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Abstract

The debate about efficient methods for hardware-
software co-design has taken interesting turns over the
years. In this paper, we argue that the essential prob-
lems to solve are prior to the decision on how to par-
tition the system in hardware-software. We present a
formal Platform-based design method we have proposed
over the years and a design environment, Metropolis,
supporting the methodology, which starts by capturing
the design specifications at the highest level of abstrac-
tion and then proceed toward an efficient implementa-
tion by subsequent refinement steps.

We present the modeling strategy used in Metropo-
lis based on formal semantics that is general enough
to support the models of computation proposed so far
and that facilitates the creation of new ones. Non-
functional and declarative constraints can also be cap-
tured using a logic language.

1 Introduction

A well-structured design flow must start by captur-
ing the design specifications at the highest level of ab-
straction and proceed toward an efficient implemen-
tation. The critical decisions are about the architec-
ture of the system (processors, buses, hardware accel-
erators, memories, and so on) that will carry on the
computation and communication tasks associated with
the overall specification of the design. In a formalized
platform-based design methodology [5, 8, 2] this design
process is segmented into a series of similar steps. The
principles at the basis of each step consist of hiding
unnecessary details of an implementation, summariz-
ing the important parameters of the implementation
in an abstract model, and limiting the design space ex-
ploration to a set of potential platform instances. The
design process is a meet-in-the-middle approach where

the refinement from specification toward implementa-
tion is matched against a library of components whose
models are abstractions of possible implementations.
The process is complemented by a careful specifica-
tion and identification of the communication mecha-
nism that simplifies design reuse.

The Metropolis environment supports platform-
based design in a unified framework. The idea is to
provide an infrastructure based on a model with formal
semantics that is general enough to support the models
of computation proposed so far and that facilitates the
creation of new ones. The model, called meta-model for
its characteristics, can be used to capture and analyze
the desired functionality, as well as to describe an archi-
tecture and the associated mapping of the functionality
onto the architectural elements. Since the model has
formal semantics, it can be used to support a number of
synthesis and formal analysis techniques in addition to
simulation. Non-functional and declarative constraints
can also be captured using a logic language.

This paper presents a summary of the formal as-
pects of platform-based design and of the Metropolis
infrastructure. We then focus on the basic structure
of the meta-model, and define its semantics in terms
of a formalism based on automata. Finally we de-
scribe the way denotational constraints are captured
with a particular language called Language of Con-
straints. Metropolis is pretty unique in the landscape
of system level design tools and environments avail-
able today because of the methodology it supports, its
modeling strategy that allows to represent vertical and
horizontal heterogeneity in a rigorous way, the capa-
bility of dealing with physical quantities and of mixing
operational and denotations specifications.

Other frameworks provide languages for system level
exploration. Ptolemy [1], SystemC [4] and SpecC [3]
are all system-level modeling languages or frameworks,
bearing several superficial similarities to the meta-
model, since all share the notion of concurrent pro-
cesses communicating through channels. However,



they lack features that are necessary to orthogonal-
ize functionality and architecture, such as the mapping
between functional and architectural networks, or be-
tween different refinement levels. Secondly, they lack
the ability to explicitly represent constraints. Finally,
the use of the semantics of the underlying C/C++ lan-
guage (in particular pointers) hinders automated syn-
thesis and optimization.

Tools from Arexsys, Foresight, Artisan, and Card-
Tools are very close in spirit and implementation to
Metropolis. They all use a separation between func-
tionality and architectural resources, and they all use a
mapping to derive performance information. Of those,
only ArchiMate from Arexsys has the capability to
model system functionality using a formal language,
SDL, while the others use C or C++. SDL, however, is
a good modeling language for a specific class of systems
like telecommunication protocols, but it lacks expres-
sive power when it comes to modeling other aspects,
such as digital signal processing and multi-media.

Commercial hardware/software co-verification tools
from other companies (e.g. Mentor, Vast, Virtio and
Axys) are essentially Instruction Set Simulators, linked
to various hardware simulators. They provide func-
tional and performance models for software-dominated
embedded systems, but do not tackle the issues of high-
level modeling of hardware, of separation of concerns,
and of refinement. In particular, building a new plat-
form model is an expensive and time-consuming task.
Also setting up a performance simulation and various
design space exploration activities, such as assigning
a function to a task or using a different peripheral
for a given hardware acceleration, are time-consuming
operations. Simulating functional models annotated
with performance information, as in Metropolis, is
much easier but usually less precise. In practice, co-
verification of this kind can be targeted as back-ends
by Metropolis.

