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Abstract
Most logic–based approaches characterize abduction as a kind of backwards deduction plus additional conditions, which
means that a number of conditions is specified that enable one to decide whether or not a particular abductive inference is
sound (one of those conditions may e.g. be that abductive consequences have to be compatible with the background theory).
Despite the fact that these approaches succeed in specifying which formulas count as valid consequences of abductive
inference steps, they do not explicate the way people actually reason by means of abductive inferences. This is most clearly
shown by the absence of a decent proof theory. Instead, search procedures are provided that enable one to determine the
right abductive consequences. However, these do not by far resemble human reasoning. In order to explicate abductive
reasoning more realistically, an alternative approach will be provided in this article, namely, one that is based on the adaptive
logics programme. Proof theoretically, this approach interprets the argumentation schema affirming the consequent (AC:
A⊃B,B�A) as a defeasible rule of inference. This comes down to the fact that the abductive consequences obtained by means
of AC are accepted only for as long as certain conditions are satisfied—e.g. as long as their negation has not been derived
from the background theory. In the end, only the unproblematic applications of AC are retained, while the problematic ones
are rejected. In this way, the adaptive logics approach to abduction succeeds to provide a more realistic explication of the
way people reason by means of abductive inferences. Moreover, as multiple abduction processes will be characterized, this
article may be considered as the first step in the direction of a general formal approach to abduction based on the adaptive
logics programme.
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1 Introduction

When searching an explanation for a (puzzling) phenomenon, people often reason backwards, from
the phenomenon to be explained to possible explanations. When they do so, they perform abductive
inferences, inferences based on the argumentation schema known as affirming the consequent:

(AC) A⊃B,B�A

Clearly, AC is not deductively valid. In the context of classical logic (CL), its acceptance would
even lead to triviality. Nevertheless, people make use of AC. Though, to avoid the derivation of
unsound consequences, they do so in a defeasible way. As a consequence, abductive explanations
remain provisional, and, in the end, some are rejected. The reasons for doing so may be external or
internal to the background theory from which these explanations were derived. In the external case,
new information is obtained that forces the rejection of some abductive explanations—e.g. in case
the results of further research are incompatible with these explanations. In formal terms: abductive
reasoning is non–monotonic. In the internal case, new (deductive) consequences are derived from
the background theory that necessitate the rejection of some abductive explanations—e.g. in case it
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TABLE 1. Consistent and explanatory abductive explanation

Given Θ (a set of formulae) and φ (a sentence), α is a consistent
and explanatory abductive explanation of φ iff

(i) Θ∪{α}�φ

(ii) Θ�¬α

(iii) Θ�φ

(iv) α�φ

turns out the background theory already provides a perfectly good explanation for the phenomenon
at hand. This kind of (internal) defeasibility results from the fact that people lack logical omniscience
(people do not have complete insight in the theories they reason from). As such, when a better insight
is gained in those theories, some of the earlier drawn consequences might have to be withdrawn.

Most logic–based approaches characterize abduction as a kind of backwards deduction plus
additional conditions—see e.g. Aliseda–Llera [1, 2], Mayer and Pirri [3, 4], McIlraith [5] and
Gabriele [6]. In these approaches, a number of conditions is specified that enable one to decide
whether or not a particular abductive inference is sound. Moreover, different kinds of abduction are
characterized by different sets of such conditions. For example, in Table 1, the conditions are stated
that were given in Aliseda–Llera [1, pp. 48–49] to characterize abductive reasoning that is (in terms
of Aliseda–Llera) both consistent and explanatory.

Although the traditional logic-based approaches to abduction succeed in specifying which for-
mulas may count as valid consequences of abductive inference steps, they do not explicate the
way in which people actually reason by means of abductive inferences—hence, the focus is on
abductive consequence, not on abductive reasoning. This is most clearly shown by the absence of
a decent proof theory, i.e. a proof theory that explicates abductive reasoning steps as described
above, namely as defeasible applications of the inference rule AC. Instead, search procedures are
provided that enable one to determine the right abductive consequences—e.g. the tableaux methods
presented in Aliseda–Llera [1, 2] and Mayer and Pirri [3, 4]. However, these explicate AC only at
the semantic or the metatheoretic level. As a consequence, these search procedures do not resemble
human reasoning at all.1

