

A formal approach to the verification of networks on chip

Citation for published version (APA):
Borrione, D., Helmy, A., Pierre, L., & Schmaltz, J. (2009). A formal approach to the verification of networks on
chip. EURASIP Journal on Embedded Systems, 2009, 548324-. https://doi.org/10.1155/2009/548324

DOI:
10.1155/2009/548324

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.1155/2009/548324
https://doi.org/10.1155/2009/548324
https://research.tue.nl/en/publications/18693668-1f21-4e2a-9e0e-eda538298f28

Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2009, Article ID 548324, 14 pages
doi:10.1155/2009/548324

Research Article

A Formal Approach to the Verification of Networks on Chip

Dominique Borrione,1 Amr Helmy,1 Laurence Pierre,1 and Julien Schmaltz2

1 Techniques of Informatics and Microelectronics for Integrated Systems Architecture (TIMA) Laboratory
(CNRS, GrenobleINP, UJF), 46 Avenue Félix Viallet, 38031 Grenoble Cedex, France

2 Institute for Computing and Information Sciences (ICIS), Radboud University, Postbus 9010,
6500 GL Nijmegen, The Netherlands

Correspondence should be addressed to Laurence Pierre, laurence.pierre@imag.fr

Received 1 August 2008; Accepted 4 February 2009

Recommended by Gregor Goessler

The current technology allows the integration on a single die of complex systems-on-chip (SoCs) that are composed of
manufactured blocks (IPs), interconnected through specialized networks on chip (NoCs). IPs have usually been validated by diverse
techniques (simulation, test, formal verification) and the key problem remains the validation of the communication infrastructure.
This paper addresses the formal verification of NoCs by means of a mechanized proof tool, the ACL2 theorem prover. A metamodel
for NoCs has been developed and implemented in ACL2. This metamodel satisfies a generic correctness statement. Its verification
for a particular NoC instance is reduced to discharging a set of proof obligations for each one of the NoC constituents. The
methodology is demonstrated on a realistic and state-of-the-art design, the Spidergon network from STMicroelectronics.

Copyright © 2009 Dominique Borrione et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Up-to-date systems-on-chip (SoCs) are built by assembling
modules such as processor cores, memories, and specialized
Intellectual Property (IP) blocks. Networks on chip (NoCs)
are emerging as a promising solution for the realization of
communications in such complex systems [1, 2]. NoCs such
as Faust [3] or SoCBUS [4] provide configurable communi-
cation infrastructures that are particularly attractive for the
design of advanced SoCs and embedded systems. NoCs are
usually made of point-to-point data links interconnected by
switches; widespread topologies include meshes and fat-tree
architectures.

SoC design must be supported by appropriate design
methods and flows. We place ourselves in the context of
“platform-based design,” where a platform is defined as “an
abstraction layer in the design flow that facilitates a number
of possible refinements into a subsequent abstraction layer
(platform)” [5]. Verification is indispensable at all stages
and layers. It consumes almost 60 to 70% of the total
resources in a typical chip design cycle [6]. In an NoC-
based architecture, two main verification problems arise: the
functional validation of each core or IP and the verification

of the communications in the network. This paper addresses
the latter aspect.

The application of formal methods to embedded com-
munication infrastructures has received a recent attention.
The sparse literature on that topic is targeted to specific
designs described at the register transfer level (RTL) and
below. In the context of platform-based design, the trend in
the design flow is to raise the level of abstraction of the initial
phase and to ground the flow on verified parameterized
library modules. Yet, on-chip communications are not
supported by a general and formal theory, which is necessary
to obtain verified parameterized communication modules.
Our utmost objective is to provide a formal foundation
to the verification of on-chip communication architectures,
spanning from their initial design specifications to their RTL
implementation.

As a first step toward this objective, we proposed the
generic network on chip model (GeNoC) [7, 8]. It consists
of a metamodel of on-chip communication architectures and
its implementation in the logic of a theorem proving system.
The peculiar aspect of this model is to represent a large
class of systems. It is a highly generic and parameterized
object. While performing the proofs, parameters such as the

2 EURASIP Journal on Embedded Systems

size of the network or the length of messages need not to
be instantiated. Its implementation in a theorem proving
system provides mechanized support and partial automation
in the verification effort. The model is implemented in
the ACL2 theorem prover [9]. An important feature of
ACL2 is to denote both a powerful theorem proving system
and an execution engine in the same environment. The
theorem proving system has a high degree of automation.
ACL2 specifications are written in an applicative subset of
Common Lisp and are thus executable. These constitute two
important advantages of using ACL2.

Our first versions of the model contained unrealistic
simplifying hypotheses, concerning the granularity of moves
and the time when messages were introduced in the network.
As a consequence, while the final result of the communica-
tions was correctly portrayed, the intermediate steps were
abstracted away: where and when a message is temporarily
delayed by the presence of other messages in the network
could not be shown.

The enhanced formalization presented in this article con-
stitutes a significant progress, both mathematically simpler
and offering a much larger expressive power:

(i) the current metamodel covers a network specification
from the transport layer to the data link layer of the
OSI model;

(ii) the progression of the messages in the network is
specified step by step instead of considering their
transfer atomically from their source to their desti-
nation, thus allowing a great variety of scheduling
policies (circuit, wormhole, priority, etc.);

(iii) new messages may enter the model at arbitrary times
and arbitrary nodes;

(iv) the same model can be used for formal verification
and for simulation.

The metamodel detailed in this paper represents the
transmission of messages on a generic communication
architecture, with an arbitrary network characterization
(topology and node interfaces), routing algorithm, and
switching technique. The main function of this model,
called GeNoC, is recursive. Each recursive call represents
one step of execution, where messages progress by at most
one hop. Such a step defines our time unit. A correctness
theorem is associated with function GeNoC. It states that
for all topology T , interfaces I, routing algorithm R, and
scheduling policy S that satisfy associated constraints P1, P2,
P3, and P4, GeNoC fulfills a correctness property ℘:

∀T ∀I∀R∀S,

P1(T)∧ P2(I)∧ P3(R)∧ P4(S)

⇒ ℘(GeNoC(T , I, R, S)).

(1)

Roughly speaking, the property ℘ asserts that every
message arrived at some node n was actually issued at some
source node s and originally addressed to node n, and that it
reaches its destination without modification of its content.

The constituents of the metamodel are characterized by
constraints P1, P2, P3, and P4 that express essential prop-
erties of the key components, for example, wellformedness
of the network or termination of the routing function.
The proof of formula (1) above is derived from these
constraints, without considering the actual definitions of
the constituents. Consequently, the global correctness of
the network model is preserved for all particular definitions
satisfying the constraints.

It follows that, for any instance of a network,
that is, for any T0, I0, R0, and S0, the property
℘(GeNoC(T0, I0, R0, S0)) holds provided that P1(T0),
P2(I0), P3(R0), and P4(S0) are satisfied. Hence, verifying
formula (1) for a given NoC is reduced to discharging
these instantiated constraints on the NoC constituents.
This verification methodology is illustrated hereinafter
on a realistic and state-of-the-art NoC, the Spidergon
from STMicroelectronics [10]. (The ACL2 scripts of our
model and its instantiation for Spidergon are available at
http://tima.imag.fr/vds/GeNoC/genoc.html.)