2 Platform-Based Design Theory

We can describe the process of platform-based de-
sign in general terms by identifying an abstraction layer
by a set of computation components, called agents, and
an operation of (parallel) composition that embodies
the appropriate communication semantics among the
agents. This approach has been developed in the the-
ory of Agent Algebra [6]. This simple structure can
be used to formally describe the process of successive
refinement in a platform-based design methodology,
where refinement is interpreted as the concretization of
a function in terms of the elements of a platform. The
process of design consists of evaluating the performance

of different kinds of instances in the platform by map-
ping the functionality onto its different elements. The
implementation is then chosen on the basis of a cost
function. We use three distinct domains of agents to
characterize the process of mapping and performance
evaluation. The first two are used to represent the
platform and the function, while the third, called the
common semantic domain, is an intermediate domain
that is used to map the function onto a platform in-
stance.

A platform, depicted in n the right, corresponds to
the implementation search space.

Definition 2.1 A platform consists of a set of ele-
ments, called the library elements, and of composition
rules that define their admissible topologies of inter-
connection.

To obtain an appropriate domain of agents to model a
platform, we start from the set of library elements D0.
The domain of agents D is then constructed as the clo-
sure of D0 under the operation of parallel composition.
In other words, we construct all the topologies that are
admissible by the composition rules, and add them to
the set of agents in the domain. Each element of the
architecture platform is called a platform instance.

A domain of agents D can then be constructed as
follows. If p0 ∈ D0 is a library element, we include
the symbol p0 in the set of agents Q.D. We then close
the set D under the operation of parallel composition.
However, we represent a composition p = p1‖p2 in Q as
the sequence of symbols p1 ‖ p2. By doing so, we retain
the structure of the composite, since all the previous
composition steps are recorded in the representation.
We call this process a platform closure.

Definition 2.2 Given a set of library elements D0 and
a composition operator ‖, the platform closure has do-
main

D = {p : p ∈ D0} ∪ {p1 ‖ p2 : p1 ∈ D ∧ p2 ∈ D} (1)

where p1 ‖p2 is defined if and only if it can be obtained
as a legal composition of agents in D0.

The construction outlined above is general, and can be
applied to building several different platforms. The re-
sult is similar to a term algebra with the “constants”
in D0 and the operation of composition. Unlike a term
algebra, however, our composition is subject to the con-
straints of the composition rules. For example, an “ar-
chitecture” platform may provide only one instance of
a particular processor. In that case, topologies that use
two ore more instances are ruled out. In addition, the
final algebra must be taken up to the equivalence in-
duced by the required properties of the operators. For



example, since parallel composition must be commuta-
tive, p1 ‖ p2 should not be distinguished from p2 ‖ p1.
This can be accomplished by taking the appropriate
quotient relative to the equivalence relation. The de-
tails are outside the scope of this paper.

Library Elements

Platform Instance

Architecture Platform

Function

Function Domain Closure

Figure 1. Architecture and Function Platforms
On the other hand, the function, depicted in n the

left, is represented in a specification domain. Here the
desired function may be represented denotationally, as
the collective behavior of a composition of agents, or
may retain its structure in terms of a particular topol-
ogy of simpler functions, as shown above. The denota-
tional representation is typically used at the beginning
of the platform-based design process, when no informa-
tion on the structure of the implementation is available.
Conversely, after the first mapping, the subsequent re-
finement steps are started from the mapped platform
instance, which is taken as the specification. Thus,
a common semantic domain, described below, is used
as the specification domain. However, contrary to the
mapping process that is used to select one particular in-
stance among several, when viewed as a representation
of a function the mapped instance is a specification,
and it is therefore fixed.

The function and the platform come together in
an intermediate representation, called the common se-
mantic domain. This domain plays the role of a com-
mon refinement and is used to combine the properties
of both the platform and the specification domain that
are relevant for the mapping process. The domains are
related through abstraction functions.

Definition 2.3 Given a platform QP and specification
domain QS, a common semantic domain is a domain
of agents QC related to QP and QS through abstrac-
tions ΨP and ΨS, respectively.