In order to explicate abductive reasoning more realistically, an alternative approach will be pro-
vided in this article, namely, one that is based on the adaptive logics programme.2 In the accom-
panying proof theory, the argumentation schema AC is really interpreted as a defeasible rule of
inference. More specifically, the consequences obtained by applying AC are accepted only for as
long as certain conditions are satisfied—e.g. as long as their negation has not been derived from
the background theory. In short, adaptive logics for abduction only retain the unproblematic appli-
cations of AC, while they reject the problematic ones. Hence, in comparison to the traditional
logic-based approaches, the adaptive logics approach more realistically captures the way people
make abductive inferences. Nonetheless, I will show that all conditions stated by the traditional
logic-based approaches are still satisfied by the adaptive logics approach. Finally, as the adaptive
logics approach is not restricted to a particular kind of abduction process (multiple kinds of abduc-
tion will be explicated), this article should be considered as the first step in the direction of a general
approach towards the explication of abductive reasoning.

1In some cases, one might even doubt whether these search procedures even obtain the right abductive consequences—see
Meheus and Provijn [7].

2A thorough introduction into adaptive logics can be found in Batens [8, 9], and an overview of the adaptive logics
programme can be found on the Adaptive Logics Homepage (http://logica.ugent.be/adlog).
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TABLE 2. The Languages L and LM

Language Letters Logical Symbols Set of Formulas
L S ¬,∧,∨,⊃,≡ W

LM S ¬,∧,∨,⊃,≡,,�n,♦n,�e,♦e WM

2 The deductive frame

As spelled out in the previous section, abduction validates some arguments that are not deductively
valid—in casu, applications of AC. Hence, abductive reasoning goes beyond deductive reasoning.
Nevertheless, abduction is constrained by deductive reasoning, for some abductive consequences of
a premise set might have to be withdrawn in view of its deductive consequences—e.g. in case these
abductive consequences are incompatible with the deductive ones. Hence, abduction and deduction
go hand in hand, the latter serving as the deductive frame of the former.

2.1 A modal frame

In most logic-based approaches to abduction, deductive reasoning is explicated by means of clas-
sical logic—see e.g. Aliseda–Llera [1, 2], Meheus and Batens [10] and Meheus [11]. In this article
though, the deductive frame is captured by the modal logic RBK.3 Contrary to the classical frame, a
modal frame makes it possible to capture some intensional elements of abductive reasoning contexts.
Moreover, the modal frame will turn out quite useful to capture some of the metatheoretic condi-
tions on abductive explanation put forward by the traditional logic-based approaches (see Table 1).
Both these claims will be discussed more thoroughly later on. First though, the logic RBK will be
characterized, both semantically as well as proof theoretically.

2.1.1 Language schema
The logic RBK is a standard bimodal logic extending (propositional) classical logic with the modal
operators �n and �e. As a consequence, the modal language LM of RBK is obtained by adding
both these necessity operators, together with the corresponding possibility operators, to the standard
propositional language L (see Table 2 for an overview). The set of well-formed formulas WM of
the language LM is defined in the usual way.

In the remaining of this article, only negation, disjunction and both necessity operators are taken
as primitive. The other logical symbols are defined in the standard way.

2.1.2 Semantic characterization
An RBK-model M is a 5 tuple 〈W ,w0,Rn,Re, v〉. The set W is a (non-empty) set of worlds, with
w0 ∈W the actual world. Rn and Re are both accessibility relations on W , the former of which is
both reflexive and transitive, while the latter is merely reflexive. Moreover, the following relation
holds between both accessibility relations:

CEI For all w,w′ ∈W : if Reww′ then also Rnww′.

