
UC Irvine
ICS Technical Reports

Title
A formal evaluation of data flow path selection criteria

Permalink
https://escholarship.org/uc/item/9s56v6br

Authors
Clarke, Lori A.
Podgurski, Andy
Richardson, Debra J.
et al.

Publication Date
1988

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9s56v6br
https://escholarship.org/uc/item/9s56v6br#author
https://escholarship.org
http://www.cdlib.org/

A Formal Evaluation of
Data Flow Path Selection Criteria

(Technical Report 88-25)

Lori A. Clarket
Andy Poagursf:it

Debra J. Richardson:j:
Steven J. Zeilt

June 1988

tComputer and Information Science Department

University of Massachusetts

Amherst, Massachusetts 01003

:j:Information and Computer Science Department

University of California

Irvine, California 92717

Keywords: Software Testing, Path Selection, Data Flow Analysis

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

/! /

This work was supported by grants DCR-8404217 from the National Science Foundation, CCR-87044 78 from the

National Science Foundation with cooperation from the Defense Advanced Research Projects Agency (ARPA Order

6104), CCR-8704311 from the National Science Foundation with cooperation from the Defense Advanced Research

Projects Agency (ARPA Order 6108), 84Ml03 from Control Data Corporation, and F30602-86-C-0006 from the

Rome Air Development Center.

ABSTRACT

A number of path selection criteria have been proposed throughout the years. Unfortunately,

little work has been done on comparing these criteria. To determine what would be an effective

path selection criterion for revealing errors in programs, we have undertaken an evaluation of these

criteria. This paper reports on the results of our evaluation of path selection criteria based on data

flow relationships. vVe show how these criteria relate to each other, thereby demonstrating some

of their strengths and weaknesses. In addition, we suggest minor changes to some criteria that

improve their performance. We conclude with a discussion of the major limitations of these criteria

and directions for future research.

1. INTRODUCTION

One of the concerns of software testing is selecting test data that will adequately exercise the

various statements in a program. Stucki showed that, left to their own devices, progranuners do

a poor job of selecting test data that provide good program coverage (Stuc73]. This has led to

the development of a number of coverage criteria. A path coverage criterion is satisfied by certain

sets of paths through a program, where a path is a sequence of statements. An effective criterion

requires paths with a high probability of revealing errors - that is, when the program is run with

test data that cause the selected paths to be executed, there is a high probability that errors, if they

exist, will be exposed by those test runs. Of course, the effectiveness of such a criterion depends

not only on the selected paths but also on the test data for those paths. In this paper, we do not

address the test data selection problem but look only at the path selection problem.

Testing all the paths in a program is usually impossible, because programs often contain an

infinite number of paths. Thus, a practical path selection criterion should specify only a finite

subset of a program's paths. It is generally agreed that, at a minimum, this subset should require

that every branch, and thus every statement, in a program be executed at least once. It has

been repeatedly shown that this minimum requirement, although important, is far from effective.

Several other factors, such as loop coverage and data relationships, should also be considered.

Thus, there have been a number of more thorough path selection criteria proposed throughout

the years (Howd75,Lask83,NtaJ84,Rapp85,Wood80]. Unfortunately, there has been little work done

on comparing or evaluating the different criteria. We are currently undertaking a study of path

selection criteria, working toward the formulation of a more ·effective criterion that builds upon the

strengths of existing ones. As a first step in this study, we are evaluating the path selection criteria

1

that are based on data flow relationships [Lask83,Ntaf84,Rapp85). This paper reports on how these

criteria relate to each other and demonstrates some of their strengths and weaknesses.

The authors of these criteria defined them using different terminologies. To facilitate the com­

parison and simplify the discussion, we define all the criteria using a single set of terms. Although

our definitions of the criteria are usually equivalent in meaning to those originally given, some are

not. This occurs for two reasons. First, some of the original definitions are ambiguous. Second,

the original, formal definitions of the criteria often differ from the stated intent of their authors. In

both cases we have tried to redefine the criteria in ways that strengthen them yet seem consistent

with the intent of their authors.

In this paper, we formally compare data fl.ow path selection criteria. The next section defines

the terms we use throughout this paper. Section 3. defines the criteria we are evaluating using

the terminology presented in Section 2. In Section 4. we compare each criterion to the others and

present a subsumption graph showing their relationships. One of the major weaknesses of all these

criteria is that they are solely based on syntactic information and do not consider semantic issues·

such as infeasible paths. The conclusion discusses the infeasible path problem as well as other

issues that must be considered in order to evaluate these criteria more meaningfully and, more

importantly, in order to formulate a more effective path selection criterion. This paper lays the

foundation for such future research.

2. TERMINOLOGY

Our evaluation considers the application of a path selection criterion to a module. To simplify

the discussion, we assume a module is either a main program or a single subprogram and has only

2

one entry and one exit point. In applying a path selection criterion, a module is represented by a

directed graph that describes the possible flow of control through the module. A control flow graph

of a module AI is a (not necessarily unique) directed graph G(M) = (N, E, nstart, nfina.l), where

N is the (finite) set of nodes, E ~ N x N is the set of edges, nsta.rt E N is called the start node,

and nfinal E N is called the final node. Each node in N, except the start node and the final node,

represents a statement fragment in M, where a statement fragment can be a part of a statement

or a whole statement. vVe assume the control flow graphs are defined so that each assignment

statement and procedure call is represented by a node, as is the predicate from each conditional

statement. For each pair of distinct nodes m and n in N for which there is a possible transfer of

control from the statement fragment represented by m to that represented by n, there is a single

edge (m, n) in E. There is also an edge in E from the start node to the entry point of M and an

edge in E from the exit point to the final node. We also assume that E contains no edges of the

form(n,n).

A control fl.ow graph defines the paths within a module. A subpath in G(M) is a finite, possibly

empty, sequence of nodes p = (n1, n2, ... , n1p1)1such that for all i, 1 ~ i < IPI, (ni, ni+1) E E. A

subpath formed by the concatenation of two subpaths Pl and P2 is denoted by Pl · P2. An initial

subpath is a subpath whose first node is the start node nsta.rt. A path is an initial subpath whose

last node is the final node, nfina.l· The set of all paths in G(M) is denoted by PATHS(M). The

graph G(AI) is well-formed iff every node in N occurs along some path in PATHS(M). In this

paper, we consider only well-formed control fl.ow graphs.

A loop of a control fl.ow graph G(M) is a strongly-connected subgraph of G(M) corresponding

1 We denote the length of (the number of elements in) a sequence s by isl.

3

tn a looping construct in module M. An entry node of a loop L is a node n in L such that there is

an edge (m, n) in G(M), where mis not in L. An exit node for Lis a node n outside L such that

there is an edge (m, n) in G(A1), where mis in L. \Ve assume that all loops have single entry and

single exit nodes.

\Ve will frequently need to distinguish between several types of subpaths that visit loops. A

cycle is a subpath of length 2:: 2 that begins and ends with the same node. A cycle (n) · p · (n) such

that the nodes of p are distinct and do not include n is called a simple cycle. A traversal of a loop L

is a subpath within L that begins with the entry node of L, does not return to that node, and ends

with a predecessor of either the entry node or the exit node of L. A traversal of a loop represents a

single iteration of the loop or possibly a "fall through" execution of the loop. A subpath is said to

traverse a loop L if the subpath contains a traversal of L. Finally, consider a complete execution of

a loop, which consists of one or more consecutive traversals of that loop. A complete loop-subpath

or cl-subpath for a loop L is a subpath (m) · p · (n) such that p is a nonempty subpath lying entirely

within L and m and n occur outside L. A cl-subpath represents a fall-through execution of a loop

or contains at least one cycle.

The path selection criteria described in this paper are based on data flow analysis and thus are

concerned with definitions and uses of variables. Let x be a variable in a module M. A definition

of x is associated with each node n in G(M) that represents a statement fragment that can assign

a value to x; this definition is denoted by dn(x). The set of variables for which there is a definition

associated with a particular node n is denoted by DEFINED(n). A use of x is associated with each

node n in G(lvf) that represents a statement fragment that can access the value of x; this use is

4

denoted by un.(x)2
. The set of variables for which there is a use associated with a particular node

n is denoted by USED(n).

A use Un (x) is called a predicate use iff node n represents the predicate from a conditional branch

statement; otherwise Un (x) is called a computation use. Note that a predicate use is associated

with any node having two or more successors. A node representing a predicate is assumed to have

at least one variable use but no definitions associated with it.