In particular, we assume that the inverse of the ab-
straction is defined at the function that we wish to
evaluate. The function therefore is mapped onto the
common semantic domain as shown in This mapping
also includes all the refinements of the function that
are consistent with the performance constraints, which
can be interpreted in the semantic domain.

Platform Realizations Library Elements

Platform Instance

Architecture Platform

Function

Admissible Refinements

Mapped Instance

Function Domain Common Semantic Domain Closure

Figure 2. Mapping of function and architec-
ture

If the platform includes programmable elements, the
correspondence between the platform and the common
semantic domain is typically more complex. In that
case, each platform instance may be used to imple-
ment a variety of functions, or behaviors. Each of
these functions is in turn represented as one agent in
the common semantic domain. A platform instance
is therefore projected onto the common semantic do-
main by considering the collection of the agents that
can be implemented by the particular instance. This
projection, represented by the rays that originate from
the platform in may or may not have a greatest ele-
ment. If it does, the greatest element represents the
non-deterministic choice of any of the functions that
are implementable by the instance.

The semantic domain is partitioned into four differ-
ent areas. We are interested in the intersection of the
refinements of the function and of the functions that
are implementable by the platform instance. This area
is marked “Admissible Refinements” in Each of the
admissible refinements encodes a particular mapping
of the components of the function onto the services of-
fered by the selected platform instance. These can of-
ten be seen as the covering of the function through the
elements of the platform library. Of all those agents,
those that are closer to the greatest element are more
likely to offer the most flexibility in the implementa-
tion. Once a suitable implementation has been chosen
(by possibly considering different platform instances),
the same refinement process is iterated to descend to
an even more concrete level of abstraction. The new
function is thus the intersection of the behavior of the
original function and the structure imposed by the plat-
form. The process continues recursively at increasingly
detailed levels of abstraction to come to the final im-
plementation.

3 The Metropolis Meta Model

The Metropolis meta-model is a language used to
specify networks of concurrent objects, each taking ac-
tions sequentially. The behavior of a network is for-
mally defined by the execution semantics that we ex-
plain in Section 4. This section describes how the meta-



name M

process X {
   port Read R;
   port Write W;

   void thread(){
      while(true){
          x = R.read();
          z = foo(x);
          W.write(z);
      }
   }
}

constraint {
    ltl G( beg(P0, M.write) −> !beg(P1, M.write) U end(P0, M.write) &&
    beg(P1, M.write) −> !beg(P0, M.write) U end(P1, M.write)); }

interface Read extends Port {
  update int read();
  eval int nItems();
}
interface Write extends Port {
   update int write(int data);
   eval int nSpace();
}

medium S implements Read, Write {
  int n, space;
  int[] storage;
  int read(){ ... } // body of read
  int write(){ ... } // body of write
}

process X
name C

process X
name P1

process X
name P0

medium S

Figure 3. Functional Model of Two Producers
and One Consumer

model can be used to specify different aspects of the de-
sign, such as functionality, architecture and mapping.

3.1 Function modeling

The function of a system is described as a set of
processes that concurrently take actions while commu-
nicating with each other. Each process is associated to
a sequential program called thread. Processes commu-
nicate through ports. A port is specified by an inter-
face that declares a set of methods that can be used
by the process through the port. In general, one may
have a set of implementations of the same interface,
and we refer to objects that implement port interfaces
as media. Any medium can be connected to a port if it
implements the interface of the port. This mechanism
allows the meta-model to separate the computation of
the processes from their communication. This sepa-
ration is essential to facilitate the description of the
objects to be reused for other designs. hows a network
of two producer processes and one consumer process
that communicate through a medium.

The behavior of a network is precisely defined by
the meta-model semantics as a set of executions. First,
we define an execution of a process as a sequence of
events. Events are entries to or exits from some piece
of code in a program. For example, for process X in
the beginning of the call to R.read() is an event, as is
its termination. An execution of a network is defined
as a sequence of sets of events, where each set contains
one event for each process. The semantics of a network
consists of the set of its possible executions. The meta-
model also supports non-deterministic behavior, which
is useful to describe abstract specifications of part of
the design. Declarative constraints in the form of logic
formulas can be used to further restrict the set of ex-
ecutions of a network (Section 4). For example the
constraint in pecifies the mutual exclusion of the two