Finally, v is an assignment function, for which the following condition holds:

C1.1 v: S×W �→{0,1}.
3Actually, in Meheus et al. [12], the deductive frame is captured by the logic S52 that is quite similar to the logic RBK.
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TABLE 3. Additional axiom schemas, rules and definitions of RBK

AM1n �n(A⊃B)⊃ (�nA⊃�nB) AM1e �e(A⊃B)⊃ (�eA⊃�eB)
AM2n �nA⊃A AM2e �eA⊃A
AM3n �nA⊃�n�nA
AEI �nA⊃�eA
NECn From �A conclude to ��nA NECe From �A conclude to ��eA
Dfn ♦nA =df ¬�n¬A Dfe ♦eA =df ¬�e¬A

The valuation function vM , determined by the model M , is now defined as follows:

C2.0 vM : WM×W �→{0,1}.
C2.1 Where A∈S, vM (A,w) = 1 iff v(A,w) = 1.
C2.3 vM (¬A,w) = 1 iff vM (A,w) = 0.
C2.4 vM (A∨B,w) = 1 iff vM (A,w) = 1 or vM (B,w) = 1.
C2.5 vM (�nA,w) = 1 iff for all w′ ∈W : if Rnww′ then vM (A,w′) = 1.
C2.6 vM (�eA,w) = 1 iff for all w′ ∈W : if Reww′ then vM (A,w′) = 1.

A model M verifies a formula A∈WM iff vM (A,w0) = 1. Moreover, a model M is a model of a
premise set Γ iff, for all B∈Γ , vM (B,w0) = 1.

DEFINITION 1
�RBK A (A is valid) iff A is verified by all RBK–models.

DEFINITION 2
Γ �RBK A (A is a semantic consequence of Γ ) iff all RBK–models of Γ verify A.

Some remarks seem to be necessary. First of all, as the accessibility relation Rn is both reflexive
and transitive, the modal operator �n corresponds to the necessity operator of the (normal) modal
logic S4. Secondly, the accessibility relation Re is reflexive but not transitive, meaning that the
modal operator �e corresponds to the necessity operator of the (normal) modal logic KT. Finally,
because of the specific relation between Rn and Re, as expressed by the condition CEI, the truth of
a formula �nA in a world w yields the truth of the formula �eA in that world. In the proof theoretic
characterization below, this is expressed by the axiom schema AEI (see Table 3).

2.1.3 Proof theoretic characterization
The RBK-proof theory is obtained by adding the axiom schemas, inference rules and definitions
stated in Table 3 to the axiom system of (propositional) classical logic.

2.1.4 Soundness and completeness
As both soundness and completeness for RBK are proven by standard means, the proofs are left to
the reader.

THEOREM 1
Γ �RBK A iff Γ �RBK A.
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2.2 Representing abductive contexts

Because of the higher expressive power of the RBK-language LM (as compared to the language
of classical logic), the logic RBK not only enables one to capture deductive reasoning as such but
also enables one to capture some intensional elements of reasoning contexts.

2.2.1 Background knowledge
The modal operators �n and �e will be used to express both the nomological and empirical back-
ground knowledge held by a reasoner in a reasoning context. First, the nomological background
knowledge is represented by elements of the set WN ⊂WM—see Definition 3. More specifically,
a formula �nA∈WN states that A is considered a nomological fact by the reasoner in the reasoning
context at hand. Second, the empirical background knowledge is represented by elements of the set
WE ⊂WM—see definition 4. A formula �eA∈WE states that A is taken to be an empirical fact by
the reasoner in the reasoning context.

DEFINITION 3
WN = {�nA |A∈W}.
DEFINITION 4
WE ={�eA |A∈S∪S¬}.4

Two remarks are needed at this point. Firstly, in view of axiom schema AEI (see Table 3),
nomological background knowledge can be combined with empirical background knowledge in
order to derive further empirical information—e.g. in the process of making predictions. Hence,
nomological information may be said to have empirical impact.

More importantly, one might wonder what the modal operators are taken to express. In accordance
with the epistemological framework presented in Batens [15, 16], the elements of the background
knowledge are classified as (part of the) contextual certainties and relevant premises of a given
context (which is defined as a problem-solving situation). Without going into the details, both the
contextual certainties and the relevant premises of a context are considered as true in that context,
and helpful in order to solve the problem at hand (for more details, the reader is referred to the cited
literature). Hence, the necessity operators occurring in the elements of WN and WE capture the
fact that the elements of the background knowledge are considered as unproblematic in the given
context (thus, the necessities have to be interpreted epistemologically, not ontologically).5

2.2.2 Abductive contexts
The contexts considered in this article are abductive contexts, namely, problem-solving situations
in which possible explanations are sought for puzzling (empirical) phenomena. Given the above

