
A Formal Approach to Nonlinear Analog Circuit Verification

Lars Hedrich                                       Erich Barke

Institute of Microelectronic Systems
Department of Electrical Engineering

University of Hanover, D-30167 Hanover, Germany
E-mail: hedrich@ims.uni-hannover.de

Abstract It indicates whether two systems are functionally similar
or not. An explicit error measure is given.

This contribution presents an approach to nonlinear
dynamic analog circuit verification. The input-output
behavior of two systems is analyzed to check whether
they are functionally similar. The algorithm compares
the implicit nonlinear state space descriptions of the two
systems on the same or on different levels of abstraction
by sampling the state spaces and by building a nonlinear
one-to-one mapping of the state spaces. Some examples
demonstrate the feasibility of our approach.

In Section II the basic concepts of our approach are
described. Section III deals with  details of the algo-
rithms. Examples are presented in Section IV, followed
by a comparison with transient analysis in Section V.
Finally, we conclude in Section VI.

II. Basic concepts

A. State space description

A large class of nonlinear dynamic single input single
output (SISO) circuits can be described by a set of
implicit nonlinear time-invariant first order differential
equations:

I. Introduction

Formal verification is an attractive alternative to
simulation. Up to now it is only discussed for digital
circuits [3]. In this contribution we propose a formal
approach to verification of nonlinear dynamic analog
integrated circuits.
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is denoted by bold printing) and u(t) and y(t) describe
input and output signals, respectively.

In contrast to digital logic analog circuits are continu-
ous in signal values and time. Moreover, it is not useful
to check the identity of the circuits, because the parame-
ters of the circuits are continuous and even a very small
deviation in one parameter may lead to a negative verifi-
cation result. Due to this fact formal verification of
analog circuits has to be defined in its own fashion:

The nonlinear functions φφ,γ  can be implicitly repre-
sented by a vector field &x  and a scalar field y in the state
space which is extended by the input u. In the following,
we will name the state space which is extended by the
input extended state space.

Formal verification of analog circuits checks
whether two circuits are functionally similar with
respect to their input-output behavior.
Verification is valid for all input signals.

We consider two systems in an implicit nonlinear
state space description of type (1). The objective of our
approach to verification is to determine that the vector
fields & ( )x xA A ,u , & )x xB B( ,u  and the scalar fields y ,uA A( )x ,
y ( ,uB Bx ) representing the functions φφA ,γ Α  and φφB,γ Β  of
the systems A and B are similar. Note that the vector and
scalar fields can numerically be found by evaluating the
implicit functions φφ,γ  at discrete points. If two systems
have the same internal state variables, a straightforward
comparison of their vector fields & , &x xA B  and their scalar
fields y , yA B  is sufficient to determine that the systems
are equal.

In this paper we propose an algorithm for formal
verification of nonlinear dynamic analog circuits. The
circuit representation is given as a system of nonlinear
differential equations. Therefore, it is possible to
compare circuits on the same level of abstraction as well
as on different levels, e.g. SPICE netlists versus analog
behavioral models. Verification is done by iterative
comparison of implicit state space descriptions.
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for  every input value in predefined range
In general, two systems do not have the same internal

state variables because they represent different imple-
mentations on maybe different levels of abstraction. In
this case, the method described above is not able to
identify systems with similar input-output behavior. We
consider the following two systems:

begin

do DC analysis in order to get an initial state
vector

for  every sample point in the state space in
predefined ranges
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fy (error of the output scalar field)

adjust xA
(procedure explained in Section III C.)

calculate new state vectors for next sample
point (procedure explained below)

end
end

Figure 1: Systems with different state encoding if  f
&x , fy  for all sample points < error margin

then systems are functionally similar
The two systems A and B are equal with respect to

their input-output behavior: φφB,γ Β  can be derived from

φφA ,γ Α  using x xA B
3= . However, the differential equations

and the vector and scalar fields are different (see Figure
1). Therefore, a one-to-one mapping ′ =x xA At( )  has to be
found which uniquely maps the state vector xA  upon the
state vector ′xA . After this mapping the vector field & ′xA

in the extended state space of system A can be compared
to the vector field &xB. For this example using ′ =x xA A

1
3

leads to two identical vector fields & ′xA  and &xB like that
in Figure 1b. The same result can be obtained for the
scalar fields yA  and yB .