2. Related Works

Intensive research efforts have been devoted to the develop-
ment of performance, traffic, or behavior analyzers for NoCs.
Most proposed solutions are simulation- or emulation-
oriented. Few approaches address the use of (semi)formal
methods, essentially toward the detection of faults or
debug. A methodology based on temporal assertions is
proposed in [11]. It targets a two-level hierarchical ring
structure. PSL properties [12] are used to express interface-
level requirements and are transformed into synthesizable
checkers (monitors). In case of assertion failures, special
flits are propagated to a station responsible for analyzing
these failures. Goossens et al. [13] advocate communication-
centric debug instead of computation-centric debug for
complex SoCs and also use a monitor-based solution.
They discuss the temporal granularity at which debug can
be performed and propose a specific debug architecture
with four interconnects. Both approaches rely on a for-
mal expression of properties (assertions), but are indeed
founded on a dynamic, nonformal, execution/emulation of
a detailed design, where all architectural parameters and
implementation decisions have been settled. In contrast,
our work applies to the validation of an early specification
stage.

Widespread formal methods can be classified in two
categories: algorithmic techniques (e.g., model-checking)
and deductive ones (theorem proving). Many approaches
have been proposed in the fields of protocol or network
verification in general. Most of them are based on model-
checking techniques and target very specific designs. Clarke
et al. [14] use the notion of regular languages and abstraction
functions to verify temporal properties of families of systems
represented by context-free network grammars, for instance,
the Dijkstra token ring and a network of binary trees. Creese
and Roscoe [15] exploit the inductive structure of branching
tree networks and put the emphasis on data independence:

EURASIP Journal on Embedded Systems 3

data are abstracted in order to use the FDR model checker
to prove properties of CSP specifications. Roychoudhury et
al. use the SMV model checker [16] to debug an academic
implementation of the AMBA AHB protocol [17]; the model
is written at the RTL and without any parameter. Salaün et
al. focus on the verification of asynchronous systems using
the CADP tool and report the verification of an NoC input
controller [18]. Again, the application of model-checking
techniques is restricted to architectures where all sizes have
been fixed, a later design stage than the one addressed by our
model.

Results with theorem provers, or combinations of theo-
rem provers and model-checkers, have also been proposed.
Most of them concern specific architectures. The HOL
theorem prover [19] is used by Curzon [20] to verify a
specific network component, the Fairisle ATM switching
fabric. Its structural description is compared to a behavioral
specification. Bharadwaj et al. [21] use the combination of
the Coq theorem prover [22] and the SPIN model-checker
[23] to verify a broadcasting protocol in a binary tree
network. Amjad [24] uses a model checker implemented in
HOL to verify the AMBA APB and AHB protocols and their
composition in a single system. Using model checking, safety
properties are verified on each protocol individually, and
HOL is used to verify their composition. In Gebremichael
et al. [25], the Æthereal protocol of Philips is specified in the
PVS logic. The main property that is verified is the absence of
deadlock for an arbitrary number of masters and slaves. The
correctness properties checked by these various methods are
different from the ones we consider, and the proofs cannot
easily be ported from one network structure to another one.
We consider this set of works as complementary to ours
and applicable to an instantiation of our metamodel to a
particular architecture.

The research results that most closely relate to
our work tackle the formalization from a generic
perspective. Moore [26] defines a formal model of
asynchrony by a function in the Boyer-Moore logic
[27] and shows how to use this general model to verify a
biphase mark protocol. More recently, Herzberg and Broy
[28] present a formal model of stacked communication
protocols, in the sense of the OSI reference model. They
define operators and conditions to navigate between
protocol layers and consider all OSI layers. This work
is more general than Moore work, which is targeted at
the lowest layer. In contrast, Moore provides mechanized
support. Both studies focus on protocols and do not
consider the underlying interconnection structure explicitly.
In the context of time-triggered architectures, the work of
Rushby [29] proposes a general model of time-triggered
implementations and their synchronous specifications. The
simulation relation between these two models is proven for
a large class of algorithms using an axiomatic theory. Pike
recently improved the application domain of this theory
[30, 31]. Miner et al. [32] define a unified fault-tolerant
protocol acting as a generic specification framework that
can be instantiated for particular applications. These studies
focus on time-triggered protocols. The framework presented
in this paper aims at a more general network model and

5

6

7

8

15

14

13

12

911 10

0 1 2 3 4

Figure 1: The Spidergon architecture.

concentrates on the actual interconnect rather than the
protocols based on top of this structure.

3. The Spidergon NoC

The Spidergon NoC from STMicroelectronics [10] is used as
a running example throughout this paper. It is an extension
of the Octagon network [33] to an arbitrary even number
of nodes. Figure 1 gives a 16-node version of the Spidergon.
Like the Octagon, it is equipped with a shortest-path routing
algorithm.

Spidergon forms a regular architecture, where all nodes
are connected to three neighbors and a local IP. Let NumNode
be its number of nodes. The maximum number of hops is
NumNode/4 if NumNodeis a multiple of four. We place our
formal representation in that context, we assume a global
parameter N such that NumNode = 4 ·N .

The routing of a message is done as follows. Each node
compares the destination address of the message (DestAd)
to its own address (NodeAd) to determine the next action.
The node computes the relative address of a message as

RelAd = (DestAd −NodeAd) mod (4 ·N). (2)

At each node, the route of the message is a function of
RelAd as follows.

(i) if RelAd = 0, process at node;

(ii) if 0 < RelAd ≤ N , route clockwise;

(iii) if 3 ·N ≤ RelAd ≤ 4 ·N , route counterclockwise;

(iv) route across otherwise.

Example 1. Assume that N = 4, that is, NumNode = 16.
Consider a message M at node 2 sent to node 12. First,
(12 − 2) mod 16 = 10, M is routed across to 10. Then,
(12− 10) mod 16 = 2, M is routed clockwise to 11, and then
to node 12. Finally, (12− 12) mod 16 = 0, M has reached its
final destination.

4 EURASIP Journal on Embedded Systems

Transport layer

Network layer

Data link layer

OSI stack

Send

Routing

Scheduling

Messages to be sent

Messages

Possible routes from current to destination

recv

Arrived messages En route messages

Arrived messages

Transmission protocol

Ready for departure (R4D)

Traveling messages Delayed messages

Recursive call

Figure 2: Function GeNoC of the formal model.

We consider a Spidergon network based on the wormhole
switching technique. Messages are decomposed into smaller
units called flits. The header flit contains information needed
for routing. A control flit determines the number of data flits
(data payload) that follow in a pipelined fashion.

4. Principles of Our Approach: The Generic
Network Model

The main function of the metamodel is function GeNoC
sketched in Figure 2. It takes as main argument a list of
messages emitted at source nodes and returns a list of
messages received at destination nodes. Various intermediate
data types are used, which are not described here for the sake
of simplicity and clarity. In addition to the data that it is
carrying, a message contains the following information: its
source, destination, current position, the time at which it is
injected in the network, and optionally the number of flits
in the message. Each message is also uniquely identified by a
natural number.