4Firstly, the elements of the set S¬ are the negations of the elements of the set S — S¬ =df {¬A |A∈S}. Secondly, one of
the anonymous referees rightly remarked that also conjunctions of elements of the set S∪S¬ may be considered as empirical
facts, so that the empirical background knowledge is better explicated by the set WE′

= {�e(A1 ∧ ...∧An) |A1,...,An ∈S∪S¬}.
However, the elements of WE′

are all derivable from the elements of WE by means of the logics presented in this article.
For the purposes of this article, this implies that replacing WE by WE′

would not make a difference. Hence, to keep things
as simple as possible, I will stick to WE .

5From this clearly follows that �n and �e are interpreted as a kind of epistemic operators. Because of the disagreement
on the characteristics of epistemic necessity in the standard literature—see e.g. Garson [13] and Hendricks [14], the char-
acterization of �n and �e as an S4– and a KT–necessity, respectively, may be considered as consistent with tradition in
epistemic logic.
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elaboration of the meaning of the modal operators, the elements of the background knowledge
are considered unproblematic, which in abductive contexts means that they are not in need of any
explanation.

Besides background knowledge, abductive contexts obviously also contain some elements that
are in need of an explanation. The latter will be represented by elements of the set WO, i.e. the set
of observed (empirical) phenomena—see Definition 5.

DEFINITION 5
WO = S∪S¬.

Surely, not all elements of WO express (empirical) phenomena in need of an explanation (hence-
forth, puzzling phenomena). Nonetheless, a formula A∈WO will be taken to express a puzzling
phenomenon in an abductive context in case A is not considered as unproblematic by the reasoner in
that abductive context—in other words, in case �eA is not derivable in that abductive context (for
otherwise, A would be considered as unproblematic by the reasoner).

2.2.3 Final remark
In the remaining of this article, premise sets will be taken to express abductive contexts. As such,
premise sets will be restricted to formulas that express the background knowledge of a reasoner (i.e.
elements of WN ∪WE ) and formulas that express observed (empirical) phenomena (i.e. elements
of WO). Obviously, in case the latter express puzzling phenomena, they will trigger abductive
inferences.

3 On defeasible inference

As stated in Section 1, to capture abduction in a realistic way, abductive inference steps have to be
captured proof theoretically by the (defeasible) inference rule AC. However, because the deductive
frame is captured in modal terms (as set out in the previous section), abductive inference has to be
captured in modal terms as well. As a consequence, the inference rule AC will be restricted to the
following schema (A and B are formulas, and � is a set of formulas):

(ACm) �n(A⊃B), B, � � A

Some clarification is called for. First of all, ACm expresses that a formula A can only be considered
as a possible explanation for a phenomenon B in view of the formula �n(A⊃B). The latter expresses
that the reasoner in the abductive context takes B to be nomologically dependent upon A. As a
consequence, to capture abductive inference by means of the inference rule ACm in a sense resembles
Hempel’s account of explanation—see Hempel and Oppenheim [17].

Secondly, the explanandum B may not express empirical background knowledge of the reasoner,
i.e. B is not allowed to be a modal formula of the form �eC, for otherwise it cannot be considered to
trigger abductive inferences (remember that the background knowledge is here taken to be accepted
beyond doubt, and hence, in no need of explanation)!

