> eof!(); }

Its first rules establishes that server action ctl! does

not have a correspondent in the client, reflecting the fact

that while the server creates specific control links for

each file transmission, the client uses fixed, predefined

links for the same purpose.

Then, the second rule indicates that the reading of (a

fragment of) a file is called read? in the client, while the
corresponding action in the server is data!. However,

the server may indicate at any moment the end of the file

by sending an eof!(), while the client does not have a

corresponding action. This mismatch is solved in the
third rule by letting the adaptor forge a special value,

EOF, and send it to the client, allowing the client role to

terminate successfully.

In addition, the client can decide to break the trans-

mission at any moment by sending a break!() mes-

sage. This situation is slightly more difficult to adapt,
since the server could not be able to react to such a

message, being already engaged in transmitting a frag-

ment of the file (data!(x) action), or in signalling the

termination of the transmission (eof!()). Moreover,

in this case the one-to-one correspondence between ac-

tions read?(x) and data!(x) expressed by the sec-

ond rule of the mapping would be violated. However,

the mismatch can be adapted by mapping client’s
break!() to both read!(x) and eof!() of the

server as indicated by the last two rules of the mapping.

Notice that the mapping above specifies action cor-

respondences in a non-deterministic way. Its last two

rules state that the execution of the break! action may

correspond to either a data! action or to a eof! ac-

tion on the server side. Similarly, the second and fourth

rule specify that the execution of a data! operation by
the server may match either a read? or a break!

operation performed by the client.

It is important to observe again that allowing non-

deterministic correspondences in the mapping features a

high-level style of the specification of the desired adap-

tation. While the mapping simply lists a number of

possible action correspondences that may arise at run-

time, the adaptor derivation process is in charge of
devising the actual adaptor able to suitably deal with all

the possible specified situations.

Let us detail some of the steps of the construction of

the adaptor for these two roles (to simplify the reading,

we shall not list explicitly the properties derived from the

mapping). Initially, the only possible trigger is the action

ctl?(data,eof). Once this action is chosen, we have

four actions in which the roles are deadlocked: data!,
eof!, read?, and break!. Suppose that the first se-

lected for matching is eof!––the file is empty––, yielding

the adaptor:

AB¼ctl?(data,eof).eof?().0

At this point, following the mapping, the adaptor is
expanded with the action read!(EOF), so as to for-

ward the EOF message to the client.

AB¼ctl?(data,eof).eof?().

read!(EOF).0

No more deadlocks can occur after executing
read!(EOF) but the adaptor construction is not

complete yet. For instance the client may autonomously

decide to send a break!() before receiving any data

from the server. The construction therefore continues by
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extending the adaptor with a branch capable to treat

such a situation:

AB¼ctl?(data,eof).eof?().

(read!(EOF).0 + break?().0)

Again, no deadlocks can occur after executing

break?() but the process continues in order to com-

plete the construction of the adaptor by building all the

other needed alternatives, and finally returning the

adaptor:

ctl?(data,eof).

(eof?().(read!(EOF).0 + break?().0)

+ data?(x).(read!(x).0 + break?().0)

+ break?().(data?(x).0 + eof?().0)

which adapts the roles IGettingFile and IGet-

Daemon respecting the mapping MB.
6. Concluding remarks

The main aim of this paper is to contribute to the

definition of a methodology for the automatic develop-

ment of adaptors, capable of solving behavioural mis-

matches between heterogeneous interacting

components. Our work falls in the well-settled research
stream which advocates the application of formal

methods to describe the interactive behaviour of soft-

ware systems. More specifically, we carry on the ap-

proach of enriching component interfaces with

behavioural description for facilitating system analysis

and verification in general (Inverardi and Tivoli, 2001;

Magee et al., 1999; Najm et al., 1999) and behavioural

mismatching detection in particular (Allen and Garlan,
1997; Canal et al., 2001; Compare et al., 1999), to cite

but a few of the more closely related works. A distin-

guish feature of our approach consists of the adoption

and use of a process algebra, namely a dialect of p-cal-
culus, which allows for the automatic verification of a

rich set of properties of interacting systems, mainly for

what concerns the compatibility of component proto-

cols.
Several proposals for extending IDLs with behavio-

ural aspects are based on finite state machines, like, for

instance (Yellin and Strom, 1997; Magee et al., 1999;

Cho et al., 1998). The main advantage of finite state

machines is that their simplicity supports a simple and

efficient verification of protocol compatibility. However,

such a simplicity is a severe expressiveness bound for

modelling complex open distributed systems.
Process algebras feature more expressive descriptions

of protocols, enable more sophisticated analysis of

concurrent systems (Inverardi and Tivoli, 2001; Najm et

al., 1999; Allen and Garlan, 1997; Moore et al., 1999),
and support system simulation and formal derivation of

safety and liveness properties, as also illustrated by the

use of p-calculus for describing component models like

COM (Feijs, 1999) and CORBA (Gaspari and Zavatt-

aro, 1999), and architecture description languages like

Darwin (Magee et al., 1995) and LEDA (Canal et al.,
1999).

However, the main drawback of using full-fledged

process algebras for software specification is related to

the inherent complexity of their analysis. In order to

manage this complexity, the previous work of the au-

thors has described the use of modular and partial

specifications, by projecting behaviour both over space

(roles) (Canal et al., 2001) and over time (finite inter-
action patterns) (Bracciali et al., 2001), so as to ease

automatic property verification. In this work we use a

combination of both approaches.

A number of practice-oriented studies have analysed

different issues encountered in (manually) adapting a

third-party component for using it in a (possibly radi-

cally) different context (e.g., see Ducasse and Richner,

1997; Garlan et al., 1995; Wallnau et al., 2001). Besides,
the problem of software adaptation was specifically

addressed by the work of Yellin and Strom (1997),

which constitutes the starting point for our work. They

use finite state grammars to specify interaction protocols

between components, to define a relation of compati-

bility, and to address the task of (semi)automatic

adaptor generation. Some significant limitations of their

approach are related with the expressiveness of the
notation used, i.e., the impossibility of representing

internal choices, parallel composition of behaviours,

creation of new processes, and the dynamic re-organi-

sation of the communication topology of systems, a

possibility which immediately becomes available when

using the p-calculus. Also, the asymmetric meaning they

give to input and output actions makes it necessary their

use of ex-machina arbitrators for controlling system
evolution. Finally, their mappings establish only one-to-

one relations between actions, while our proposal ad-

dress the issues of correspondence between actions,

parameter storage and rearrangement in a more general

setting.

A different approach is that of Wermelinger and Fi-

adeiro (1998), where software composition is addressed

in the context of category theory. The connection be-
tween components is done by superposition, defining a

morphism between actions in both components. Mor-

phisms are similar to our mappings, though the kind of

adaptation provided is more restrictive: They cannot

remember previous actions or data, nor adapt different

behaviours at the protocol level, limiting adaptation to a

kind of name translation similar to that provided by

IDL signature descriptions.
As it results from the comparison with significant

related works appeared in the literature, and from the
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representative set of examples shown in this paper, our

approach improves the capabilities of adapting compo-

nents by combining expressiveness and effectiveness in a

formally grounded methodology. Several promising

lines of future research suggest to extend the framework

for addressing issues like: Multiple-role adaptation,
recovery strategies for adaptor construction failures,

such as relaxing mapping constraints or devising partial

adaptors, and the integration of the methodology in

CBSE development tools.
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