Function GeNoC produces two output lists: the list of
messages that have reached their destination, and the list
of messages that are still at their source, or traveling in the
network. It entails the following components:

(i) a global network state representing the current status
of the memory elements associated with the ports of
the nodes and an explicit notion of time (Section 5);

(ii) at the Transport layer (Section 6), interfaces are rep-
resented by two functions used to encode messages

to be sent in the network (send) and to decode
them (recv). Function R4D (“ready for departure”)
determines which messages can be in the network at
the current time. Messages may be injected only at a
specific execution time or under constraints on the
network load (e.g., credit-based flow control);

(iii) at the Network layer (Section 7), the routing algorithm
is represented by function Routing and the switching
technique is represented by function Scheduling. The
routing algorithm is represented by the successive
application of unitary moves (e.g., routing hops).
For each message, the routing function computes
all possible routes from the current position to the
destination. Function Scheduling returns a list of
messages that have reached their destination and a list
of messages that are en route to their destination. The
model also allows the modeling of priorities between
messages (e.g., using a round-robin policy);

(iv) at the data link layer (Section 8), the transmission
protocol is specified. The possibility of moving one
message from one port to another depends on the
current state of the network, which itself depends on
the other messages.

Function GeNoC makes use of functions R4D, Routing,
and Scheduling to compute the arrived and the delayed
messages. It takes as parameters a list of messages (M), the
structure of the network, reduced to the set of addresses of
its nodes (A), a finite number of attempts (att), the set of
arrived messages (T, originally empty), the current state of

EURASIP Journal on Embedded Systems 5

function GeNoC(M,A, att,T , st, z){
if SumO f Att(att) = 0 then return list (T ,M);
else

begin
〈TR,D〉 := R4D(M, z);
〈TM,Arr, att′, st′〉 :=

Scheduling (Routing(TR,A), att, st);
return GeNoC (union(TM,D),A, att′,

union(Arr,T), st′, z + 1);
end

}.

Algorithm 1

the network (st), and the current time (z). The number of
attempts is decremented by 1 at each node with a message
waiting for injection. Function SumO f Att(att) computes the
sum of the remaining attempts of the nodes and is used as the
decreasing measure of parameter att. The typical recursive
form of function GeNoC is as shown in Algorithm 1.

If no attempt is left, GeNoC stops and returns a pair
composed of the arrived (T) and the delayed or en route (M)
messages. Otherwise, every recursive call processes a list of
messages, where some are waiting at their source, and some
are traveling in the network. First, function R4D extracts
the messages that are allowed to move at current time z
(TR). For each one of them, routes are computed using
function Routing. Then, function Scheduling computes the
list of the arrived messages (Arr), the list of messages that are
still traveling in the network (TM), the remaining attempts
(att′), and a new state (st′). The recursive call processes the
traveling messages together with the messages D delayed by
R4D. Time is incremented by 1.

5. Addresses and Network State

5.1. Addresses and Parameters. Networks are assumed to be
built from the interconnection of an unbounded, but finite,
number of generic switches that have several input and
output ports connected to the neighboring switches and to
the local IP (Figure 3). Each switch has a unique identifier
that can be its position or coordinate.

Tuples composed of a coordinate, a port, and its direction
(i.e., tuples of the form 〈coor, port,dir〉) constitute the basis
of the model. We shall refer to such an element as an address,
abbreviated a.

The set of valid addresses is denoted by A. It is computed
by a generic function, named AGen. The set of valid input
arguments to AGen is noted PA. These parameters may
represent the dimensions of the network or its number of
nodes. The main proof obligation on AGen is its typing
property.

Proof Obligation 1.

AGen : PA −→A. (3)

Input ports Output ports

Local ports

Position
(coordinate)

Figure 3: Generic view of switches.

Input ports Output ports

Local ports

ID

〈 〉

〈 〉

〈 〉

id,cw, i

id,ccw, i

id,acr, 〈 〉id,acr,

〈 〉

〈 〉

id,cw, o

〈 〉id, loc, i〈 〉id, loc, o

id,ccw, o

i o

Figure 4: Spidergon switch.

Example 2. In the Spidergon NoC, each switch has four
ports: local, clockwise, counterclockwise, and across. The
instantiated address tuple is 〈coor, port,dir〉, where coor is
the switch id, port belongs to {cw, ccw, acr, loc} and dir is
either “i” for input or “o” for output (Figure 4).

The instantiation of function AGen for the Spidergon
network is denoted by SpiderGen. It generates the address
space of the network. The only parameter of this function
is the integer N such that 4 · N is the number of nodes in
the network. Assume N = 4. Then, 〈5, cw, i〉 is a member in
the address space whereas 〈17, ccw, i〉 is not. In general and
in our verification effort, the address space of the Spidergon
contains 4·N·4·2 addresses (4·N is the number of nodes, 4 is
the number of ports per node, and 2 is for the two directions
of each port).

6 EURASIP Journal on Embedded Systems

The ACL2 verification of Proof Obligation 1 for the
Spidergon instantiation is automatic. It involves 4 theorems
and 10 functions.

5.2. Network State. A memory element (buffer) is associated
to each address, noted mem. No assumption is made on that
element. If the address has no storage element, mem is empty.
Otherwise, the structure of this field can be adapted to model
the storage elements of a particular instance.

The state of the network consists of a collection of state
entries, one for each address. Each state entry is a tuple of
the form 〈a,mem, [opt]〉, where a is the node address, mem
gives the state of its memory element(s), and [opt] is an
optional field that may be used for extra information needed
for particular instances (e.g., synchronization signals).

The set of valid states is denoted by S. The set of
valid state entries is denoted by E . An entry exists for each
element of the address space of a network. Four functions
are specified:

(i) Validntkstate, recognizes a valid state;

(ii) StGen, generates the network initial state;

(iii) loadBuffer, loads a message in a buffer;

(iv) readSEntry, returns a state entry.

Function StGen takes as arguments the parameter used to
generate the address space and user-defined parameters, for
example, used to dimension the memory elements. The valid
set of parameters is denoted by Pst. The typing property of
function StGen constitutes a proof obligation.

Proof Obligation 2.

StGen : PA ×Pst −→ S. (4)

Example 3. In our specification of the Spidergon, the
addresses generated by function AGen (Section 5.1) con-
stitute the address field of state entries. We consider that
addresses (or ports) have a one-place buffer. Therefore, the
field mem is either a message or empty, which is represented
by the empty set ∅. (More precisely, a nonempty buffer
contains one message flit. In this section, we write message
for brevity.) We consider the Spidergon with a handshake
transmission protocol. When transferring data from a port ps
to a port pd, signal Rx is used by ps to request a transmission,
and signal Ackrx is used by pd to acknowledge receipt. The
field [opt] of the generic state entry is instantiated by a 2-bit
vector representing the values of these two signals for such a
port. An example of a valid state entry is 〈〈5, cw, i〉,m, 10〉.
This is the state entry of the clockwise input port of node
number 5, which contains message m, and where signal Rx is
1 and signal Ackrx is 0.

The function loadBuffer takes as parameters an address,
a message, and a network state. It updates the contents of
the memory element of the address with the new message.
Let Dmsg be the domain of messages. The following typing
property is a proof obligation for loadBuffer.

Proof Obligation 3.

loadBuffer : A×Dmsg × S −→ S. (5)

Example 4. Function SpiderLoadBuffer(a,m, st) updates the
field mem of the state entry of address a with message m. To
empty a buffer, one loads it with ∅.

The function readSEntry takes as parameters an address
and a network state. It returns the state entry of the address.
The typing property of function readSEntry constitutes a
proof obligation.