Data flow analysis is concerned not only with the definitions and uses of variables, but also with

subpaths from definitions to statements where those definitions are used. A definition-clear subpath

with respect to (wrt) a variable xis a subpath p such that for all nodes n inp, x ~ DEFINED(n). A

definition dm(x) reaches a use un(x) iff there is a subpath (m) · p · (n) such that pis definition-clear

wrt x. It is possible that a given definition might not reach any use or that a given use might not

be reached by any definition. Since these anomalies are normally considered to be errors and are

easily detectable by static analysis [Oste76), we assume that every definition of a variable x reaches

at least one use of x and that every use of x is reached by at least one definition of x.

When a module receives information from a calling module via parameters or global variables,

we add a node, nin, to the control fl.ow graph and associate with it definitions of those variables

importing information. The edge (n~tarti m), where mis the node representing the entry point of

the module, is replaced by the edges (n~tart, nin) and (nin, m). We assume that there is at least one

definition associated with a control fl.ow graph, although this definition may be associated with nin.

Similarly, when a module returns information via parameters or global variables, we add a node,

nout, to the control flow graph and associate with it uses of those variables exporting information

2 When nodes are subscripted, as in ni, we abbreviate dni(x) to di(x) and abbreviate Uni(x) to Ui(x).

5

from the module. The edge (m, nfinat), where m is the node representing the exit point of the

module, is replaced by the edges (m, nout) and (nout, nfinat)
3

.

A path selection criterion, or simply a criterion, is a predicate that assigns a truth value to

any pair (M, P), where Mis a module and Pis a subset of PATHS(AI). A pair (M, P) satisfies a

criterion C iff C(M, P) = true. A path selection criterion C1 subsumes a criterion C2 iff every pair

(AI, P) that satisfies C1 also satisfies C2 . Two criteria are equivalent i:ff each subsumes the other.

A criterion C1 strictly subsumes a criterion C2 iff C1 subsumes C2 but C2 does not subsume C1.

Two criteria are incomparable i:ff neither criterion subsumes the other. Note that the subsumption

relation defines a partial order on any set of path selection criteria.

3. DEFINITIONS OF THE CRITERIA

In this section, we define the family of path selection criteria proposed by Rapps and Weyuker,

the Required k-Tuples criteria proposed by Ntafos, and the three criteria proposed by Laski and

Kor el.

3.1 The Rapps and Weyuker Family of Criteria

Rapps and Weyuker define a family of path selection criteria and analyze these criteria in an

attempt to specify the subsu~ption relationships that exist among the members of the family

[Rapp81,Rapp82,Rapp85,Weyu84). This family includes three well-known control flow criteria and

some new path selection criteria based on the concepts of data flow analysis.

3 Note that since n .• f.nr·t and nfinal do not represent statement fragments, there are no definitions or uses associated

with either node.

6

The control flow criteria considered by Rapps and Weyuker are All-Paths (path coverage), All-

Edges (branch coverage), and All-Nodes (statement coverage). The All-Paths criterion requires

that a path set contain every path through a module's control flow graph. The All-Edges and

All-Nodes criteria require that a path set cover every edge and every node, respectively.

The pair (M, P) satisfies the All-Paths criterion if! P = PATHS(M).

The pair (M, P) satisfies the All-Edges criterion if! for all edges e, there is at least

one path in P along which e occurs.

The pair (Al, P) satisfies the All-Nodes criterion if! for all nodes n, there is at least

one path in P along which n occurs.

It is well-known that (for well-formed graphs) All-Paths subsumes All-Edges, which subsumes All-

Nodes. For most modules M, the only pairs (M, P) that satisfy the All-Paths criterion are those

whose path set P is infinite. Thus, All-Paths is not useful for such modules. On the other hand,

important combinations of nodes and/or edges might not be required by either All-Edges or All-

Nodes. The data flow criteria developed by Rapps and Weyuker distinguish combinations that are

important in terms of the flow of data through a module. Their criteria direct the selection of

definition-clear subpaths between definitions and uses reached by those definitions.

Rapps and Weyuker first define a criterion that forces each definition to be used. The All-Defs

criterion requires that a path set contain at least one definition-clear subpath from each definition

to some use reached by that definition.

The pair (M, P) satisfies the All-Defs criterion if! for all definitions dm(x), there is at

least one subpath (m) · p · (n) in P such that p is definition-clear wrt x and there is a

use un(x).

Next, Rapps and Weyuker define a criterion that requires that all uses reached by a definition

be covered. The All-Uses criterion requires that a path set contain at least one definition-clear

7

subpath from each definition to each use reached hy that definition and each successor of the use.

The significance of the successor node is that it forces all branches to be taken following a predicate

use.

The pair (M, P) satisfies the All-Uses criterion iff for all definitions dm (x), all uses

u.n(x) reached by dm(x), and all successors n' of node n, P contains at least one subpath

(m) · p · (n, n') such that pis definition-clear wrt x.

Rapps and Weyuker define three criteria that are similar to All-Uses but that distinguish be-

tween computation uses and predicate uses. The All-C-Uses/Some-P-Uses criterion requires that a

path set contain at least one definition-clear subpath from each definition to each computation use

reached by that definition; if the definition reaches only predicate uses, the path set must contain

at least one definition-clear subpath from the definition to a predicate use.

The pair (M, P) satisfies the All-C-Uses/Some-P-Uses criterion iff for all definitions

dm(x):

1. For all computation uses Un (x) reached by dm (x), P contains at least one subpath

(m) · p · (n) such that p is definition-clear wrt x;

2. If there is no computation use of x reached by dm (x), then for at least one predicate

use Un (x), P contains a subpath (m) · p · (n) such that p is definition-clear wrt x.

The All-P-Uses/ Some-C-Uses criterion requires that a path set contain at least one definition-clear

subpath from each definition to each predicate use reached by that definition and each successor

of that use; if the definition reaches only computation uses, the path set must contain at least one

definition-clear subpath from the definition to a computation use.

The pair (M, P) satisfies the All-P-U ses/Some-C-Uses criterion iff for all definitions

dm(x):

1. For all predicate uses Un (x) reached by dm (x) and all successors n' of node n, P

contains at least one subpath (m) · p · (n, n') such that p is definition-clear wrt x;

8

2. If there is no predicate use of x reached by dm (:r), then for at lea.st one computation

use Un (x), P contains a subpath (m) · p · (n) such that p is definition-clear wrt x.

The All-P- Uses criterion requires that a path set contain at. least one definition-clear subpath from

each definition to each predicate use reached by that definition and each successor of the use.

The pair (Af,P) satisfies the All-P-Uses criterion iff for all definitions dm(x), all

predicate uses un(x) reached by dm(x)
1

and all successors n 1 of node n
1

P contains at

least one subpath (m) · p · (n, n
1

) such that p is definition-clear wrt x.

The final criterion, All-DU-Paths (DU stands for definition-use), goes a step further than All-

Uses; rather than requiring one definition-clear subpath from every definition to all the successor

nodes of each use reached by that definition, All-DU-Paths requires every such definition-clear

subpath that is -a simple cycle or is cycle-free. This limitation on cycles is included to ensure that

the path set is finite.

The pair (.M, P) satisfies the All-DU-Paths criterion iff for all definitions dm(x), all

uses Un (x) reached by dm (x), and all successor nodes n' of n, P contains every subpath

(m) · p · (n, n') such that (m) · p · (n) is a simple cycle or is cycle-free and p is definition­

clear wrt x.

3.2 Ntafos' Required k-Tuples Criteria

Ntafos also uses data flow "information to overcome the shortcomings of using control flow

information alone to select paths. He defines a class of path selection criteria, based on data flow

analysis, called Required k-Tuples [Ntaf81,Ntaf82,Ntaf84]. These criteria require that a path set

cover chains of alternating definitions and uses, called k-dr interactions. In a k-dr interaction,

each definition reaches the immediately following use, which occurs at the same node as the next

definition in the chain. Thus a k-dr interaction propagates information along a subpath, which is

g

called an interaction subpath for the k-dr interaction.