Two loops are necessary to sample the extended state
space. In the outer loop a DC analysis is required
because the operating point is used as an initial state
vector. The inner loop starts with the computation of
linear mapping matrices TA  and TB for the actual
sample point using a linearized state space description,
because only for linear systems a canonical representa-
tion and a corresponding mapping can be found (see
Section III B.). The mapping matrices TA  and TB are
used to calculate a state vector for the next sample point
by adding a finite distance ∆ ′x  multiplied by T−1 to the
actual sample point:

x T x x T xA new A
1

A Bnew B
1

B= ⋅ ′+ = ⋅ ′+− −∆ ∆x , x . (2)

Note that we use italics to denote linearized values valid
only for the actual sample point. In Figure 2 a computa-
tion of xA new for a system having only one state variable
is shown.

III. Algorithm

A. Sampling the state space

The vector and scalar fields in the extended state
space of the two systems are compared by sampling the
extended state space and comparing the fields at every
discrete sampling point (see similar sampling method in
system identification [1]). The boundaries of the
extended state space are determined by the maximum
excitation of the state variables and the input. This leads
to a finite set of points at which a comparison has to be
carried out. The basic verification algorithm reads as
follows:

By iterative evaluation of the equation (2) the
complete nonlinear discrete mappings

′ =x xA A At ( ) ,             ′ =x xB B Bt ( )

are constructed point by point while stepping through the
state space. This leads to a mapping which has a little
deviation from the unknown exact mapping function
shown in Figure 2 by a solid line. Therefore, the sample
point xA  is adjusted after the error is calculated
(described in Section III C.).
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The corresponding algorithm reads as follows:

Determine Linear Mapping Matrices TA  and TB

linearize systems A and B at the sample point

calculate the state space descriptions:
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Figure 2: Computation of xAnew and generation of

the mapping of ′ =x xA A At ( )
calculate the sorted Jordan-form: ′ ′ ′ ′A b cA A A

T
A, , ,d ;

′ ′ ′ ′A b cB B B
T

B, , ,d  and the corresponding
transformation matrices: TA  and TBTo answer the basic question, whether the two

systems are functionally similar at each point the error
evaluation is done. The errors are defined as follows:

if  the number of eigenvalues is not the same

then reduce the system having more eigenvalues
by skipping the n largest negative eigenvalues

f f y yA A B B y A B&

& &x T x T x= ⋅ − ⋅ = −,
scale transformation matrices according to

T b T bA A
!

B B⋅ = ⋅The first error corresponds to the deviation of φφA  and φφB,
respectively, the second one to γ Α  and γ Β  at the actual
sample point. An overall error can be found by calculat-
ing a mean value over all sample points.

C. Adjusting the operating point

During the iterative construction of the nonlinear
mapping ′ =x xA A At ( ) and ′ =x xB B Bt ( )  a small error in the
calculated sample points xA  and xB adds up to a large
error (see the dots in Figure 3).

B. Obtaining the state vector transformation

It is impossible to calculate the nonlinear mapping
′ =x xA At( )  and ′ =x xB Bt( )  directly from the nonlinear

system functions φφA  and φφB. However, a mapping in a
particular sample point can be calculated by linearizing
the systems. For a linear system in a state space descrip-
tion a canonical form can be found, e.g. the Jordan form
of the system matrix A. To obtain a unique mapping of
each state variable from one system to the other the
Jordan form has to be sorted according to the magnitude
of the eigenvalues. Here, only unique eigenvalues are
permitted leading to sorted diagonal system matrices.
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Figure 3: Unadjusted (•) and adjusted (♦) computation
of the mapping ′ =x xA A At ( ) for a system
having only one state variable

A transformation matrix T can be calculated which
transforms the system matrices and the state vectors
according to:

′ ⋅ = ⋅ ′ = ⋅A T T A T, x x
An iterative adjustment algorithm avoids this problem

using the condition f A A B B

!
&

& &x T x T x= ⋅ − ⋅ = 0 to adjust

xA  by an modified Quasi-Newton optimization method
[7]. The condition holds, because, assuming that the
functions φφA  and φφB are equal in the sense of the above
definition, a difference between the vectors & ′xA  and & ′xB

indicates a difference between the corresponding state
vectors xA  and xB. The adjusted operating point xA adj,

meets the exact mapping function marked in Figure 3 by
diamonds.

A sorted Jordan matrix A´ and its corresponding trans-
formation matrix T are set up for each system. Different
scales of the state vectors are eliminated by the follow-
ing relation:

T b T bA A
!