Finally, dependent on the particular abduction process one intends to capture, certain additional
conditions have to be satisfied before the defeasible inference rule ACm may be applied. In the
representation of ACm above, these conditions are represented by the elements of �. Some important
remarks have to be made with respect to �. Firstly, the elements of � correspond to some of the
conditions stated by the traditional logic-based approaches to abduction (see Section 1). This is not
surprising as both approaches tend to capture the same reasoning patterns, albeit by distinct means.
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Secondly, the elements of � can only be presumed in a defeasible way themselves, namely, for as
long as there is no information that forces us to reject them. This might be more surprising to some.
Hence, some explanation is required. For example, consider the standard condition stating that an
explanandum may only trigger abductive inferences in case it is not derivable from the background
theory alone (see Table 1, condition (iii)). Clearly, that the explanandum is derivable from the
background theory alone is only known by a reasoner in case all deductive consequences of the
background theory are known by that reasoner (i.e. in case logical omniscience is presupposed). As
this is nearly ever the case, a reasoner will normally base the decision to perform abductive inferences
on the insight she has in the background theory at a particular moment (given that I am trying to
capture abductive reasoning in a realistic way, logical omniscience is not presupposed in this article).
In other words, a reasoner will presuppose the background theory does not provide an explanation
for the explanandum unless or until one is actually found. If later it turns out this presupposition
was wrong headed, the abductive explanations obtained by relying on that presupposition will be
withdrawn. In the modal framework I presented in the previous section, the explananda are puzzling
(empirical) phenomena. More specifically, a formula B∈WO is an explanandum in an abductive
context only if �eB is not derivable in that abductive context. Obviously, this is the case as long
as the formula ¬�eB may be presupposed to be true in that abductive reasoning context, for this
expresses that the reasoner has no reason to suppose that his background theory already provides
an explanation for the phenomenon represented by the formula B. However, as stated before, this
may change, meaning that the derivation of ¬�eB is obtained in a defeasible way, by applying a
defeasible inference rule, namely, the inference rule NEN:

(NEN) �¬�eA

Actually, this is only one of the defeasible inference rules of which the consequences may enter the
set � in ACm. The other defeasible inference rule is the inference rule NNN:

(NNN) �¬�n(A⊃B)

This inference rule will be used to express that an abductive explanation is minimal, which will be
explicated later on (in Section 4). Nonetheless, a final remark about these inference rules is asked
for. Notice that the defeasible inferences based on NNN and NEN are actually prior to abductive
inferences, for the consequences of these additional inference steps are necessary to be able to apply
ACm. This clearly shows that abduction processes are layered processes, formally explicated by
specific combinations of multiple defeasible inference steps.

4 Enter adaptive logics

Adaptive logics (AL) are formal logics that have primarily been developed to capture consequence
relations that lack a positive test, i.e. consequence relations for which there are no finite means
to determine whether a formula belongs to the consequence set of a particular premise set—see
e.g. Batens [8, 9]. Well now, consequence relations that capture abduction processes clearly lack
a positive test, which is why abductive inferences are characterized proof theoretically by means
of defeasible inference rules. As a consequence, AL seem particularly well suited to capture these
consequence relations.
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As abduction processes are formally explicated by specific combinations of defeasible inference
rules (as set out in the previous section), the AL that will be used to capture these processes will
be so-called prioritized adaptive logics, i.e. adaptive logics that combine defeasible inference rules
in a certain way—see e.g. Batens [8], and Batens et al. [18]. In this article, the prioritized adaptive
logics AbLp and AbLt will be characterized. These capture different kinds of abductive reasoning,
such as practical and theoretical abduction. The difference between both in fact comes down to the
following: in case there are multiple possible explanations for a phenomenon, AbLp will merely
enable one to derive the disjunction of these possible explanations (practical abduction), while AbLt

will enable one to derive all possible explanations (theoretical abduction).6

4.1 Previous attempts

This is not the first attempt to explicate abductive reasoning by means of the adaptive logics pro-
gramme. Despite the fact that some nice results were obtained, the earlier attempts remained unsatis-
factory. In Meheus et al. [12], a proof theory was provided for the traditional logic-based approaches
to abduction. It is based on the characteristics of the adaptive logics-proof theory, and also incor-
porates some extra logical features. As such, only a proof theory for abduction was provided, not a
formal logic. On the other hand, in Meheus and Batens [10] and Meheus [11], two (actual) adaptive
logics were provided to explicate abduction, namely, the logics LAr and LAr

s . Nonetheless, LAr

and LAr
s only capture abductive reasoning in a limited way. First of all, these logics do not allow

abductive inferences at the purely propositional level. Secondly, only practical abduction could be
characterized by the approach presented in [10] and [11], which is most likely due to the fact that the
deductive frame of LAr and LAr

s is based on classical logic. Thirdly, the logics LAr and LAr
s lack

some properties that seem to be necessary to capture abductive explanation in a decent way. Most
importantly, in case an explanandum is explained by the background theory alone, LAr and LAr

s

go on to provide possible abductive explanations, despite the fact that none are needed.7 Neither of
these shortcomings also applies to the approach presented in this article.