Proof Obligation 4.

readSEntr y : A× S −→ E . (6)

Example 5. Function SpiderReadSEntr y(a, st) simply
returns the state entry with address a.

The most important proof obligation establishes that
each state entry corresponds to a valid address (e.a accesses
the address field of the state entry).

Proof Obligation 5.

p1 ∈ PA, p2 ∈ Pst,

e ∈ StGen(p1, p2) ⇐⇒ e.a ∈ AGen(p1).
(7)

Example 6. The ACL2 verification of this state specification
for Spidergon is largely automatic, only two additional
lemmas are needed.

6. Transport Layer

This layer is responsible for encapsulating data into packets
suitable for transfer to the network infrastructure or manag-
ing the reverse transaction for delivering messages to the des-
tination node. Our model specifies this encoding/decoding
process as well as the flow control services of the transport
layer.

6.1. Interfaces. The interfaces are modeled by two functions.
Function send represents message encoding, and function
recv specifies decoding. To guarantee the compatibility
between these two functions, a proof obligation states that
their composition is the identity function.

Proof Obligation 6.

∀msg ∈Dmsg , (recv ◦ send)(msg) = msg. (8)

6.2. Network Access Control. The network access control
function checks whether a message can be injected into the
network. This is modeled by function R4D. This function
splits a list l of messages into the list R4D.traveling(l) of
messages that satisfy the departure conditions, and the list
R4D.delayed(l) of delayed messages. (This notation is used

EURASIP Journal on Embedded Systems 7

to represent the constituent of R4D(l) that contains the
traveling messages. Similar notations are used throughout
the rest of this paper) . The three lists belong to Dlm, which
denotes the set of all possible lists of messages.

We can consider various access control conditions.
Example conditions are credits allowed for each node to send
messages (e.g., in the Faust network [3]), or a maximum
number of messages allowed in the network (e.g., in the
Nostrum network [34]).

Function R4D takes as arguments a list of messages and a
user-defined parameter used to model particular departing
conditions. We use “∗” to represent the arbitrary domain
of this parameter. The typing property of function R4D
constitutes a proof obligation.

Proof Obligation 7.

R4D : Dlm ×∗ −→Dlm ×Dlm. (9)

Each one of the outputs of function R4D must be a subset
of the input message list.

Proof Obligation 8.

R4D.delayed(l) ⊆ l ∧ R4D.traveling(l) ⊆ l. (10)

A message cannot be in both lists at the same time, that
is, the intersection of these two lists must be the empty set.

Proof Obligation 9.

R4D.delayed(l)
⋂

R4D.traveling(l) = ∅. (11)

Example 7. The instance of function R4D for the Spidergon
is called SpiderR4D.

We are not aware of any flow control mechanism
for the Spidergon network. Only the message injection
time (simulation step) is considered in SpiderR4D. Each
message can depart if its injection time is equal to the
current simulation step. In that case, it is put in list
SpiderR4D.traveling. Otherwise, it is added to list
SpiderR4D.delayed. Once put in list SpiderR4D.traveling, it
becomes a traveling message, and it will remain in this list in
the recursive calls.

All the proof obligations have been discharged for func-
tion SpiderR4D. Proof Obligation 8 needed 2 intermediate
lemmas for a total proof time of 2.41 seconds. As for Proof
Obligation 9, one intermediate lemma is needed for a proof
time of 1.45 seconds.

7. Network Layer

The Network layer is responsible for the end-to-end (i.e.,
source to destination) message delivery. In particular, it
implements the routing method that determines the inter-
mediate nodes from the source to the destination. The con-
gestion and conflict management of the switching technique
is also a Network layer responsibility [35].

7.1. Routing. Our representation of the routing algorithm
involves the main function Routing that computes all
possible routes from the current position to the destination
for all traveling messages, as well as two auxiliary functions:

(i) RCore, computes all possible routes from the current
position to the destination for one message;

(ii) RLogic, implements the routing logic, that is, com-
putes the next step node.

In case of deterministic algorithms like the Spidergon routing
algorithm, there is only one possible route. Several routes are
feasible when adaptive algorithms are considered.

Function RCore simply applies RLogic recursively. Func-
tion Routing also recursively applies RCore to all messages.
Function RLogic takes two addresses curr and dest as
parameters and computes the next hop on the route from
curr to dest. These three nodes must belong to A.

Proof Obligation 10.

RLogic : A×A −→A. (12)

Example 8. The routing logic determines the possible moves
between two adjacent addresses. The Spidergon routing
logic offers four possible moves: clockwise, counterclockwise,
across, and to the local IP. These four moves are represented
by four functions. For instance, the function for a clockwise
move is as shown in Algorithm 2.

The routing logic, represented by function SpiderRLogic,
is then defined from these four moves following the Spider-
gon routing algorithm described in Section 3 as shown in
Algorithm 3.

This function constitutes a valid instance of function
RLogic and satisfies the above proof obligation.

Function RCore takes as parameters two addresses: the
current one and the destination. In case of deterministic
algorithms, it computes the route from the current node to
the destination by recursive applications of function RLogic.
The set of all possible routes in the network is denoted by R.
Function RCore returns an element of R.

Proof Obligation 11.

RCore : A×A −→R. (13)

Example 9. Function SpiderRCore recursively calls function
SpiderRLogic, as shown in Algorithm 4. This function satis-
fies the above proof obligation.

A route r for a message m is correct if its first element
is the current position of m and its last element is the
destination of m. All addresses of a route must belong to the
address space. Predicate ValidRoutep checks the conjunction
of these conditions (m.curr, and m.dest represent the current
position and destination of m):

ValidRoutep(m, r, A)

� f irst(r) = m.curr ∧ last(r) = m.dest ∧ r ⊆A.
(14)

8 EURASIP Journal on Embedded Systems

function move-clockwise(c) {
if c.dir = i then // internal hop to output port

return 〈c.id, cw, o〉;
else // leave from port 〈c.id, cw, o〉

return 〈(c.id + 1) mod 4 ·N , ccw, i〉;
// enter on port to 〈c.id + 1, ccw, i〉 of neighbor

}

Algorithm 2

function SpiderRLogic(curr,dest) {
RelAd := (dest.id − curr.id) mod 4N ;
if RelAd = 0 then return move-local(curr);
else

if 0 < RelAd ≤ N then
return move-clockwise(curr);

else
if 3 ·N ≤ RelAd ≤ 4 ·N then

return move-counterclockwise(curr);
else return move-across(curr);

}.

Algorithm 3

Function Routing takes as arguments a list of messages
and the address space. It returns a list of routed messages, that
is, messages associated with routes. Dlm denotes the set of
lists of messages, and Dlrm denotes the set of lists of routed
messages.

Proof Obligation 12.

Routing : Dlm ×DA −→Dlrm. (15)

Example 10. Function Routing is instantiated by function
SpiderRouting as shown in Algorithm 5.

Functions first and tail return the first element of a list
and the tail of the list (i.e., the list without its first element).

The well-formedness of the routes produced by function
Routing is expressed by predicate CorrectRoutesp. This pred-
icate takes as arguments a list of messages lm, the list of the
corresponding routed messages lrm, and the address space
A. It verifies that, for every message m of lrm, there exists a
unique routed message rm in lrm such that m and rm have
the same id and that the route of rm is correct with respect to
message m.