B B⋅ = ⋅

If the resulting systems have different order the n
largest negative eigenvalues are skipped which ensures,
that the comparison is still possible [2]. These skipped
eigenvalues should have no influence on the input-output
behavior.



IV. Examples Circuit
description

Relative errors

The algorithm is implemented using the symbolic
math package Maple V [6]. A netlist translator from
SPICE netlists is applied to handle arbitrary analog
circuits on transistor level. Additionally, a hardware
description language using the syntax of Maple V has
been developed in order to provide a comparison of
behavioral descriptions. Due to the prototype
implementation and the exclusive use of Maple V the
CPU times of the algorithm are still high. A future more
efficient implentation will reduce them drastically.

Mean values Maximum values
fx& fy $

&

fx
$fy

Equal 0 % 0 % 0 % 0%
Different

gate capacity
18 % 72 % 66 % 200 %

Diff. thresh.
voltage

0 % 44 % 0 % 200 %

Table 1: Relative errors of the verification of CMOS
inverter circuitsAs a first example we consider the two nonlinear

differential equations:
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Using the substitution x arctanh(x )A B=  the equality of
these systems can be shown. In Figure 4 the relative
errors fx&  and fy  obtained by the verification procedure

are shown in the extended state space of system A. The
stepsize between the sample points in x and u direction is
0.01 and 0.4, respectively, the boundaries of the
extended state space are predefined by -2 < x < 2, 0 < u
< 2. The sample points are connected by a grid. With
this stepsize the algorithm achieves relative errors below
2 %, further reduced stepsize leads to smaller errors.

100%

0
-40%

-2
-1

2
x

f

u

40%

1

1

2

x
.

A 

100%

0

-40%

-2
-1

2
x

f

u

40%

1

1

2

y

A 

a) b)

Figure 6: Relative errors a) fx& , b) fy  and absolute errors

c) fx& , d) fy  for the verification of the

operational amplifiers
Figure 4: Relative errors a) fx&  and b) fy of the

differential equations Finally, a comparison of a CMOS operational ampli-
fier consisting of eight MOS transistors versus a behav-
ioral description is presented. The behavioral description
models slew rate, gain bandwidth product and limitation
to the supply voltages. In Figure 6 the relative errors fx& ,
fy  are shown in the extended state space. The verifica-

tion is performed in the ranges -2.5V < x < 2.5V,
0V < u < 2.0 10-6⋅ V.

The second example deals with a CMOS inverter
circuit shown in Figure 5.

u y

VDD

The large relative error of fx&  in the small area near
the DC solution results from the small values of &x  near
the dynamic equilibrium (see Figure 6a). In the
remaining area the relative error of fx&  is near 0% indi-
cating a very good correspondence in dynamic behavior.
The absolute error of fx&  is constant at 40 V/s resulting
from a slight difference  in pole locations (see Figure
6c). A large relative error of fy  appears near the point

x = 0V belonging to an output voltage of y = 0V (see

Figure 5: CMOS inverter schematic

In Table 1 the verification results of two equal
inverter circuits and two further ones having different
parameters are presented. The results show that a
difference in the dynamic behavior, e.g. different gate
capacities, leads to an error in the state vector derivatives
fx&  as well as to an error in the output values fy .



Figure 6b). It is caused by a small absolute error of fy

near y = 0V indicating a difference in the nonlinear DC
transfer curve (see Figure 6d).

regions of the state space many points are evaluated
several times leading to much wasted simulation time.

In contrast to simulation our approach visits each
point only once (see Figure 8b). Additionally, the plane
is completely covered. The drastically reduced number
of visited points implies that our approach is faster than a
transient analysis. The complete coverage leads to more
reliable results compared to transient analysis.

Taking these facts into account and considering the
mean values of the relative errors: fx&  = 16.4% fy  =

19.7%, the verification process shows that the
operational amplifiers are identical with little deviations
in DC behavior and pole locations.

VI. ConclusionV. Comparison to transient analysis

In this contribution, a formal approach to nonlinear
analog circuit verification has been presented. It is based
on comparing the implicit nonlinear state space descrip-
tions of two systems with the aid of a nonlinear one-to-
one mapping between the state spaces of the systems.
Examples from simple equations up to a verification of a
CMOS operational amplifier versus a behavioral model
demonstrate the feasibility of the method.

We consider a transient analysis of a system with one
state variable, e.g. a nonlinear R-C circuit.
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