medium
CPU

medium

medium
MEM

BUS

q−manager

q−manager

q−manager

q−manager

Time

BusArb

CpuArb

Energy

process Task
name T1

process Task
name Tn

process Task {
  port CpuService cpu;
 
  void execute(int n) {
    {$
      ... // make request to CpuArb
      ... // to become CPU owner
    $}
    cpu.execute(n);
  }
  void read() {
    ...
    cpu.read();
  }
  void write() { ... }
  void thread() { ... }
}

medium BUS implements BusService {
  port SlaveService mem;
 
  void read()  { 

    {$
      ... // make request to BusArb
      ... // to become bus master
    $}
    mem.read(); 
  }
  void write() { ...   mem.write(); }
}

medium CPU implements CpuService {
  port BusService bus;
 
  void execute(int n) {
    {$
      ... // make request to Time
      ... //  for a delay of n clock cycles
    $}
  }
  void read()  { ...   bus.read(); }
  void write() { ...   bus.write(); }
}

medium MEM implements SlaveService {
  void read() {
    {$
      ... // make request to Time
      ... //  for a memory read delay 
    $}
  }
  void write() { ... }}

Figure 4. An architectural model

producers when one of them calls the write method of
the medium. Constraints allow one to describe coordi-
nation of processes, or to relate behavior of networks
through mapping or refinement as presented later.

3.2 Architecture modeling

Architectures are distinguished by two aspects: the
functionality that they are capable of implementing,
and the efficiency of the implementation. In the meta-
model, the former is modeled as a set of services which
are simply methods bundled into interfaces [9]. The
efficiency of an implementation is represented by the
cost of each service. This is done first by decomposing
each service into a sequence of events, and then by
annotating each event with a value representing the
cost of the event.

To decompose the services into sequences of events,
we use networks of media and processes, just as in the
functional model. These networks often correspond to
physical structures of implementation platforms. For
example, Figure 4 shows an architecture consisting of
n processes, T1, . . . , Tn, and three media, CPU, BUS
and MEM. The processes model software tasks execut-
ing on a CPU, while the media model the CPU, the
bus, and the memory. The services offered by this ar-
chitecture are the execute, read and write methods im-
plemented in the Task processes. The thread function
of a Task process repeatedly and non-deterministically
executes one of the three methods. This way, we model
the fact that the Tasks are capable of executing these
methods in any order. The actual order will be fixed
only after the system function is mapped to the archi-
tecture, when each Task implements a particular pro-
cess of the functional model.

While a Task process offers its methods to the func-



tional part of the system, the process itself uses services
offered by the CPU medium, which, in turn, uses the
services of the BUS medium. In this way, the top-level
services offered by the Tasks are decomposed into se-
quences of events throughout the architecture.

The meta-model includes the notion of quantity used
to annotate individual events with values measuring
cost. For example, in Figure 4 there is a quantity
named energy used to annotate each event with the
energy required to process it. To specify that a given
event takes a given amount of energy, we associate with
that event a request for that amount. These requests
are made to an object called quantity manager, repre-
sented by a diamond-shaped symbol, which collects all
requests and fulfills them, if possible.

Quantities can also be used to model shared re-
sources. For example, in Figure 4 quantity CpuArb
labels every event with the task identifier of the cur-
rent CPU owner. Assuming that a process can progress
only if it is the current CPU owner, the CpuArb man-
ager effectively models the CPU scheduling algorithm.

The meta-model has no built-in notion of time, but
time can be modeled as yet another quantity that puts
an annotation, in this case a time-stamp, to each event.
Managers for common quantities, such as time, are pro-
vided as standard libraries with Metropolis, and are un-
derstood directly by some tools (e.g. time-driven sim-
ulators) for the sake of efficiency. However, quantity
managers can also be written by design flow develop-
ers, in order to support quantities that are relevant for
a specific application domain.

3.3 Mapping and Platforms

To evaluate the performance of a particular imple-
mentation, a functional model needs to be mapped to
an architectural model. In the meta-model, this is
possible without modifying the functional and archi-
tectural networks. A new network can be defined to
encapsulate the functional and architectural networks,
and to relate the two by synchronizing events between
them. This new network is called a mapping network.