CorrectRoutesp(lm, lrm, A) � ∀m ∈ lm,∃rm ∈ lrm,

ValidRoutep(m, rm.route, A)∧m.id = rm.id.
(16)

The main proof obligation guarantees that all routes
produced by function Routing are correct.

function SpiderRCore (c,d) {
if c = d then return d; // at destination
else // do one hop

return list(c, SpiderRCore(SpiderRLogic(c,d),d));
}.

Algorithm 4

function SpiderRouting (lm,nodeset) {
if lm = ∅ then return ∅;
else

m := f irst(lm);
route := SpiderRCore(m.curr,m.dest);
rm := 〈m, route〉; // routed message
return list(rm, SpiderRouting (tail(lm),nodeset));

}.

Algorithm 5

Proof Obligation 13.

CorrectRoutesp(lm,Routing(lm, A), A). (17)

Example 11. We first prove that function SpiderRCore
produces valid routes, that is, its result satisfies predicate
ValidRoutep. The proof proceeds by induction on the length
of a route. The remaining properties are trivial. Overall, the
specification and the validation of the routing algorithm of
Spidergon amount to 1200 lines of ACL2 code. Most of the
difficulty comes from arithmetic reasoning in ACL2.

7.2. Scheduling. Function Scheduling determines the pro-
gression of messages in the network. From a list of messages,
it returns the list of messages that have reached their
destination and the list of messages that are still en route to
their destination. En route messages may be blocked on their
current node or able to move forward. Two layers of the OSI
stack are concerned here

(i) At the Network layer, priorities are used to resolve the
competition for the next resource (e.g., a port). Their
specifications are discussed in Section 7.3. Other
aspects, specific to a switching technique, can also be
implemented at this layer. For example, in wormhole
switching, flits belonging to the same message must
follow the same route in a pipelined fashion, without
the introduction of flits belonging to other messages
between them [36].

(ii) At the data link layer, data transmission follows a
low-level protocol that determines whether the next
resource is ready to receive. This is the purpose of
Section 8.

Function Scheduling takes as arguments a list of routed
messages, the current value of the attempts (of type Datt),
the current network state, and an additional parameter that

EURASIP Journal on Embedded Systems 9

models the priority order to be used. This parameter is user
defined and we use an “∗” to denote its domain. Function
Scheduling returns two lists (en route messages used in the
recursive call of GeNoC, and arrived messages), the updated
attempts, and the updated network state.

Proof Obligation 14.

Scheduling :

Dlrm ×Datt × S ×∗ −→Dlm ×Dlrm ×Datt × S.
(18)

Example 12. WHS is the core function in modeling the
wormhole switching technique. It takes as arguments a list
of routed messages, three accumulators (initially empty)
and the global state. The first two accumulators collect
the messages that are still en route (ER) and those that
have reached their destination (Arr). The last accumulator
(2Bmoved) collects the ports from which a message moves:
their buffer must be emptied (see function WHScheduling
thereafter). WHS returns the three accumulators and a new
state. If a move is possible (lines 10 to 23), the message is
added to 2Bmoved (lines 14 and 21). The memory element of
the target of the hop (second element of the route) is updated
with the content of the message (lines 15 and 22). If the
message has reached its destination, it is added to Arr (line
13). Otherwise, the first address of its route is removed—the
second address becomes its current position simulating the
action of making a hop—and the message is then added to
ER (line 20). If no move is possible, the message is simply
added to ER without any modification (lines 26 to 28) (see
Algorithm 6).

Function WHScheduling is the top level function in the
model of the scheduling policy and the instance of function
Scheduling. It includes the priority ordering between the
ports of a node and the low-level protocols used in the data
link layer. Function WHScheduling first calls these functions
to order its input argument (line 2) and to compute the first
phase of our handshake protocol (line 3). Function rrSort
implements a round-robin priority scheme. Function WHS
is called with empty accumulators (only represented as “. . .”
in the definition).

To build the returned state, WHScheduling empties the
buffer of the addresses that were left by a message (line 9),
produced by function WHS above in accumulator 2Bmoved.
Function free simply loads all these addresses with ∅, the
empty buffer as shown in Algorithm 7.

The main property required for the arrived messages is
that their routes are left unchanged. Predicate ArrivedCorrp
below checks that for every routed message rm′ of the list
lrm′, there exists a routed message rm of the list lrm such
that rm and rm′ have the same id and the same routes r.

ArrivedCorr p(lrm, lrm′) � ∀rm′ ∈ lrm′,∃rm ∈ lrm,

rm.id = rm′.id ∧ rm.r = rm′.r.
(19)

The following proof obligation ensures that the arrived
messages satisfy this predicate.

1: function WHS(lrm,ER,Arr, 2Bmoved, st) {
2: if lrm = ∅ then
3: return list(ER,Arr, 2Bmoved, st);
4: else
5: begin
6: rm := f irst(lrm);
7: r := SpiderTestRoutes.r(st, rm);
8: newst := SpiderTestRoutes.st(st, rm);

// see Section 8
9: end

10: if r /=∅ then // a hop is possible for rm
11: if len(r) = 2 then // rm reached destination
12: begin
13: Arr := insert(rm,Arr);
14: 2Bmoved := insert(rm, 2Bmoved);
15: st′ :=

SpiderLoadBu f f er(Second(r), rm, st);
16: return // recursive call

WHS(tail(lrm),ER,Arr, 2Bmoved, st′);
17: end
18: else // rm still en route
19: begin
20: ER := insert(hop(rm),ER);
21: 2Bmoved := insert(rm, 2Bmoved);
22: st′ :=

SpiderLoadBu f f er(Second(r), rm, st);
23: return // recursive call

WHS(tail(lrm),ER,Arr, 2Bmoved, st′);
24: end
25: else // no move
26: begin
27: ER := insert(rm,ER);
28: return // recursive call

WHS(tail(lrm),ER,Arr, 2Bmoved, st);
29: end
30: }.

Algorithm 6

Proof Obligation 15.

ArrivedCorr p(Scheduling.arr(lrm, a, s, o), lrm). (20)

Similarly, predicate EnrouteCorrp is designed for the
correctness of the enRoute messages and used in the next
proof obligation. Formally, it checks that for every enRoute
message, there exists a routed message of the input list of
Scheduling which has the same id, origin, injection time, and
so forth.

Proof Obligation 16.

EnrouteCorr p(Scheduling.enRoute(lrm, a, s, o), lrm). (21)

The next proof obligation states that the two output lists
of function Scheduling are subsets of the parameter lrm.

10 EURASIP Journal on Embedded Systems

1: function WHScheduling(lrm, att, st, o) {
2: lrm := rrSort(lrm, o); // see Section 7.3
3: rst := SpiderReqTrans(st); // see Section 8
4: EnRoute :=WHS.EnRoute(lrm, . . . , rst);
5: Arrived :=WHS.Arrived(lrm, . . . , rst);
6: 2Bmoved :=WHS.2Bmoved(lrm, . . . , rst);
7: att′ := ConsumeAttempts(att);
8: st′ :=WHS.st(lrm, . . . , rst);
9: st′′ := f ree(2Bmoved, st′);

10: return list(EnRoute,Arrived, att′, st′′);
11: }.

Algorithm 7

Proof Obligation 17.