The Required k-Tuples criteria are only defined for k 2 2. For k ~ 2, a k-dr interaction is a

sequence K = [d1 (xi), u2(x 1), ... , dk- t (xk-d, uk(xk_ i)] of k - 1 definitions and k - 1 uses associated

with k distinct nodes n 1 ,n2 , ... ,nk, where for all i, 1 :Si< k, the ith definition di(xi) reaches

the ith use Ui+i(xi). Note that, although the nodes must be distinct, the variables x 1 , x 2 , ... , Xk-l

need not be distinct. An interaction subpath for K is a subpath p = (ni) · P1 · ... · (nk_ i) ·Pk-I · (nk)

such that for all i, 1 :S i < k, subpath Pi is definition-clear wrt Xi.

A Required k-Tuples criterion is satisfied by a pair (M, P) only if there is at least one interaction

sub path in P for every l-dr interaction in G(M), 2 :S l :S k. In addition, P must exercise certain

branches and loops with particular kinds of subpaths. To exercise all branches from a predicate

use u1(xt-i) that ends an l-dr interaction--\, P must contain a subpath p · (m) for each successor

m of node nt, where pis an interaction subpath for ,,\. To exercise loops, if L is the innermost

loop containing the first definition or last reference of an l-dr interaction --\, then P must contain

subpaths that both cover ,,\ and exercise L a minimal and larger number of times.

In Ntafos' definition of the Required k-Tuples criteria, definitions and uses of all the variables in

a module are associated with a "source" and "sink" node, respectively. To achieve the same effect,

we require that: (1) the contr<?l flow graphs to which Ntafos' criteria are applied always contain

the nodes nin and nout, (2) definitions of all variables (not just those that import information)

are associated with nin, and (3) uses of all variables (not just those that export information) are

associated with nout.

We now formally define the Required k-Tuples criteria. Let k be a fixed integer, k 2:: 2.

10

The pair (M, P) satisfies the Required k-Tuples criterion iff for all l-dr interactions

,\ in G(M), 2 s; ls; k, each of the following conditions holds:

1. For all successors m of the node nt associated with the last use in ,\
1

P contains a

subpath p · (m) such that p is an interaction subpath for ,\;

2. If the node ni associated with the first definition in ,\ occurs in a loop, then P

contains subpaths p = P1 · (ni) · P2 · p3 and p' = Pi · (ni) · p~ · p; such that: (ni) · P2 · p3

and (ni) · p~ · p; begin with interaction subpaths for ,\ 1 Pl · (n 1) · p2 is a cl-subpath

for the loop L immediately containing n 1
4 that traverses L a minimal number of

times, and Pi · (n1) · p~ is a cl-subpath for L that traverses L some larger number

of times,·

3. If the node n1 associated with the last use in ,\ occurs in a loop, then P contains

subpaths p =Pt · P2 · (nt) · p3 and p' =Pi · p~ · (nt) · p~ such that: Pl · p2 · (nt) and

Pi · p~ · (nt) end with interaction subpaths for ,\ 1 p 2 • (nt) · p3 is a cl-subpath for the

loop L immediately containing nl that traverses L a minimal number of times, and

p~ · (nt) · p; is a cl-subpath for L that traverses L some larger number of times.

Our definition for a Required k-Tuples criterion differs from that given by Ntafos in that ours

require interaction subpaths for every l-dr interaction where l :::; k, while his merely requires

interaction subpaths only for every k-dr interaction .. Ntafos' Required k-Tuples criterion does not

necessarily subsume his Required (k - 1)-Tuples criterion for a fixed k > 2, because for any module

there exists a constant n such that there are no k-dr interactions fork > n. It is clear from Ntafos'

examples, however, that he did intend the Required k-Tuples criterion to subsume the Required

(k - 1)-Tuples criterion fork> 2. Our definition of the criteria assures this.

3.3 The Laski and Korel Criteria

Laski and Korel define three path selection criteria based on data flow analysis [Lask83]. Their

criteria emphasize the fact that a given node may contain uses of several different variables, where

each use may be reached by several definitions occurring at different nodes. Laski's and Korel's

4
A loop L immediately contain" a node iff L contains the node and there is no subloop of L that also contains it.

11

criteria are concerned with selecting subpaths along vvhich the various combinations of definitions

reach the node. \Ve refer to their three criteria as the Reach Coverage criterion, the Context

Coverage criterion, and the Ordered Context Coverage criterion.

The Reach Coverage criterion was originally defined by Herman [Herm76]. It requires that

a path set contain at least one subpath between each definition and each use reached by that

definition.

The pair (M, P) satisfies the Reach Coverage criterion iff for all definitions dm(x)

and all uses un(x) reached by dm (x), P contains at least one subpath (m) · p · (n) such

that p is definition-clear wrt x.

Before defining the remaining two criteria, some additional terminology must be introduced.

Let n be a node in a control flow graph G(AI), and let { x1 , x 2 , ... , xk} be a nonempty subset

of USED(n). An ordered definition context of node n is a sequence of definitions ODC(n) =

p · (n), called an ordered context subpath for ODC(n), with the following property: for all i,

1 S i S k, p = Pi · (ni) · qi, where di(xi) occurs at ni and qi is definition-clear wrt Xi and for all j,

i < j S k, either ni = nj or nj occurs along qi. Thus, an ordered definition context of a node is a

sequence of definitions that occur along the same subpath and that reach uses at that node via the

subpath. The order of the definitions in the sequence is the same as their order along the subpath.

An ordered context subpath for an ordered definition context is a subpath along which the ordered

definition context occurs.

Again, let n be a node in a control flow graph G(M), and let { x1, x2, ... , xk} be a nonempty sub-

set of USED(n). A definition context of node n is a set of definitions DC(n) = {d1(x1), d2(x2), ... ,

dk(xk)} some permutation of which is an ordered definition context of n. There is, in general, a

12

J

many-to-one relationship between the ordered definition contents of n and the definition contexts

of n. A context subpath for a DC(n) is a subpath along which DC(n) occurs. Any ordered context

subpath for an ODC(n) is a context subpath for the corresponding DC(n).

The Context Coverage criterion requires that a path set cover every definition context in a

module; the Ordered Context Coverage criterion requires that every ordered definition context

be covered. The Context Coverage and Ordered Context Coverage criteria defined here differ

somewhat from those originally defined by Laski and Korel, who require a definition context or

o.rdered definition context of a node to include definitions of all variables used at the node, instead

of any subset. Thus the criteria we define require paths to a statement even when there is no path

that defines all the variables used at the statement - a situation that might legitimately occur,

for example, if the statement calls a procedure that references some of its parameters conditionally.

We now formally define the Context Coverage and Ordered Context Coverage criteria:

The pair (Af, P) satisfies the Context Coverage criterion iff for all nodes n and for

all definition contexts DC(n), P contains at least one context subpath for DC(n).

The pair (M, P) satisfies the Ordered Context Coverage criterion iff for all nodes n

and for all ordered definition contexts 0 DC (n), P contains at least one ordered context

subpath for ODC(n).

4. ANALYSIS OF THE CRITERIA

In this sectiori we investigate the subsumption relationships between the criteria presented

in Section 3. We feel that this analysis is important in understanding the differences between the

criteria. Clearly no new criteria should be proposed without first demonstrating where those criteria

fit into the subsumption hierarchy and the significance of those differences. The analysis is based

upon a "reasonable" model of an annotated control flow graph. As noted previously, we took great

13

care in formulating the criteria in terms of this model so that the results of our analysis would not

be biased based on our choice of model or the redefinition of the criteria in terms of that model.

For the most part the model is similar to that usually assumed by those doing such analysis but

the failure to explicitly define the model has led to misunderstandings or inaccurate analysis in

the past. Thus, before presenting the analysis results we remind the reader of the assumptions

developed in Section 2.

1. There are no edges of the form (n, n,,tart) or (nfinal, n);

2. There are no edges of the form (n, n);

3. Every control flow graph is well-formed;

4. Every loop has a single entry and single exit node;

5. At least one variable use is associated with a node representing a predicate;

6. No variable definitions are associated with a node representing a predicate;

7. Every definition of a variable reaches at least one use of that variable;

8. Every use of a variable is reached by at least one definition of that variable;

9. Every control flow graph contains at least one variable definition;

10. No variable definitions or uses are associated with n,,tart or nfina.l ·

4.1 Evaluating the Rapps and Weyuker Hierarchy

The Rapps and Weyuker path selection criteria defined in Section 3. are presented in (Fran85),

[Rapp8 l], [Rapp82), [Rapp85], [Weyu84). In these papers, Rapps and Weyuker give the subsump­

tion relationships between their criteria illustrated by graph of Figure 1. Because Rapps and

Weyuker do not offer a proof that All-DU-Paths strictly subsumes All-Uses, we prove it here.