The synchronization mechanism roughly corre-
sponds to an intersection of the sets of executions of the
functional and architectural models. Functional model
executions specify a sequence of events for each pro-
cess, but usually allow arbitrary interleaving of event
sequences of the concurrent processes, as their rela-
tive speed is undetermined. On the other hand, ar-
chitectural model executions typically specify each ser-
vice as a timed sequence of events, but exhibit non-
determinism with respect to the order in which services
are performed, and on what data. The mapping elim-

process X
name P1

process X
name C

process X
name P0

medium S
name M

    beg(P1, M.write) −> !beg(P0, M.write) U end(P1, M.write)); }
    ltl G( beg(P0, M.write) −> !beg(P1, M.write) U end(P0, M.write) &&

constraint {

end(C,C.foo) <−>end(T3,CPU.execute(50)) && 

beg(P0,M.write) <−>beg(T1,CPU.write) && ...

end(P0,P0.foo) <−>end(T1,CPU.execute(50)) && 

end(P1,P1.foo) <−>end(T2,CPU.execute(50)) && ...
... )}

constraint { ltl G( beg(P0,P0.foo) <−>beg(T1,CPU.execute(50)) && 

medium
CPU

medium

medium
MEM

BUS

q−manager

q−manager

q−manager

q−manager

Time

BusArb

CpuArb

Energy

process Task
name T3

process Task
name T1

process Task
name T2

Figure 5. Mapping of function to architecture

inates from the two sets all executions except those in
which the events that should be synchronized always
appear simultaneously. Thus, the remaining executions
represent timed sequences of events of the concurrent
processes.

For example, hows a mapping network that com-
bines the functional network from ith the architectural
network from Figure 4. Events of the two networks are
synchronized using the constraint clause in the map-
ping network. For example, executions of foo, read,
and write by P0 have been synchronized with execu-
tions of execute, read, and write by T1. Since P0 exe-
cutes its actions in a fixed order while T1 chooses its
actions non-deterministically, the effect of synchroniza-
tion is that T1 is forced to follow the decisions of P0,
while P0 “inherits” the quantity annotations of T1. In
other words, by mapping P0 to T1, T1 becomes a per-
formance model of P0. Similarly, T2 and T3 become
performance models of P1 and C, respectively.

The network of ay itself be considered an implemen-
tation of a certain service. The algorithm for imple-
menting the service is given by the functional network
while its performance is defined by the architecture
counterpart. The service can be defined in an inter-
face declaration, and it can be used in other models in
the form of a medium that implements the interface at
an appropriate level of abstraction. We can then relate
the medium and the implementation network using the
meta-model construct refine and constraints. For ex-
ample, the constraints may say that some event of the
medium is synchronized with an event of a process in
the network, or that the values of variables in the two
models agree.

In general, many mapping networks may exist for
the same service with different algorithms or architec-
tures, as shown in Such a set of networks, together
with constraints on event relations for a given interface
implementation, constitutes a platform. The elements
of the platform provide the same service with different
costs, and one is favored over another for given de-
sign requirements. This concept of platforms appears
recursively in the design process. In general, an imple-
mentation of what one designer conceives as the entire



     VideoData mpegDecode(ElemStream es){
         // body of abstracted mpegDecode
     }

refine(AbsMpeg, MC1);
constraint{ ... }

constraint { ltl G(...); ... } constraint { ltl G(...); ... }constraint { ltl G(...); ... }

interface MpegDecode extends Port{
   update VideoData mpegDecode(ElemStream)
}

medium AbsMpeg implements MpegDecode 

Figure 6. Multiple Mapping Netlists forming a
Platform

system is a refinement of a more abstract model of
a service, which is in turn employed as a single com-
ponent of the larger system. For example, a particu-
lar implementation of an MPEG decoder is given by
a mapping network, but its service may be modeled
by a single medium, where the events generated in the
medium are annotated with performance quantities to
characterize the decoder.

4 Meta Model Semantics

In this section we give a brief overview of the meta-
model semantics. Full details can be found in [10].
The semantic domain we use to interpret executions of
meta-model networks is a set of sequences of observable
events. An observable event is a beginning or an ending
of an observable action, and observable actions are calls
of media functions made through ports.

While the behavior is defined by observable actions
only, we also use other actions to help us define the
semantics. This extended set of actions include all the
statements in the program, as well as certain expres-
sions within a statement. Some actions have a name
associated with them, e.g. functions, while others are
anonymous. For function with names we use beg(p,f)
to denote the event of process with identifier p begin-
ning to execute action with name f (more than one
process can execute an action with the same name).
Similarly, end(p,f) denotes the event of process p end-
ing the execution of action f.