Scheduling.arr(lrm, a, s, o) ⊆ lrm

∧ Scheduling.enRoute(lrm, a, s, o) ⊆ lrm.
(22)

The last proof obligation states that a message cannot be
in both lists at the same time, that is, the intersection of these
two list is the empty set.

Proof Obligation 18.

Scheduling.arr(lrm, a, s, o)

⋂
Scheduling.enRoute(lrm, a, s, o) = ∅.

(23)

Example 13. For the whole wormhole instance, 17 functions
and 60 lemmas are defined. The detailed figures for the
successive proof obligations (PO) are

PO 15: 4 lemmas, total proof time of 4 seconds;

PO 16: 21 lemmas, total proof time of 47 seconds;

PO 17: 5 lemmas, total proof time of 0.61 seconds;

PO 18: 2 lemmas and largely automatic, 1.18 seconds.

7.3. Priorities. Function PrioSort is used to model the
priority scheme at the Network layer. It takes as parameter
a list of messages and sorts it according to the user-defined
parameter passed to function Scheduling. The priority policy
can be based on a round-robin rule such as in the Hermes
NoC [37], determined by the “age” of the messages like
in Nostrum [34], or any other ordering. The signature of
PrioSort is given by the following proof obligation.

Proof Obligation 19.

PrioSort : Dlm ×∗ −→Dlm. (24)

Example 14. We instantiate the priority scheme with a
round-robin policy, implemented in function rrSort. The
user-defined parameter is simply the initial ordering at a
node. At each simulation step, we permute this ordering. The
initial ordering is loc, cw, ccw, acr, meaning that the local

port has the priority. At every step, this ordering is shifted
starting at the position of the port that has been served in
the current step. For instance, if a node performs a read or a
write to port ccw, the new ordering will be acr, loc, cw, ccw.

Another proof obligation guarantees that PrioSort is
actually a sorting function, that is, its result is a permutation
of its parameter lm. IsPerm(l1, l2) is the predicate that checks
whether l1 is a permutation of l2.

Proof Obligation 20.

IsPerm(PrioSort(lm, o), lm). (25)

Example 15. The instance of the sorting function used in
the Spidergon network needed 270 lines of code. Proof
Obligations 19 and 20 required 13 common lemmas, proven
in 6.92 seconds. One extra intermediate lemma was necessary
for Proof Obligation 19, for a total time of 0.3 seconds. Proof
Obligation 20 was verified in 8.6 seconds.

8. Data Link Layer

The data link layer is responsible for the point-to-point
transmission between two adjacent nodes. In particular,
it implements the transmission protocol. Various types of
protocols exist, such as simple handshake protocols [37] or
sophisticated algorithms based, for instance, on load analysis
[34].

The main function of our representation is TestRoutes
that checks the feasibility of the next hop on the route. As
mentioned in Section 5.2, an optional field can be added to
the network state, for instance, to specify the request and
acknowledge signals of a handshake protocol. In that case,
the protocol is represented using two auxiliary functions:

(i) ReqTrans, expresses the transmission of requests;

(ii) AckTrans, expresses the transmission of acknowledg-
ments.

Function ReqTrans updates the optional fields of the
current state by setting request signals to 1. It takes the
current state as parameter and returns the updated state.

Proof Obligation 21.

ReqTrans : S −→ S. (26)

Example 16. This function is instantiated by function Spi-
derReqTrans. Every port with a nonempty buffer requests
a transfer (we have one-place buffers, thus nonemptiness
means that a flit has to be transferred). Function ActivReq sets
the Rx signal of state element e to 1 as shown in Algorithm 8.

This function statisfies the above proof abligation.

Function AckTrans takes as parameters the current
network state and an address. It returns a new state in which
the acknowledgment signal of this address is set to 1 if
transmission to this address is possible.

EURASIP Journal on Embedded Systems 11

function SpiderReqTrans(st) {
e := f irst(st);
if e.mem = ∅ then // no request

return list(e, SpiderReqTrans(tail(st)));
else // request issued
return list(ActivReq(e),SpiderReqTrans(tail(st)));
}.

Algorithm 8

function SpiderAckTrans(st, a) {
if SpiderReadSEntr y(st, a).mem = ∅ then

return ActivAck(st, a);
else return st;
}

Algorithm 9

Proof Obligation 22.

AckTrans : S ×A −→ S. (27)

Example 17. This function is instantiated by function Spider-
AckTrans, which sets the Ackrx signal to 1 if the target address
has an empty buffer. This is done by function ActivAck (see
Algorithm 9).

Function TestRoutes takes as parameters a state and a
routed message (of type Drm). It returns a new state and a
route. If the route is empty, it means that no route is possible
for the message, that will temporarily remain blocked on its
current node. Otherwise, the next hop on the route is valid
for the message.

Proof Obligation 23.

TestRoutes : S ×Drm −→ S ×R
⋃
{∅}. (28)

Example 18. Function SpiderTestRoutes is the valid Spider-
gon instance of function TestRoutes (see Algorithm 10).

The instance for the handshake protocol needed 80 lines
of ACL2 code.

In the case of adaptive algorithms, several routes would
be possible and the instance of function TestRoutes would
check all possible routes.

Table 1 summarizes the proof effort for the generic model
and for the Spidergon instantiation. Such instantiations
can be performed by an experienced ACL2 user; a good
understanding of the principles and of the proof obligations
of the generic model is necessary. All proof times are
measured on an Intel Core Duo T2400, 1.83 GHz, with
1.5 GBs of RAM.

function SpiderTestRoutes(st, rm) {
r := rm.route;
nxthop := second(r); // possible next hop
st′ := SpiderAckTrans(st,nxthop);
if st′ /= st then

return (st′, r);
else

return (st, ∅);
}.

Algorithm 10

function SpiderGeNoC(M,A, att,T , st, z) {
if SumO f Att(att) = 0 then return list (T ,M);
else

begin
〈TR,D〉 := SpiderR4D(M, z);
〈TM,Arr, att′, st′〉 :=
WHScheduling(SpiderRouting(TR,A), att, st);

return
SpiderGeNoC
(union(TM,D),A, att′,union(Arr,T), st′, z + 1);

end
}.

Algorithm 11

9. GeNoC Instance—Proof—Simulation

9.1. Formal Proof. In the introduction, we sketched the
correctness theorem (1) associated with function GeNoC
that amounts to verifying the property ℘: every message
arrived at some node n was actually issued at some source node
s and originally addressed to node n, and the message reaches
its destination without modification of its content.

In other words, for each arrived message (i.e., each
element of GeNoC.T(M,A, att,T , st, z)), there exists a mes-
sage in M with the same id, the same destination (dest),
and the same content, denoted by f rm. The corresponding
formalization is as follows.

Theorem 1.

∀m ∈ GeNoC.T(M,A, att,T , st, z), ∃m′ ∈M,

m.id = m′.id ∧m.dest = m′.dest

∧m. f rm = m′. f rm.

(29)

Example 19. The GeNoC instance of the Spidergon network
is given in Algorithm 11. It follows the pattern of Section 4,
with the Spidergon instances SpiderR4D, SpiderRouting, and
WHScheduling.

Once the different proof obligations of each component
have been proven, the general correctness property (the the-
orem above) is directly obtained from the instantiated proof
obligations. No additional verification effort is required.

12 EURASIP Journal on Embedded Systems

Table 1: Proofs-size and CPU time.