4.2 The standard format

All adaptive logics (AL) have a uniform characterization. This characterization is called the standard
format of adaptive logics and was presented most thoroughly in Batens [8, 9]. The main advantage
of the standard format consists in the fact that all AL characterized accordingly have a common
semantic and proof theoretic characterization. Moreover, a lot of metatheoretic properties have been
proven for AL in standard format (most importantly, soundness and completeness).8 Below, I will
first give a general characterization of the standard format. Afterwards, I will present the proof
theory of AL in standard format. The semantics of AL in standard format will not be spelled out.
Nothing fundamental is lost though, for the focus of this article is on the proof theory (see Section 1).
Moreover, the interested reader can find the semantic characterization of AL in standard format in
Batens [8, 9] and Batens et al. [19].

6For an intuitive justification of these abductive processes, see Meheus and Batens [10, pp. 224–225].
7To be fair, in a lecture at the University of Utrecht (20 Octobre 2009), Joke Meheus showed how to overcome the second

shortcoming of LAr and LAr
s . Nevertheless, the other shortcomings still remain and are not likely to be overcome anytime.

8Proofs for these metatheoretic properties are provided in Batens [9].
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4.2.1 General characterization
All flat adaptive logics in standard format are characterized by means of the following three ele-
ments:

– A lower limit logic (LLL): a reflexive, transitive, monotonic and compact logic that has a
characteristic semantics (with no trivial models) and contains classical logic.

– A set of abnormalities Ω: a set of formulas characterized by a (possibly restricted) logical form
F that is LLL-contingent and contains at least one logical symbol.

– An adaptive strategy.

Remark that the AL that will be presented later on are not flat AL, but prioritized adaptive log-
ics (PAL). The latter can also be characterized by means of the standard format, though some
slight modifications are necessary.9 More specifically, the set of abnormalities Ω is replaced by a
structurally ordered sequence Ω> of sets of abnormalities:

DEFINITION 6
Ω> =Ω1 >Ω2 >...10

The order imposed on the sequence Ω> expresses a priority relation: in case Ωi >Ωj , the priority of
the elements of Ωi is higher than the priority of the elements of Ωj . For reasons of convenience, I
will use Ω to refer to the union of the sets Ω1,Ω2,..., while Ω> will be used to refer to the sequence
Ω1 >Ω2 >....

4.2.2 The adaptive consequence relation
The adaptive consequences of a premise set are obtained by the interplay between the three con-
stituting elements of a (prioritized) adaptive logic. This will be explicated by characterizing the
PAL-consequence relation in general. Where the expression Dab(�) is used to represent a finite
disjunction of abnormalities (elements of Ω), the PAL-consequence relation is defined as follows.

DEFINITION 7
Γ �PAL A iff there is a finite �⊂Ω such that Γ �LLL A∨Dab(�) and FALSEAS(�).

The above definition tells us that a formula A is PAL-derivable from a premise set Γ iff A∨Dab(�)
is LLL derivable from Γ and � satisfies the additional condition FALSEAS(�). Intuitively, the
latter means that one is allowed to derive A from A∨Dab(�) in case all elements of � can safely
be interpreted as false—metaphorically, one might consider this as a metatheoretic application
of disjunctive syllogism. As a consequence, abnormalities are falsified as much as possible. In
other words, premise sets are interpreted as normally as possible with respect to some standard of
normality.

Definition 7 has some interesting consequences. In case �=∅, no abnormalities have to be
falsified in order to derive the formula A from the premise set Γ . Hence, in case the formula A is a
LLL consequence of Γ , it is an adaptive consequence of Γ as well. In general, this implies that a
(prioritized) adaptive logic derives more consequences from a premise set than the lower limit logic
it is based on (more specifically, the adaptive consequence set of a premise set is a superset of the
LLL consequence set of that premise set). On the other hand, in case � �=∅, the formula A is only an
adaptive consequence of the premise set, in case all elements of � may be interpreted as false (if not,

9Prioritized adaptive logics are well studied in the literature, see e.g. Batens [8], Batens et al. [18], and Verhoeven [20].
10No upper bound is necessary, as is most clearly explained in [8, pp. 52–54]. However, all PAL that will be considered

in this article do have an upper bound.
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the formula A cannot safely be interpreted as true). For as long as it has not been determined whether
or not all elements of � may indeed be interpreted as false, the formula A is called a conditional
consequence of the premise set Γ . Obviously, this intermediate phase of conditional acceptance of
consequences corresponds to the proof theoretic derivation of consequences by means of defeasible
inference rules.