The execution of a network evolves through a se-
quence of state transitions:

s0
σ1−→ s1

σ2−→ . . .
σi−→ si

σi+1−−−→ . . . (2)

where σi is a set of named actions (at most one for each
process), and si is a network state. A state of network
consists of two parts. The first is the state of the mem-
ory which consists of assignments to all variables in all
processes. The second part of the state corresponds

intuitively to the program counters and stack of all the
processes in the network.

The semantics of a meta-model process execution
is quite similar to standard programming languages.
It differs only in places affected by the fact that the
execution of the entire network consists of concurrent
executions of many process. The problem arises when
two processes concurrently execute actions that are in
conflict, i.e. both modifying the same variable, or one
reading a variable being modified by the other. In gen-
eral, our approach is conservative, if there is any pos-
sibility of a conflict, the result may be arbitrary. This
is the most general approach that covers any possible
implementation.

To eliminate such conflicts, the meta-model pro-
vides the await statement to coordinate concurrent
processes. The syntax of the await statement is:

await{(e1;T1;S1)stmt1; · · · (ek;Tk;Sk)stmtk; } .

where ei’s are side-effect-free Boolean expressions,
stmti’s are meta-model statements, and Ti’s and Si’s
are lists of pairs of the form m.f , where m is a commu-
nication medium, and f is an interface implemented by
m. With each Ti we associate the set [[Ti]] that is the
union of the sets of actions associated with each pair
m.f in Ti. An action a is associated with m.f if it is
an action of a process other than the one executing the
await statement, and one of the following holds:

• a is a call to a member function of medium m
which is declared in interface f ,

• a is a statement appearing in some other the
await statement await{· · · (ej ;Tj;Sj)a · · · }, and
m.f appears in the list Sj .

Similarly, with each Si we associate the set [[Si]] that
is the union of the sets of actions associated with each
pairm.f in Si, and an action a is associated withm.f if
it is an action of a process other than the one executing
the await statement, and one of the following holds:

• a is a call to a member function of medium m
which is declared in interface f ,

• a is a statement appearing in some other await
statement await{· · · (ej ;Tj;Sj)a · · · }, and m.f
appears in the list Tj.

After an await statement begins its execution, one
of the statements stmt1, . . . , stmtk, may start execut-
ing. However a statement stmti may start execution
only if ei evaluates to true in the current state, no ac-
tions in [[Ti]] are currently executing and no actions in
[[Si]] are starting execution. Furthermore, no action in
[[Si]] can start executing as long as stmti is executing.



Intuitively, we can associate a flag with each pair
m.f . The statement stmti is enabled only if the guard
is true and none of the flags in Ti are set. Flags in
Si are set while stmti is executing. In addition, each
m.f flag is set while some function in medium m from
interface f is being executed.

5 Annotating and Restricting Network
Executions

Annotations are typically used to represent cost of
performing certain computations on a given architec-
ture, e.g. delay or energy information. In the meta-
model, annotations are defined with a concept called
quantity, i.e. for each annotation, there is a quantity
with the same name. Each quantity has an associated
type, for example, double for time. In the meta-model,
for each quantity there is an object called a quantity
manager that is responsible for assigning annotations
to events. Code executed by a process can make a re-
quest for a specific annotations. For example, to model
that the delay between two events e1 and e2 is 10, the
process makes a request that a time-stamp of e2 must
be equal to the time-stamp of e1 plus 10. It is the
responsibility of a quantity manager to collect all re-
quests and satisfy them. If a request cannot be satis-
fied, the manager must disable the event for which that
request was made. For example, if one process wants to
execute event e1 and request for it time-stamp 10, and
the other process wants to execute e2 with time-stamp
20, time manager must set the current time to 10, let
e1 occur, and disable e2. In the meta-model, all the
objects related to quantities are grouped in a separate
network called the scheduling network. In contrast, the
network containing all “ordinary” objects is called the
scheduled network.

In the meta-model semantics, annotations are
represented as a set of annotation functions
A1, A2, . . . , Ai, . . . that are associated with net-
work execution as in Equation 2. For each event
e ∈ σi, and each annotation name f , the annotation
function Ai(e, f) holds the value of annotation f of
event e.