First, however, we must prove a graph-theoretic lemma.

14

All-Paths

All-DU-Paths

All-Uses

All-C- Uses/ Some-P-Uses All-P-U ses/Some-C-U ses

All-Defs

All-P-Uses

All-Edges

All-Nodes

Figure 1: The Rapps and Weyuker Subsumption Hierarchy.

15

Lemma 1 Let (m) · p · (n) be a subpath in a control flow graph G(M), such that there is a definition

dm (x) and p is definition-clear wrt x. Then there exi8ts a subpath r = (m) · p' · (n) in G(AI) such

that r is cycle-free or is a simple cycle, and p' is definition-clear wrt x.

Proof. Since pis definition-clear wrt x, m does not occur along p, and if n occurs along

p then n has a first occurrence. Thus, there is a subpath (m) · q · (n) in G(M) such that

neither m nor n occurs along q and q is definition-clear wrt x. If q is cycle-free then we

may let T = (m) · q · (n).

Suppose, however, that q contains one or more cycles. It is a well-known result that if

there exists a subpath (m) · q · (n) in a graph such that q is not cycle-free, then there

exists a sub path (m) · q1
• (n) in the graph, where q1 is cycle-free and is obtained by

deletion of nodes from q. Since no definitions have been added to q1
, q' is definition

dear wrt x. Thus, we may let r = (m) · q' · (n). !- I

Theorem 1 The All-DU-Paths criterion strictly subsumes the All- Uses criterion.

Proof. We first prove that the All-DU-Paths criterion subsumes the All-Uses criterion.

Suppose the pair (M, P) satisfies All-DU-Paths. Let dm(x) be a definition, let un(x)
be a use reached by dm (x), and let n' be a successor of node n. To prove that (lvl, P)

satisfies All-Uses, it is sufficient to show that P must contain at least one subpath of

the form

(m) · p · (n, n'), (1)

where p is definition-clear wrt x. Since dm (x) reaches Un (x), there is a subpath (m) ·

q · (n, n') in G(M) such that q is definition-clear wrt x. Thus, by Lemma 1, there is

a subpath T = (m) · q1
· (n,n') in G(M) such that (m) · q' · (n) is cycle-free or is a

simple cycle and q' is definition-clear wrt x. Since (lvf, P) satisfies All-DU-Paths, P

must contain r. But T is of the form shown in (1), and so (M, P) satisfies All-Uses.

Since (M, P) was any pair satisfying All-DU-Paths, that criterion subsumes All-Uses.

We now show that All-Uses does not subsume All-DU-Paths. Consider the module M 2

and its control flow graph G(M2), both shown in Figure 2. The pair (lvf2 , P2) satisfies

All-Uses, where

It does not satisfy All-DU-Paths, however, because P does not contain all subpaths of

the form (ni) · p · (na, nfinat), where p is definition-clear wrt y. In particular, P does

not contain the subpath (n1,n2,n3,n4,ne,nfinal)· Thus, All-Uses does not subsume

All-DU-Paths. ~

16

n1 input (x' y) ;

n::i if x < 0 then

713 x 1;

end if;

11.1 if y > 0 then

T1 -rJ y := O;

end if;

ng output (x' y) ;

Figure 2: Module M 2 and its control flow graph G(Af2).

4.2 Incorporating Ntafos's Required k-Tuples Criteria

In this section, we compare Ntafos's Required k-Tuples criteria to the Rapps and Weyuker

criteria. First, Ntafos' criteria form a hierarchy.

Theorem 2 Each Required k-Tuples criterion strictly subsumes the Required (k - 1)-Tuples crite­

rion .

.• ..>roof. Obvious from the definition.

The All-Paths criterion obviously subsumes each of the Required k-Tuples criteria. None of the

Required k-Tuples criteria subsume the All-Defs criterion, because the Required k-Tuples criteria

do not require that a variable definition be covered if its only use is at the node where the definition

occurs. The All-DU-Paths criterion does not subsume any of the Required k-Tuples criteria, because

All-DU-Paths does not require each loop containing a definition or use to be tested with at least

17

-- initial, blank, and er are constants.

state : = initial;

repeat

n 2 input (char);

n~ if char E {blank, er} then

--The procedure f sa takes char

--and state as inputs and yields

--state and accept as outputs.

fsa (state, char, accept);

end if;

until char = er;

output (accept) ;

F,:; ~lBrl

d
4

(state),d
4

(accept)

u
4

(state) ,u
4

(ch.ar)

u
6

(accept)

Figure 3: Module M3 and its control flow graph G(.M3).

t\Yo d-subpaths as the Required k-Tuples criteria do. These last two facts imply that the Required .

k-Tuples criteria are incomparable to all the criteria that are subsumed by All-DU-Paths and that

subsume All-Defs. Because the Required k-Tuples criteria require that both edges from a branch

predicate be covered, they do subsume the All-P-Uses criterion. We now formally state and prove

each of these relationships.

Theorem 3 There is no Required k-Tuples criterion that subsumes the All-Defs criterion.

Proof. Consider the module M3 and its control flow graph G(.M3), both shown in

Figure 3. The 2-dr interactions associated with G(.M3) are as follows:

18

[d 1n(accept), u6 (accept)],

[d1(state), u4(state)],

[d2(char), u3(char)],

[d2(char), u5(char)],

[d4(state), U0 ut(state)],

[d4(accept), u5(accept)],

[dm (accept), U 0 ut (accept)],

[d1(state), U 0 ut(state)],

[d2(char), u4(char)],

[d2(char), U 0 ut(char)],

[d4(accept), Uout (accept)].

The 3-dr interactions associated with G(M 3) are:

[di(state), u4(state), d4(state), U0 ut(state)],

[di (state), u4 (state), d4(accept), u5(accept)],

[d1(state), u4(state), d4(accept), U0 ut(accept)],

[d2(char), u4(char), d4(state), U0 ut (state)],

[d2(char), u4(char), d4(accept), ue(accept)],

[d2(char), u4(char), d4(accept), U 0 ut (accept)].

There are no k-dr interactions associated with G(M3) for k > 3. The pair (M3, P)

satisfies each Required k-Tuples criterion, where P = {p1, p 2, p3} and

P1 = (n,,tart' nin' ni' n2, n3, n4, n5' n2' n3, n5' ne, nout' nfinat),

P2 = (n,,tart, nin, ni, n2, n3, n4, n5, ne, nout, nfinat),

p3 = (n,,tart' nin' ni' n2' n3' n5' ne' nout' nfinal).

This pair contains interaction subpaths for the 2-dr and 3-dr interactions associated with

G(AI 3) and contains the additional subpaths required because some of these interactions

begin or end in loops and because some end in branch predicates. Although the Required

k-Tuples criteria artificially introduce a use of state at nout, for All-Defs the only use

of d4(state) is at n 4 . Thus, (M3 , P) does not satisfy the All-Defs criterion, because P

does not contain a subpath (n 4) · p · (n 4) such that pis definition-clear wrt the variable

state. r-i

Corollary 1 The All-Paths criterion strictly subsumes each of the Required k-Tuples criteria.

Theorem 4 The All-DU-Paths criterion does not subsume the Required 2-Tuples criterion.

Proof. Consider the module AI4 and its control flow graph, both shown in Figure 4.

The pair (M4, P) satisfies the All-DU-Paths criterion, where

19

Tl l

n2

773

n1

input (;r) ;

repeat

x x + 1 ;

until x > O;

output (x) ;

Figure 4: Module .M4 and its control flow graph G(M4).

It does not satisfy the Required 2-Tuples criterion, however, because there is no subpath

P1 · P2 · (n2) · p3 in P such that P1 · P2 · (n2) ends with an interaction subpath for the

2-dr interaction [di (x), u2(x)], and p2 · (n2) · p3 is a cl-subpath for the loop in G(M4)

that traverses it a minimal number of times (in this case once).

Corollary 2 Each Requfred le-Tuples criterion is incomparable to the the All-DU-Paths criterion,

the All- Uses criterion, the All-C-Uses/Some-P- Uses criterion, the All-P-Uses/Some-C-Uses crite­

rion. and the All-Defs criterion.