Proof Number of functions Number of theorems CPU time

Generic model 114 239 86.96 s

Spidergon

Topology (105 ACL2 lines) 10 4 1.23 s

Network state (300 ACL2 lines) 15 10 0.3 s

Access control (220 ACL2 lines) 3 23 6.51 s

Routing (1200 ACL2 lines) 39 90 2092.81 s

Scheduling (2100 ACL2 lines) 17 60 75 s

Priority schemes (270 ACL2 lines) 7 22 17.75 s

Handshake protocol (80 ACL2 lines) 6 3 0.16 s

Table 2: Simulation example.

Id Source Content Destination Flits Time

1 (0 Loc i) (11 12) (8 Loc o) 4 1

2 (1 Loc i) (21 22 23) (8 Loc o) 5 0

3 (4 Loc i) (31) (3 Loc o) 3 2

4 (5 Loc i) (41 42) (3 Loc o) 4 0

Table 3: Routes of the messages.

Id Route

1 (2, (0 Loc i)) (3, (0 Acr o)) (4, (8 Acr i)) (5, (8 Loc o))

2 (1, (1 Loc i)) (2, (1 Acr o)) (3, (9 Acr i)) (4, (9 Ccw o))
(5, (8 Cw i)) (10, (8 Loc o))

3 (3, (4 Loc i)) (4, (4 Ccw o)) (5, (3 Cw i)) (6, (3 Loc o))

4 (1, (5 Loc i)) (2, (5 Ccw o)) (3, (4 Cw i)) (8, (4 Ccw o))
(9, (3 Cw i)) (10, (3 Loc o))

9.2. Simulation. We mentioned in the introduction that
ACL2 provides both a theorem proving system and an
execution engine. With the ACL2 implementation of our
model, we not only perform formal proofs, but we also
can execute the NoC behavior on test cases. A real synergy
is thus obtained. While global safety properties can be
demonstrated with theorem proving techniques, the detailed
analysis of message progression and interaction in the
network still requires the simulation of test scenarios. It is
of utmost importance that these two verification techniques
be applicable to the same model. Our model enables this
synergy.

We now illustrate this characteristic with a simple
simulation of the Spidergon. In the simulation scenario
described by Table 2, four messages are considered. Message
1 is split into 2 flits (hence its total number of flits is 4 due to
the presence of the header flit and of the number of flits one),
message 2 is split into 3 flits (its total number of flits is 5),
and messages 3 and 4 occupy 3 and 4 flits.

The ACL2 execution of GeNoC yields textual results,
made of lists. For readability, we have developed an animated
visualization tool in Java. From ACL2 results in list form, it

Figure 5: Animated ACL2 simulation.

performs an animation of the evolution of the messages in
the network. Figure 5 gives a screenshot of the 5th simulation
step. Flits are numbered in decreasing order, from Nbflits-1
downto 0.

Messages 1 and 2 on the one hand and 3 and 4 on the
other hand have the same destination. The messages follow
the routes given in Table 3, where each location is associated
with the iteration cycle (iteration 1 corresponds to time 0).

Message 1 departs at iteration cycle 2 and reaches the
local port of node 8 before message 2, thus blocking it on
port cw of node 8, as shown on the screenshot, until step 10.
Message 4 arrives on the ccw port of node 4 when the first
flit of message 3 departs on the local port of this node. The
round-robin rule gives the priority to message 3, and message
4 completes its travel to its destination as soon as this node
is freed (step 8). This simulation is faithful to the expected
behavior.

EURASIP Journal on Embedded Systems 13

10. Conclusion

In this paper, we presented a formal metamodel for reasoning
about network specifications, from the transport to the data
link layer of the OSI architectural model. In the metamodel,
the main constituents of an NoC architecture—(1) topology,
(2) interfaces, (3) routing, (4) scheduling—are characterized
by their essential properties rather than their size or detailed
behavior. Reasoning is based on the properties in order to
prove safety correctness statements about the overall network
architecture. In the metamodel, it is proved once and for all
that the characteristic properties of the components imply
the correctness statement.

To instantiate the metamodel on a particular NoC
architecture, one has to fix (1) the node interconnection
and how addresses are formed, (2) the interfaces and state
holding elements of the nodes, (3) the progression of
messages between neighboring nodes and the corresponding
state transition functions, and (4) the priority or conflict
resolution policy. Each one of these decisions is documented
as a high level, executable algorithmic specification for the
corresponding NoC constituent. For each one of them, all
that needs to be done is the proof that the essential properties
hold on the algorithmic specification. This is a modular
proof, each constituent is processed in isolation. The number
of ancillary definitions and intermediate lemmas, the size of
the proof script, and the execution time of the proof system
are reasonable.

Once all the proof obligations for the four constituents
have been discharged, the overall correctness statement holds
on the model of the NoC architecture as an immediate con-
sequence of the proof performed on the metamodel. What
has been obtained at this point is a high-level correctness
statement for a parameterized design. All reasoning has been
made irrespective of the message/flit size, number of nodes,
link width, or other magnitude parameters, all of which will
be set at a later design stage for a particular implementation
of the NoC in a particular circuit.

In our work, the metamodel and its instantiations are
coded in Lisp and the verification flow is supported by
the ACL2 proof system. This is a beneficial feature for the
credibility of our work seen from the point of view of the
NoC designer. The same model that is used for proof is
also executable and can be run dynamically on numeric test
cases. In a previous case study, the Hermes NoC, for which
a VHDL design was available to us, we could show the exact
same results on the same test scenarios between the VHDL
simulation and the GeNoC execution.

The GeNoC metamodel has been instantiated on a
variety of network definitions (Octagon [33], Hermes [37],
Spidergon [10]), and for each topology on the various rout-
ing and scheduling policies considered by their designers. We
are now confident that the current metamodel has reached a
sufficient level of expressiveness to support the usual message
forwarding on regular structures. The correctness statement
discussed in this paper is just one of the many safety
properties that must be established; its merit is twofold. We
believe that we are first to have formally proved it, and it has
served the purpose of demonstrating our approach and proof

process. We are now turning our attention to formalizing the
absence of deadlocks and livelocks in the metamodel.

In terms of formal verification platform for NoCs,
GeNoC constitutes the most abstract layer in the verification
flow. The next step will be the refinement of the metamodel
to support register transfer level. We want to provide a
verification method, supported by proof tools, to show that
a cycle accurate RTL model correctly implements a GeNoC
instantiation and propagate in the process the satisfaction of
the proof obligations. This is the direction of our research in
the near future.

References

[1] L. Benini and G. De Micheli, “Networks on chips: a new SoC
paradigm,” Computer, vol. 35, no. 1, pp. 70–78, 2002.

[2] P. P. Pande, C. Grecu, A. Ivanov, R. Saleh, and G. De Micheli,
“Design, synthesis, and test of networks on chips,” IEEE Design
and Test of Computers, vol. 22, no. 5, pp. 404–413, 2005.

[3] F. Clermidy, D. Varreau, and D. Lattard, “A NoC-based
communication framework for seamless IP integration in
complex systems,” in Proceedings of the International Workshop
on IP-Based System-on-Chip Design (IPSoC ’05), Grenoble,
France, December 2005.

[4] D. Wiklund and D. Liu, “SoCBUS: switched network on
chip for hard real time embedded systems,” in Proceedings
of the 17th International Parallel and Distributed Processing
Symposium (IPDPS ’03), pp. 78–85, Nice, France, April 2003.