As explained earlier, the semantics of the scheduled
network is described as a sequence of state transitions.
In every state there is a set of enabled events and pos-
sibly a set of annotation requests. Execution of the
scheduling network determines which events should ac-
tually occur, and what their annotations should be. In
other words, execution of the scheduling network dis-
ables some of the enabled events, and annotates the
rest.

In addition to restricting network executions by

scheduling networks, the meta-model provides a declar-
ative alternative. The user may use certain logic formu-
las over sequences of state transitions to express con-
straints. In this way, a given sequence of annotated
state transitions is a legal behavior of a meta-model
restriction if and only if (1) it can be generated by the
execution of the scheduled network restricted by the
scheduling network, (2) it satisfies all the constraints
specified by logic formulas. In the rest of this section
we explained both of these mechanisms in more detail.

5.1 Quantities and Scheduling Network

In contrast to ordinary (“scheduled”) networks,
scheduling networks have some methods associated
with them. Boolean function ifTop() returns true if
and only if that network is at the top level, i.e. it is not
contained in any other scheduling network. The user
should not redefine it. The default function resolve()
of type void recursively calls the resolve() func-
tion of all the subnetworks. The user may redefine
it. One typical way to redefine it is to keep calling
the resolve() function of all quantity managers in
its scope until a fixed point is reached. The default
function postcond() of type void recursively calls the
postcond() function of all the subnetworks. The user
may redefine it.

The scheduling network is executed each time the
scheduled network reaches a state in which it is about
to execute an event for which there is an associated
request. A scheduling network consists of the following
stages:

1. request making: In this phase annotation re-
quests for the enabled events are issued to the
scheduling network.

2. negotiation: In this phase, the top function of
the topmost scheduling netlist is executed. This
will typically result in iterative calling of resolve
functions of quantity managers.

3. selection: In this phase, the number of enabled
events is reduced to one per process. No code that
a user can modify is executed in this phase. In
practical terms, the simulator looks at all enabled
events, looks at all the active constraints, and se-
lects a vector of enabled events that is consistent
with constraints.

4. annotation: In this phase the postcond function
of the topmost scheduling netlist is executed. This
typically results in calling postcond functions of
all quantity managers, which in turn results in
making the annotation and doing any clean-up



that may be required. The default version of
a quantity manager’s postcond leaves all events
with undefined annotations, i.e. only user pro-
vided versions will actually do the annotation.

5.2 Constraints

There are two basic types of constraints in the meta-
model, and each type is expressed in a different logic.
Coordination constraints from are represented by for-
mulas of linear temporal logic (LTL), quantity con-
straints are represented in the logic called logic of con-
straints (LOC).

Given a meta-model netlist, and its execution as
in Equation 2 we interpret LTL formulas over the se-
quence:

(s0, σ1), (s1, σ2), . . . , (si, σi+1), . . . .

In the meta-model, the atomic LTL propositions are
either Boolean meta-model expression, or expressions
of the form beg(p,f) or end(p,f), where p is a pro-
cess identifier, and f is an action name. We say that
(si, σi+1) satisfies a meta-model expression if it eval-
uates to true in state s. We also say that (si, σi+1)
satisfies beg(p,f) if it appears in σi. Similarly, we
say that (si, σi+1) satisfies end(p,f) if it appears in
σi. This defines the semantics of atomic LTL formulas.
The semantics of all other LTL constructs is defined in
the standard way [7].

We have designed the other meta-model logic, LOC,
to meet the following goals, which we believe are es-
sential for a constraint specification formalism to gain
wide acceptance:

• it must be based on a solid mathematical founda-
tion, to remove any ambiguity in its interpretation,

• it must feel natural to the designer, so that typical
constraints are easy to specify,

• it must be compatible with existing functional
specification formalisms, so that language exten-
sions for constraint specification can be easily de-
fined,

• it must be powerful enough to express a wide range
of interesting constraints,

• it must be simple enough to be analyzable, at least
by simulation, and ideally by automatic formal
techniques.

LOC formulas are defined relative to a multi-sorted
algebra (A,O,R), defined by the meta-model type sys-
tem. In the meta-model, the set of sets (sorts) A

includes value domains of all the types in the meta-
model. In general, O is a set of operators, and R is a
set of relations on sets in A. More precisely, elements
of O are functions of the form T1 × · · · × Tn �→ Tn+1,
where n is a natural number, and T1, . . . , Tn+1 are (not
necessarily distinct) elements of A. If o ∈ O is such a
function, than we say that o is n-ary and Tn+1-valued.
Similarly, an n-ary relation in R is a function of the
form T1×· · ·×Tn �→ {true, false}. In the meta-model,
R contains all the relational and Boolean operators,
and O contains all other meta-model operators.