Theorem 5 Each Required k-Tuples criterion subsumes the All-P- Uses criterion.

Proof. Suppose the pair (AI, P) satisfies the Required k-Tuples criterion, where k ~ 2.

Let un(x) be a predicate use reached by a definition dm(x), and let n' be a successor of

node n. To prove that (M,P) satisfies All-P-Uses, it is sufficient to show that P must

contain at least one subpath of the form

(m)·p·(n,n'), (3)

where pis definition-clear wrt x. Note that m !- n, because a definition and a predicate

use ran not be associated with the same node. Thus,\ = [dm(x),un(x)] is a 2-dr

interaction in G(M). Since (.AI, P) satisfies the Required k-Tuples criterion, P must

contain a subpath q · (n'), where q is an interaction subpath for ,\, By definition,

q = (m) · q' · (n), where q' is definition-clear wrt x. But then q · (n') is of the form

20

shown in (3), and so (AI, P) satisfies All-P-Uses. Since (M, P) was any pair satisfying

the Required k-Tuples criterion, that criterion subsumes All-P- Uses. Because k was any

integer greater than or equal to 2, each Required k-Tuples criterion subsumes All-P­

Uses.

Corollary 3 Each Required k-Tuples criterion strictly subsumes the All-P- Uses criterion, the All­

Edges criterion, and the All-Nodes criterion.

4.3 Incorporating the Laski and Korel Criteria

In this section, we demonstrate the subsumption relationships that exist between the Laski and

Korel criteria and those of Rapps and Weyuker and those of Ntafos. We first show that Laski and

Korel's criteria form a hierarchy. The Ordered Context Coverage criterion subsumes the Context

Coverage criterion because all ordered context subpaths for an ordered definition context ODC(n)

are context subpaths for the definition context containing the same definitions as ODC (n). The

subsumption is strict because a context subpath for- a definition context DC(n) is not necessarily

an ordered context subpath for all the ordered definition contexts containing the same definitions

as DC(n). The Context Coverage criterion subsumes the Reach Coverage criterion because every

definition reaching a use at a node must appear in some definition context of that node5
. This

subsumption is strict because the Reach Coverage criterion does not require paths exercising com-

binations of definitions as the Context Coverage criterion does. We now formally state and prove

these relationships.

Theorem 6 The Context Coverage criterion strictly subsumes the Reach Coverage criterion.

5 For reasons pointed out in Section 3.3, this is not true for Laski'~ and Karel's original definition of a definition

context.

21

Proof. vVe first prove that the Context Coverage criterion subsumes the Reach Cov­

erage criterion. Suppose the pair (M, P) satisfies Context Coverage. Let dm(x) be a

definition and let Un (x) be a use reached by dm (x). To prove that (M, P) satisfies Reach

Coverage, it is sufficient to show that P must contain at least one subpath of the form

(m)·p·(n), (4)

where p is definition-clear wrt x. Since dm(x) reaches un(x), DC(n) = {dm(x)} is

a definition-context of node n. Because (AI, P) satisfies Context Coverage, P must

contain a context subpath q for DC(n). By definition, q = q1 · (m) · q2 · (n), where q2 is

definition-dear wrt x. But then (m) · q2 · (n) is of the form shown in (4), and so (M, P)

satisfies Reach Coverage. Thus, Context Coverage subsumes Reach Coverage.

We now show that the Reach Coverage criterion does not subsume the Context Cover­

age criterion. Consider again the module M2 and its control flow graph G(M2), both

shown in Figure 2. The pair (M2, P2) satisfies Reach Coverage, where P2 is defined by

Equation (2). It does not satisfy Context Coverage, however, because P2 contains no

context subpath for the definition context DC(n6) = {d1(x),d5(y)}. r

Theoren1 7 The Ordered Context Coverage criterion strictly subsumes the Context Coverage cri­

terion.

Proof. We first prove that the Ordered Context Coverage criterion subsumes the

Context Coverage criterion. Let (M, P) be a pair satisfying Ordered Context Coverage

and let DC(n) be a definition context in G(M). To prove that (M, P) satisfies Context

Coverage, it is sufficient to show that P must contain at least one context subpath for

DC(n). By definition, there is at least one ordered definition context of node n whose

definitions are exactly the elements of DC(n); let ODC(n) be such an ordered definition

context. Since (lvf, P) satisfies Ordered Context Coverage, P must contain an ordered

context subpath p for ODC(n). But then pis also a context subpath for DC(n). Thus,

Ordered Context Coverage subsumes Context Coverage.

vVe now prove that Context Coverage does not subsume Ordered Context Coverage.

Consider the module M5 and its control flow graph G(M5), both shown in Figure 5.

The definition contexts associated with G(M5) are as follows:

DC1(n2) = {d1(z)}

DC1(n3).= {d1(x), dt(Y)}

DC3(n3) = {d5(x),d1(Y)}

DC1(n4) = {d3(z)}

DC1(n5) = {d3(z)}

DC 1 (ns) = { d3 (z)}

DC1(ns) = {d1(x),d1(y)}

DC3(ns) = { d5(x), di(Y)}

DC2(n2) = { d3(z)}

DC2(n3) = {d1(x),dA(Y)}

DC4(n3) = {ds(x), de(Y)}

DC2(ns) = {d1(x),de(y)}

DC4(ns) = {ds(x),de(y)}.

22

Tl l

)) '2

Tl;J

n1

n:;

Tlf)

Tl(

TlR

/'~
~ ...; t ll T (

'--'

input (x ! y, .:) ;
6 dl\~J.dl(y),dll~)

~.Jhi le - 100 loop -
.: f (x ,y);

if ::: 50 then

x -

else

y . = :::

end if;

end loop;

output (x, y) ;

Figure 5: Module M 5 and its control flow graph G(Af5).

The pair (1\f 5, P) satisfies Context Coverage, where

and

Pl = (n"tart, ni, n2, n3, n4, n5, n1, n2, n3, n1, n5, n1, nz, ns, nfina.1),

p2 = (nstart, nl, n2, n3, n1, n.5, n.7, nz, n3, n4, n5, n1, n2, n3, n4, ns, n1, n2, ns, nfina.1),

p3 (nstart, n1' n.2, n3, n4, ns, n1, nz, n3, n4, ns, n1, n2, ns, nfina.1),

P4 = (n.1tart,n1,n2,ns,nfinad·

(5)

This pair does not satisfy the Ordered Context Coverage criterion, however, because

P does not contain an ordered context subpath for the ordered definition context

ODC(ns)-= [ds(y),ds(x)L n

Having shown hmv Laski's and Karel's three criteria relate to each other, we nmv show how they

relate to the other data flow criteria. The Ordered Context Coverage criterion does not subsume

the All-Nodes criterion, because Ordered Context Coverage does not require that both branches

fullowing a predicate use be taken. The All-DU-Paths criterion does not subsume the Context

23

r~

I,;; Std r L

Tl ! input (:r) ; '--,.--

n2 if J' = 1 then

n:i, output (1) ;

else

n1 output (0) ;

end if;

Figure 6: Module 11!6 and its control flow graph G(M6).

c;:1\·erage criterion. because the presence of a loop between a definition and a node may cause all

the cont ext subpaths for a definition context of the node to contain non-simple cycles. None of the

Required k-Tuples criteria subsumes Context Coverage either, because the definitions in a definition

context are not necessarily linked by an interaction subpath. These three facts imply that Ordered

Context Coverage and Context Coverage are incomparable to all the criteria that are subsumed by

All-DU-Paths or the Required k-Tuples criteria and that subsume All-Nodes. The All-Uses criterion

is similar to the Reach Coverage criterion but strictly subsumes it, because Reach Coverage does

not require that all branches following a predicate use be covered as All-Uses does. Finally, Reach

C'nverage strictly subsumes the All-C-Uses/Some-P-Uses criterion because it requires that every use

be exercised at least once. It follows from the above and the fact that the All-P-Uses/Some-C-Uses

criterion is incomparable to All-C-Uses/Some-P-Uses that Reach Coverage is incomparable to the

criteria that are subsumed by All-P-Uses/Some-C-Uses and that subsume All-Nodes.

Theorem 8 The Ordered Context Coverage criterion does not subsume the All-Nodes criterion.

Proof. Consider the module M 6 and its control flow graph G(.Al6), both shown in

Figure 6. The only ordered definition context associated with G(Afs) is ODC(n2)

= f d 1 (x)]. Thus, the pair (.Af 6, P) satisfies the Ordered Context Coverage criterion,

24

\Vhere

p = {(nstart, n~, n2, n3, nfina1)}.