[5] A. Sangiovanni-Vincentelli, “Defining platform-based
design,” EEDesign of EETimes, February 2002.

[6] R. Dubey, “Elements of verification,” SOCcentral, March 2005.

[7] J. Schmaltz and D. Borrione, “A functional formalization of on
chip communications,” Formal Aspects of Computing, vol. 20,
no. 3, pp. 241–258, 2008.

[8] D. Borrione, A. Helmy, L. Pierre, and J. Schmaltz, “A generic
model for formally verifying NoC communication architec-
tures: a case study,” in Proceedings of the 1st International
Symposium on Networks-on-Chip (NOCS ’07), pp. 127–136,
Princeton, NJ, USA, May 2007.

[9] M. Kaufmann, P. Manolios, and J. Strother Moore, Computer
Aided Reasoning: An Approach, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2002.

[10] M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and
A. Scandurra, “Spidergon: a novel on-chip communication
network,” in Proceedings of the International Symposium on
System-on-Chip, pp. 1–15, Tampere, Finland, November 2004.

[11] J. S. Chenard, S. Bourduas, N. Azuelos, M. Boulé, and Z. Zilic,
“Hardware assertion checkers in online detection of network-
on-chip faults,” in Proceedings of the Workshop on Diagnostic
Services in Networks-on-Chips, Nice, France, April 2007.

[12] IEEE Std 1850-2005, “IEEE Standard for Property Specifica-
tion Language (PSL),” IEEE, 2005.

[13] K. Goossens, B. Vermeulen, R. van Steeden, and M. Ben-
nebroek, “Transaction-based communication-centric debug,”
in Proceedings of the 1st International Symposium on Networks-
on-Chip (NOCS ’07), pp. 95–106, Princeton, NJ, USA, May
2007.

[14] E. M. Clarke, O. Grumberg, and S. Jha, “Verifying parameter-
ized networks,” ACM Transactions on Programming Languages
and Systems, vol. 19, no. 5, pp. 726–750, 1997.

14 EURASIP Journal on Embedded Systems

[15] S. Creese and A. Roscoe, “Formal verification of arbitrary
network topologies,” in Proceedings of the International Con-
ference on Parallel and Distributed Processing Techniques and
Applications (PDPTA ’99), vol. 2, pp. 1033–1039, Las Vegas,
Nev, USA, June-July 1999.

[16] K. L. McMillan, Symbolic Model Checking, Kluwer Academic
Press, Dordrecht, The Netherlands, 1993.

[17] A. Roychoudhury, T. Mitra, and S. R. Karri, “Using formal
techniques to debug the AMBA system-on-chip bus protocol,”
in Proceedings of the Conference on Design, Automation and Test
in Europe (DATE ’03), pp. 828–833, Munich, Germany, March
2003.

[18] G. Salaün, W. Serwe, Y. Thonnart, and P. Vivet, “Formal
verification of CHP specifications with CADP illustration on
an asynchronous network-on-chip,” in Proceedings of the 13th
IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC ’07), pp. 73–82, Berkeley, Calif, USA, March
2007.

[19] M. Gordon and T. Melham, Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic, Cambridge
University Press, Cambridge, UK, 1993.

[20] P. Curzon, “Experiences formally verifying a network com-
ponent,” in Proceedings of the 9th Annual Conference on
Computer Assurance (COMPASS ’94), pp. 183–193, IEEE Press,
Gaithersburg, Md, USA, June 1994.

[21] R. Bharadwaj, A. Felty, and F. Stomp, “Formalizing inductive
proofs of network algorithms,” in Proceedings of the Asian
Computing Science Conference on Algorithms, Concurrency and
Knowledge (ACSC ’95), pp. 335–349, Pathumthani, Thailand,
December 1995.

[22] Y. Bertot and P. Castéran, Interactive Theorem Proving and
Program Development—Coq’Art: The Calculus of Inductive
Constructions, Springer, Berlin, Germany, 2004.

[23] G. J. Holzmann, “The model checker SPIN,” IEEE Transactions
on Software Engineering, vol. 23, no. 5, pp. 279–295, 1997.

[24] H. Amjad, “Model checking the AMBA protocol in HOL,”
Tech. Rep., Computer Laboratory, University of Cambridge,
Cambridge, UK, September 2004.

[25] B. Gebremichael, F. W. Vaandrager, M. Zhang, K. Goossens,
E. Rijpkema, and A. Radulescu, “Deadlock prevention in
the Æthereal protocol,” in Proceedings of the 13th IFIP WG
10.5 Advanced Research Working Conference Correct Hardware
Design and Verification Methods (CHARME ’05), pp. 345–348,
Saarbrücken, Germany, October 2005.

[26] J. Strother Moore, “A formal model of asynchronous commu-
nication and its use in mechanically verifying a biphase mark
protocol,” Formal Aspects of Computing, vol. 6, no. 1, pp. 60–
91, 1994.

[27] R. S. Boyer and J. Strother Moore, A Computation Logic
Handbook, Academic Press, New York, NY, USA, 1988.

[28] D. Herzberg and M. Broy, “Modeling layered distributed
communication systems,” Formal Aspects of Computing, vol.
17, no. 1, pp. 1–18, 2005.

[29] J. Rushby, “Systematic formal verification for fault-tolerant
time-triggered algorithms,” IEEE Transactions on Software
Engineering, vol. 25, no. 5, pp. 651–660, 1999.

[30] L. Pike, “A note on inconsistent axioms in Rushby’s “sys-
tematic formal verification for fault-tolerant time-triggered
algorithms”,” IEEE Transactions on Software Engineering, vol.
32, no. 5, pp. 347–348, 2006.

[31] L. Pike, “Modeling time-triggered protocols and verifying
their real-time schedules,” in Proceedings of Formal Methods
in Computer Aided Design (FMCAD ’07), pp. 231–238, Austin,
Tex, USA, November 2007.

[32] P. S. Miner, A. Geser, L. Pike, and J. Maddalon, “A unified fault-
tolerance protocol,” in Proceedings of the Joint International
Conferences on Formal Modeling and Analysis of Timed Systmes
and Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems (FTRTFT ’04), Y. Lakhnech and S. Yovine, Eds., vol. 3253
of Lecture Notes in Computer Science, pp. 167–182, Springer,
Grenoble, France, September 2004.

[33] F. Karim, A. Nguyen, and S. Dey, “An interconnect architecture
for networking systems on chips,” IEEE Micro, vol. 22, no. 5,
pp. 36–45, 2002.

[34] A. Jantsch, “Models of computation for networks on chip,” in
Proceedings of the 6th International Conference on Application
of Concurrency to System Design (ACSD ’06), pp. 165–176,
IEEE Computer Society, Turku, Finland, June 2006.

[35] A. Tanenbaum, Computer Networks, Prentice-Hall, Englewood
Cliffs, NJ, USA, 2002.

[36] W. Dally and B. Towles, Principles and Practices of Interconnec-
tion Networks, Morgan Kaufmann, San Francisco, Calif, USA,
2003.

[37] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost,
“HERMES: an infrastructure for low area overhead packet-
switching networks on chip,” Integration, the VLSI Journal, vol.
38, no. 1, pp. 69–93, 2004.