LOC formulas may contain only one variable,
namely i. The domain of i is the set of integers. Having
only one variable may seem very restrictive, but so far
we have not found a natural constraint that required
more than one. The advantages of a single variable are
simpler syntax (fewer names), and simpler simulation
monitoring.

The basic building blocks of LOC formulas are
terms. We distinguish terms by their types:

• i is a integer-valued term,

• for each value domain T ∈ A, and each constant
c ∈ T , c is a T -valued term,

• if τ is a integer-valued term, e is an event name,
and f is a name of a T -valued annotation, f(e[τ ])
is a T -valued term,

• if o ∈ O is a T -valued n-ary operator, and
τ1, . . . , τn are appropriately valued terms, then
o(τ1, . . . , τn) is a T -valued term.

Terms are used to build LOC formulas in the standard
way:

• if r ∈ R is an n-ary relation, and τ1, . . . , τn are
appropriately valued terms, then r(τ1, . . . , τn) is
an LOC formula,

• if φ and ψ are LOC formulas, so are φ, φ∧ψ, and
φ ∨ ψ.

For example, if a and b are event names, and f and
g are integer-valued annotations, then the set of LOC
formulas includes the following:

f(a[i])==5 && g(a[i+1])==5 ,
f(a[i-4])+f(b[g(a[i])])<20 ,
!(f(a[i])==0) || f(b[i])==0 .

When reading these formulas, it is helpful to think
of i as being universally quantified, as clarified in the
LOC semantics next.

We interpret LOC formulas over network executions
defined as in Equation 2 with associated annotation
functions A1, A2, . . . , Ai, . . . . We first define the value
of LOC terms and formulas as follows:



Table 1. Extensions of Boolean operators to
undefined values.

x y x&&y x||y x->y x<->y
true ⊥ ⊥ true ⊥ ⊥
false ⊥ false ⊥ true ⊥
⊥ true ⊥ true true ⊥
⊥ false false ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

• The value of variable i may be any integer.

• If τ is a term with integer value n, e is an event,
and f is an annotation name, then the value of
f(e[τ ]) is Ai(e, f), where i is such that e appears
for the n-th time in the sequence exactly in σi,
i.e. e ∈ σi, and the set {j ≤ i : e ∈ σj} has
exactly n elements. If n is not positive, e appears
in the sequence less than n times, or Ai(e, f) is
undefined, then the value of f(e[τ ]) is undefined.

• The value of all the operators in O, as well as
all the relational operators in R is defined as in
the meta-model, provided that all their sub-terms
have defined values. If that is not the case, the
value is undefined.

• The value of Boolean operators in R is deter-
mined as in the standard three-valued extension
of Boolean logic. In this extension, the negation
of an undefined value is undefined, and the exten-
sions of other operators is summarized in Table 1
where ⊥ denotes an undefined value.

Finally, we say that a network execution with annota-
tion functions satisfies an LOC formula if the value of
the formula is either true or undefined for all possible
values of i.

6 Conclusions

We presented briefly a formal system level design
methodology, platform-based design, and some as-
pects of the Metropolis environment that supports the
methodology. In particular, we focused on the model-
ing strategy of the environment. Metropolis is based on
a meta-model with formal semantics that can be used
to capture designs from specification languages and to
support simulation, formal analysis and synthesis. The
framework is conceived to encompass different appli-
cation domains, and therefore supports heterogeneity
through the orthogonalization of function and archi-
tecture and of communication and computation. The

formal semantics of the meta-model allows embedding
of models of computation in a rigorous framework thus
favoring design reuse and design chain support.

The environment also offers a set of analysis and
synthesis tools that are examples of how the frame-
work can be used to integrate flows. At this time, we
are exploring the automotive, wireless communication
and video application domains in collaboration with
our industrial partners. As we understand better what
the critical parts of the design are and what needs to
be supported to facilitate design hand-offs, we plan to
tune the meta-model and to increase the power of the
infrastructure for the support of successive refinement
as a major productivity enhancement.
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