It does not satisfy the All-Nodes criterion, however, because node n 4 does not occur

along the path in P.

Corollary 4 The All-Paths criterion strictly subsumes the Ordered Context Coverage criterion.

Theorem 9 The All-DU-Paths criterion does not subsume the Context Coverage criterion.

Proof. Consider again the module Als an<l its control flow graph G(M5), both shown in

Figure 5. The pair (-A15 , P) satisfies the All-DU-Paths criterion, where P = {pi, p 2 , p 3 }

and

P1 = (n.,tarti ni, n2, n3, n4, n5, n1, n2, n3, n4, n6, n1, n2, n3, n4, ne, n1, n2, ns, nfinal),

P2 = (n,,tart, ni, n2, n3, n4, n5, n1, n2, ns, nfina1),

p3 = (n.!tart l nil n2, ns, nfinal).

This pair does not satisfy the Context Coverage criterion, however, because P does not

contain a context subpath for the definition context DC(n8) = {d1 (:v),d6(y)}.

Theorem 10 There is no Required k-Tuples criterion that subsumes the Context Coverage crite­

rion.

Proof. Consider again the module M2 and its control flow graph, both shown in Fig­

ure 2. The pair (M 2 , P2) satisfies each Required k-Tuples criterion, where P2 is defined

by Equation (2). It does not satisfy the Context Coverage criterion, however, because

P contains no context subpath for the definition context DC(n6) = {d1 (x), d6(y)}.

Corollary 5 The Context Coverage and Ordered Context Coverage criteria are incomparable to

the All-DU-Paths, Required k-Tuples, All-Uses, All-P-Uses/Some-C-Uses, All-P-Uses, All-Edges,

and All-Nodes criteria.

Theorem 11 The All- Uses criterion strictly subsumes the Reach Coverage criterion.

Proof. We first prove that the All-Uses criterion subsumes the Reach Coverage cri­

terion. Suppose the pair (M, P) satisfies All-Uses. Let un(x) be a use reached by a

definition dm(x). To prove that (M, P) satisfies Reach Coverage, it is sufficient to show

that P must contain at least one subpath of the form (m) · p · (n), where p is definition­

clear wrt x. Since (M, P) satisfies All-Uses, P must contain a subpath (m) · p · (n, n'),
where p is definition-clear with respect to x, for every successor n' of node n. Since

every node except the final node has at least one successor and by definition the final

25

node has no uses, (ill, P) satisfies Reach Coverage. Thus, All-Uses subsumes Reach

Coverage.

Clearly the Reach Coverage criterion can not subsume the All-Uses criterion, because by

Theorem 6 the Context Coverage criterion subsumes Reach coverage and by Corollary 5

Context Coverage does not subsume All-Uses.

Theorem 12 The Reach Coverage criterion strictly subsumes the All-C- Uses/Some-P- Uses crite­

rion.

Proof. We first prove that the Reach Coverage criterion subsumes the All-C-Uses/Some­

P-Uses criterion. Let (M,P) be a pair satisfying Reach Coverage and let dm(x) be a

definition. To prove that (M, P) satisfies All-C-Uses/Some-P-Uses, it is sufficient to

show that

l. For all computation uses un(x) reached by dm(x), P must contain at least one

subpath (m) · p · (n) such that p is definition-clear wrt x.

2. If there is no computation use of x reached by dm (x), then for at least one predicate

use Un (x), P must contain a subpath (m) · p · (n) such that pis definition-clear wrt

x.

First, suppose dm (x) reaches a computation use un(x).. .Since (M, P) satisfies Reach

Coverage, P must contain a subpath (m) · p · (n) such that p is definition-clear wrt x.

On the other hand, suppose there is no computation use reached by dm(x). Because

every definition must reach at least one use, there is a predicate use un(x) reached

by dm (x). Again, since (M, P) satisfies Reach Coverage, P must contain a subpath

(m) · p · (n) such that p is definition-clear wrt x. Thus Reach Coverage subsumes

All-C-U ses/Some-P-Uses.

We now show that the All-C-Uses/Some-P-Uses criterion does not subsume the Reach

Coverage criterion. Consider the module M 7 and its control fl.ow graph G(l\.h), both

shown in Figure 7. The pair (lYh, P) satisfies All-C-Uses/Some-P-Uses, where

It does not satisfy Reach Coverage, however, because P does not contain the subpath

(n1, n2, n3), along which di(x) reaches u3(x). n

Corollary 6 The Reach Coverage criterion is incomparable to the All-P-Uses/Some-C-Uses, All­

P- Uses, All-Edges, and All-Nodes criteria.

The subsumption hierarchy including all the criteria considered is shown in Figure 8.

26

n, input (J') :

if > 0 then <5']) :. .r
'6l1HI

11;1 if x > 1 then
~Jl(x)

Tl l output (0) ;

else

ns output (1) ;

end if;

else

nr, output (2) ;

end if;

Figure 7: Module i\!7 and its control flow graph G(M7).

5. l\!Iodifications to the Criteria

The subsumption hierarchy of Figure 8 shows that some of the path selection criteria we have

considered fail to achieve certain minimum program coverage requirements. Specifically, the Re-

quired k-Tuples criteria do not ensure that each definition in a program is referenced at least once,

and the Reach Coverage, Context Coverage, and Ordered Context Coverage criteria each fail to

ensure that all statements are covered. The proofs given in the preceding section suggest that sim-

ple modifications to these criteria might correct their deficiencies. In this section, we make those

modifications and determine their effect on the subsumption hierarchy.

The first modification we consider is to the Required k-Tuples criteria. By Theorem 3, there

is no Required k-Tuples criterion that subsumes the All-Defs criterion. The Required 2-Tuples

criterion, however, is clearly similar to the All-Uses criterion, which subsumes All-Defs. Indeed,

since Required 2-Tuples calls for tests of loops that All-Uses does not, one might expect that

Required 2-Tuples, and hence all the Required k-Tuples criteria, would strictly subsume All-Uses.

27

ordered conrxt Coverage

Context roverage

Reach !overage

All-C- Uses/ Some-P-Uses

All-Paths

All-DU-Paths

All-Uses

All-Defs

Required k-Tuples

Reqnired J 1)-Tuples

l
Required 2-Tuples

All-P-Uses/S~

All-P-Uses

l
All-rges

All-Nodes

Figure 8: The New Subsumption Hierarchy.

28

As shown in the proof of Theorem 3, this is not true because, if the only use reached by dn(x)

occurs at node n, the Required k-Tuples criteria may fail to select any definition-clear subpath

wrt the variable x. The reason such a subpath may not be selected is that the nodes associated

with a k-dr interaction must be distinct [Ntaf82,Ntaf84]; hence, there can be no k-dr interaction

containing dn (x).

An obvious way to ensure that the Required k-Tuples criteria subsume the All-Defs criterion is

to allow any definitions and uses in a k-dr interaction to occur at the same node. To achieve the

same result, however, it is sufficient to allow the first definition and last use in a k-dr interaction to

occur at the same node. We make the latter change, since the modified criteria then require fewer

additional paths. We call a sequence of definitions and uses that satisfies this modified definition a

k-dr+ interaction, and we call the corresponding criteria the Required k-Tuples+ criteria (we omit

the formal definitions, which are obvious). \Ve then have the following results.

Theorem 13 Each Required k-Tuples+ criterion sfrictly subsumes the corresponding Required k­

Tuples criterion.

Proof. Obvious from the definitions. n

Theorem 14 Each Required k-Tuples+ criterion strictly subsumes the the Required (k-1)-Tuples+

criterion.

Proof. Obvious from the definition. D

Theorem 15 Each Required k-Tuples+ criterion strictly subsumes the All- Uses criterion.

Proof. The proof that earh Required k-Tuples+ criterion subsumes the All-Uses crite­

rion is similar to the proof of Theorem 5.

We now show that the All-Uses criterion does not subsume any Required k-Tuples+

criterion. If the All-Uses criterion subsumed the Required k-Tuples+ criterion, where

k 2 2, then it would also subsume the Required k-Tuples criterion. But by Corollary 2,

each Required k-Tuples criterion is incomparable to All-Uses. Thus there is no Required

k-Tuples+ criterion subsumed by All-Uses.

29

Like the Required k-Tuples criteria, the Required k-Tuples+ criteria do not in general select all

cycle-free subpaths and simple cycles between a defiuiton-use pair in a k-dr+ interaction. Thus,

there is no Required k-Tuples+ criterion that subsumes the All-DU-Paths criterion. Neither does

All-DU-Paths subsume any Required k-Tuples+ criterion, because of the tests of loops needed to

satisfy the Required k-Tuples + criteria.

Theorem 16 Each Required k-Tuples+ criterion is incomparable to the All-DU-Paths criterion.

Proof. The All-DU-Paths criterion does not subsume any Required k-Tuples+ criterion,

or it wou]d subsume the corresponding Required k-Tuples criterion, which by Corollary 2

can not be true.

We now show that there is no Required k-Tuples+ criterion that subsumes the All­

D U-Paths criterion. Consider again the module Af2 and its control flow graph G(M2),

shown in Figure 2. The 2-dr+ interactions associated with G(M2) are as follows:

[d1(x),u2(x)],

[d1(y), u4(y)],

[d3(x), ua(x)],

[ds(Y), ua(y)],

[d 1 (X) , Us (X)] ,

[d 1 (Y) , Us (Y)] ,

(d3(x), Uaut(X)],
[ds(y), Uaut(Y)].

[d1(x), Uaut(x)],

[d1(Y), Uaut(y)],

There are no l-dr+ interactions associated with G(M2) for l > 2. Thus the pair (M2 , P2)

satisfies each Required k-Tuples+ criterion, where P2 is defined by equation (2). This

pair does not satisfy All-DU-Paths, as shown in the proof of Theorem 1. n
Corollary 7 The All-Paths criterion strictly subsumes each Required k-Tuples+ criterion.

\Ve now consider modifications to the Laski and Karel cdteria. By corollaries 5 and 6, none of

these criteria subsume the All-Nodes criterion. This is because none of the Laski and Korel criteria

force the coverage of all successors of a node associated with a predicate use. Therefore, we redefine

the Laski and Korel criteria so that they do cover these successors and then determine the place of

the modified criteria in the subsumption hierarchy. We call the modified criteria Reach Coverage+,

Context Coverage+, and Ordered Context Coverage+. Reach Coverage+ is obviously equivalent to

the All-Uses criterion. The definitions of the other criteria are as follows:

30

The pair (M, P) satisfies the Context Coverage+ criterion iff for all nodes n in G(M),

all definition contexts DC(n), and all successors n' of node n, P contains at least one

subpath p · (n') such that pis a context subpath for DC(n).

The pair (M, P) satisfies the Ordered Context Coverage+ criterion iff for all nodes

n in G(M), all ordered definition contexts ODC(n), and all successors n' of node n,

P contains at least one subpath p · (n') such that p is an ordered context subpath for

ODC(n).

The Context Coverage+ criterion and the Ordered Context Coverage+ criterion clearly subsume

the Context Coverage criterion and the Ordered Context Coverage criterion, respectively. Context

Coverage+ is not strong enough to subsume Ordered Context Coverage, however, for the same

reason Context Coverage is not: there may be several ordered definition contexts corresponding to

a single definition context, each of which must be covered to satisfy Ordered Context Coverage.

Theorem 1 7 The Context Coverage+ criterion does not subsume the Ordered Context Coverage

criterion.

Proof. Consider again the module M 5 and ifs control flow graph G(M5), shown in

Figure 5. The pair (M5 , P) satisfies Context Coverage+, where Pis defined by equa­

tion (5) in the proofof Theorem 7. This pair does not satisfy Ordered Context Coverage,

however, as shown in the the proof of Theorem 7. n

We now relate the modified Laski and Korel criteria to each other and to the remaining criteria.

As one might expect, the change we have made to Laski's and Karel's criteria preserves their

relationship to each other. This ,is because for every definition context of a node there is at least

one ordered definition context of the same node having the same definitions.

Theorem 18 The Ordered Context Coverage+ criterion strictly subsumes the Context

Coverage+ criterion.

Proof. The proof that the Ordered Context Coverage+ criterion subsumes the Context

Coverage+ criterion is similar to the proof of Theorem 7. .

31

If Context Coverage+ subsumed Ordered Context Coverage+, it would subsume Ordered

Context Coverage. But by Theorem 17, this is not the case. Thus, Context Coverage+

does not subsume Ordered Context Coverage+.

The modified Laski and Korel criteria relate to the Rapps and Weyuker criteria differently than

do the original ones, taking a more central position in the subsumption hierarchy. As desired, they

subsi.Jme the All-Nodes and All-Edges criteria, because the new criteria cover all successors of a

predicate use. More significantly, they subsume All-Uses, because a definition occurs in at least one

definition context of each node associated with a use reached by that definition. The subsumption

is strict because All-Uses does not require combinations of definitions be tested. The modified

Laski and Korel criteria do not subsume the All-DU-Paths criterion, because any single ordered

context subpath for a ordered definition context will suffice to cover the ordered definition context;

thus all cycle-free subpaths and simple cycles between a definition and use may not be covered.

Theorem 19 The Context Coverage+ criterion strictly subsumes the Reach Coverage+ (All- Uses)

criterion.

Proof. The proof is similar to the proof of Theorem 6.

Corollary 8 The Context-Coverage+ criterion is incomparable to the Ordered Context Coverage

criterion.

Theorem 20 The Ordered Context Coverage+ criterion does not subsume the All-DU-Paths cri­

terion.

Proof. Consider the module M 9 and its control flow graph G(M9), shown in Figure 9.

The ordered definition contexts associated with G(Mg) are as follows:

ODC1(n2) = [d1(:z:)] ODC2(ns) = [d1(Y), di(x)]

ODC1(n5) = [d1(y)]

ODC1(ns) = [d1(x),d1(Y)]

The pair (M 9 , P) satisfies the Ordered Context Coverage+ criterion, where

32

n1 input (;r. ' y) ; 0 '"
n'2 if F(x) then > ! i (~.) , It l l \')

71;-i output (1) ;

else

Tl4 output (0) ;

end if;

ns if y < 0 then

715 output (x * y) ;

end if;

Figure 9: Module Af9 and its control flow graph G(Af9).

This pair does not satisfy the All-DU-Paths criterion, however, because P does not

· contain all subpaths of the form (n 1) · p · (ne, nfinlll), where p is definition-clear wrt x.

In particular, P does not contain the subpath (n1, n2, n4, n5, ne, nfinal)· Thus, Ordered

Context Coverage+ does not subsume All-DU-Paths. n

Corollary 9 The All-Paths criterion strictly subsumes the Ordered Context Coverage+ criterion.

Corollary 10 The Context Coverage+ criterion and the Ordered Context Coverage+ criterion are

both incomparable to the All-DU-Paths criterion.

Like the original context coverage criteria, the modified Laski and Korel criteria do not sub-

sume any Required k-Tuples criterion, because they do not incorporate the tests of loops that the

Required k-Tuples criteria do. .

Theorem 21 The Ordered Context Coverage+ criterion does not subsume any Required k-Tuples

criterion.

Proof. Consider again the module M4 and its control flow graph G(Af4), shown in

Figure 4. The ordered definition contexts associated with G(M4) are as follows:

ODC1(n2) = [d1(x)] ODC2(n2) = [d2(x)]

ODC1(n3) = [d2(x))

ODC1(n4) = [d2(x)]

33

The pair (1H4, P) satisfies the Ordered Context Coverage+ criterion, where

This pair does not satisfy any Required k-Tuples criterion, however, because P does

not contain a subpath P1 · p 2 · (n 2) · p3 such that p1 · P2 · (n 2) ends with an interaction

subpath for the 2-dr interaction [d1 (x), u2 (x)] and p 2 · (n 2) · p3 is a cl-subpath for the

loop in G(A!4) that traverses it a minimal number of times (in this case once). Thus,

Ordered Context Coverage+ does not subsume any Required k-Tuples criterion.

Corollary 11 The Context Coverage+ criterion and the Ordered Context Coverage+ criterion are

incomparable to each Required k-Tuples criterion and to each Required k-Tuples+ criterion.

The subsumption hierarchy including the modified criteria is shown in Figure 10.

6. CONCLUSION

This paper shows the subsumption relationships that exist among the data ft.ow path selec-

tion criteria proposed by Rapps and Weyuker, Ntafos, and Laski and Karel. These relation-

ships are not at all obvious; in fact, we discovered errors in previous statements about them

[Ntaf82,Ntaf84,Ntaf85,Ntaf88,Rapp81,Rapp82]. Understanding the relationships among these cri-

teria points out some of their strengths and weaknesses. For example, the original Laski and Korel

criteria fail to satisfy the minim~ requirement of selecting paths that cover all edges and all nodes.

On the other hand, Laski 's and ~orel's use of combinations of definitions captures certain data flow

relationships not considered by the other criteria.

We consider this evaluation to be a first step toward formulating an effective path selection

criterion. In this study, we have primarily considered data flow path selection criteria. Since these

criteria have related goals, we chose them first for evaluation. Other, more diverse path selection

criteria must also be considered and their place in the subsumption hierarchy determined. Not only

34

All-Paths

All-DU-Paths
Required k-Tuples

Required 1-1)-Tuples

ordered conrxt coverage

Context roverage

Reach Coverage---- All-Uses

l
-----------Required 2-Tuples

All-P- Uses/ Sorne-C- Uses

~
All-C-Uses /Sorne-P- Uses

All-Defs All-P-Uses

l All-re,

All-Nodes

Figure 10: The Final Subsumption Hierarchy.

35

do the subsumption relationships need to be clearly understood, but a number of other important

issues must also be addressed. In particular, we intend to consider the differences between the

criteria in terms of error detection capabilities and to investigate the effect of infeasible paths.

\Ve have shown that minor enhancements to some criteria improve their location in the sub­

sumption hierarchy. Before considering more substantial modifications, the effects of the differences

between the various criteria must be better understood. We are specifically interested in differences

in the error detection capabilities of the criteria. If one criterion subsumes or is incomparable to

another, then what types of errors could be revealed by executing that criterion's paths that could

not be revealed by executing the paths of the other? Formulating such classes of errors may prove

difficult. The error detection capabilities must be understood, however, in order to meaningfully

evaluate the different criteria or to assess the value of an enhancement. For example, we could

further extend the Required k-Tuples criteria to require all interaction subpaths that contain only

cycle-free or simple-cycle subpaths between the nodes of a k-dr interaction. This extension would

be similar to the way in which Rapps and Weyuker extended the All-Uses criterion in formulating

the All-DU-Paths criterion. It is not clear, however, what additional types of errors these addi­

tional subpaths might reveal. Thus, we have decided not to propose a criterion to subsume the

three highest-ranked, incomparable criteria until this issue is satisfactorily addressed.

Perhaps the biggest drawback of the use of these data flow criteria in testing is that none attempt

to deal with infeasible paths, which are a common phenomena of programs [Wood80]. Because of

the semantics of a program, certain paths in that program may not be executable. Figure 11 shows

a module where any path that iterates the loop less than ten times is infeasible. If we use the

All-DU-Paths criterion as an example, there is no executable subpath from the definition of x to

36

n ~ inp'-lt (x) ;

n2 for i in 1 10 loop

nn
,\ output (J ') ;

,, 1 end locp;

775 output C:r) :

Figure 11: Module M 10 and its control flow graph G(M10).

its onlv use that is cycle free or is a simple cycle. Consequently, no executable path would be

required to test that data fl.ow relationship. In this example, the selected executable paths would

not even satisfy the All-Nodes criterion. In general, the existence of a feasible path to a specific

statement in a module can not be determined, and so we can not guarantee that any of these path

sPlection criteria can be satisfied by a set of feasible paths for that module. In practice, however, we

can often detect infeasible paths, either using simple static analysis or, when necessary, symbolic

evaluation techniques [Clar85].

To be useful, a path seledion criterion should prescribe alternative guidelines when infeasible

paths would he selected. Frankl and \Veyuker recognize the unsatisfiability problem that arises

due to infeasible paths and circumvent it by deriving a new family of criteria from the Rapps

and Wevuker family [Fran86]. These new criteria require the selection of feasible paths that cover

37

rlennition-clear suhpaths between definitions and uses reached by those definitions. These criteria

are ahvays satisfiable but, in general, the question of whether or not a set of paths satisfies any one

of these criteria is undecidable. Thus, although Frankl and \Veyuker have moved the question of

undecidability, it nonetheless remains.

Our long-term goal is to formulate an effective path selection criterion. We expect that this

criterion will exploit the data flow relationships used by the three families of data flow path selection

criteria considered in this paper. From this study, it is clear that all three families of criteria have

a unique contribution to make, although there is substantial overlap among them. Now that

their relationships are better understood, we intend to continue our investigation, focusing on the

differences in error detection capabilities among the criteria and on flexible guidelines for replacing

infeasible paths with executable ones when appropriate.

38

REFERENCES

[Clar85] Lori A. Clarke and Debra J. Richardson, "Applications of Symbolic Evaluation", Journal

of Systems and Software, Vol.5, No.l, pp.15-35, January 1985.

[Fran85) Phyllis G. Frankl, Stewart N. Weiss, and EJaine J. Weyuker, "ASSET: A System to Select

and Evaluate Tests", Technical Report No.148, Department of Computer Science, Courant

Institute of Mathematical Sciences, January 10, 1985.

[Fran86] Phyllis G. Frankl and Elaine .T. Weyuker, "Data Flow Testing in the Presence of Unexe­

cutable Paths", Proceedings of the Workshop on Software Testing, pp.4-13, July 1986.

[Herm76] P. M. Herman, "A Data Flow Analysis Approach to Program Testing", The Australian

Computer Journal, Vol.8, No.3, November 1Y76.

[Hov1d75] William E. Howden, "Methodology for the Generation of Program Test Data", IEEE

Transactions on Computers, Vol.C-24, No.5, pp.554-559, May 1975.

[Lask83] Janusz W. Laski and Bogdan Korel, "A Data Flow Oriented Program Testing Strategy",

IEEE Transactions on Software Engineering, Vol.SE-9, No.3, pp.34 7-354, May 1983.

[Ntaf81] Simeon C. Ntafos, "O,n Testing With Required Elements", Proceedings of COMPSAC '81,

pp.132-139, November 1981.

[Ntaf82] Simeon C. Ntafos, "On Required Element Testing", Technical Report No.123, Computer

Science Program, University of Texas at Dallas, November 1982.

[Ntaf84] Simeon C. Ntafos, "On Required Element Testing", IEEE Transactions on Software En­

gineering, Vol.SE-10, No.6, pp.795-803, November 1984.

[Ntaf85] Simeon C. Ntafos, "A Comparison of Some Structural Testing Strategies,'' Technical Re­

port No.210, Computer Science Program, University of Texas at Dallas, June 1985.

[Ntaf88] Simeon C. Ntafos, "A Comparison of Some Structural Testing Strategies", IEEE Trans­

actions on Software Engineering, Vol.14, No.6, pp.868-874, June 1988.

[Oste76] Lee J. Osterweil and Lloyd D. Fosdick, "DAVE - A Validation, Error Detection, and Doc­

umentation System for FORTRAN Programs", Software Practice and Experience, Vol.6,

pp.4 73-486, 1976.

[Rapp81] Sandra Rapps and.Elaine J. Weyuker, "Data Flow Analysis Techniques for Test Data Se­

lection", New York University Department of Computer Science Technical Report No.023,

December 1981.

[Rapp82] Sandra Rapps and Elaine J. Weyuker, "Data Flow Analysis Techniques for Test Data

Selection", Proceedings of the Sixth International Conference on Software Engineering,

pp.272-277, September 1982.

39

[Rapp85j Sandra Rapps and Elaine J. Weyuker, "Selecting Software Test Data Using Data Flow

Informal.iun", IEEE Tmnsaclion.s on Software Engineering, SE-11, 4, pp.367-375, April

1985.

[Stuc73] L. G. Stucki, "Automatic Generation of Self-Metric Software", Recordings of the 1973

IEEE Symposium on Software Reliability, pp.94-100, April 1973.

[Weyu84] Elaine J. Weyuker, "The Complexity of Data Flow Criteria for Test Data Selection",

Information Processing Letters, Vol. rn, pp .103-109, North-Holland, August 1984.

[Wood80] Martin R. vVoodward, David Hedley, and J\Iichael A. Hennel, "Experience with Path

Analysis and Testing of Programs", IEEE Transactions on Software Engineering, Vol.SE-

6, No.3, pp.278-286, May 1980.

40