Whether a conditional consequence of a premise set is a final consequence as well, depends on
the condition FALSEAS(�). Whether this condition is satisfied for a particular � is determined
by the adaptive strategy of an adaptive logic. For the adaptive logics I will present below, this is
either the reliability strategy or the normal selections strategy.11 Both strategies base the decision to
reject (or to retain) a conditional consequence of a premise set on the minimal Dab-consequences
of that premise set—see Definition 8. In advance though, it is important to notice that the minimal
Dab-consequences of a premise set are defined in a stepwise manner: where the expression Dabi(�)
is used to represent finite disjunctions of abnormalities of priority i (elements of Ωi), the minimal
Dab-consequences of the form Dab1(�) are determined first, then the minimal Dab-consequences
of the form Dab2(�),...

DEFINITION 8
Dabi(�) is a minimal Dab-consequence of a premise set Γ iff (1) there is a finite Θ⊂Ω1 ∪ ...∪Ωi−1

such that Γ �LLL Dabi(�)∨Dab(Θ), (2) there is no �⊂Ωj such that Ωj >Ωi, Dabj(�) is a minimal
Dab-consequence of Γ and �∩Θ �=∅ and (3) there is no �′ ⊂� such that (1) and (2) apply to
Dabi(�′) as well.

Not all abnormalities occurring in a minimal Dab-consequence of a premise set, may be interpreted
as false. Hence, some of the conditional consequences derived by interpreting certain of these
abnormalities as false have to be rejected. First of all, the reliability strategy will reject all conditional
consequences that were derived by interpreting some of the abnormalities occurring in a minimal
Dab-consequence as false. As a consequence, the condition FALSEAS(�) for the reliability strategy
(henceforth, FALSER(�)) is defined as follows.

DEFINITION 9
For �⊂Ω, FALSER(�) iff, for all Ωi in Ω>, there is no finite Θ⊂Ωi such that Dabi(Θ) is a minimal
Dab-consequence of Γ and Θ∩� �=∅.

On the other hand, the normal selections strategy will only reject those conditional consequences
that were derived by interpreting as false all abnormalities of a minimal Dab-consequence of the
premise set. In other words, the condition FALSEAS(�) for the normal selections strategy (hence-
forth, FALSENS(�)) is defined as follows.

DEFINITION 10
For �⊂Ω, FALSENS(�) iff, for all Ωi in Ω>, there is no finite Θ⊂Ωi such that Dabi(Θ) is a
minimal Dab-consequence of Γ and Θ⊂�.

4.2.3 Dynamic behavior
Because of the conditional status of some of the PAL consequences, PAL display an external as
well as an internal dynamics. Firstly, the external dynamics comes down to non–monotonicity:
if the premise set is extended, some conditionally derived PAL consequences of the premise set

11For more information on alternative adaptive strategies, see e.g. Batens [9] (for the minimal abnormality strategy) and
Meheus and Primiero [21] (for the counting strategy).
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may not be derivable anymore. Secondly, the internal dynamics is a strictly proof theoretic feature:
growing insights in the premises, obtained by deriving new consequences from the premises (in casu
Dab-consequences), may lead to the withdrawal of earlier reached conclusions or to the rehabilitation
of earlier withdrawn conclusions.

The dynamic behaviour of PAL resembles the dynamics present in abductive reasoning (see
Sections 1 and 3). Consequently, PAL seem particularly well suited to explicate abductive reasoning.

4.2.4 Proof theory
As PAL are standard adaptive logics, the PAL-proof theory has some characteristic features shared
by all adaptive logics. First of all, a PAL-proof is a succession of stages, each consisting of a sequence
of lines. Adding a line to a proof means to move on to the next stage of the proof. Secondly, the
lines of a PAL-proof consist of four elements (instead of the usual three): a line number, a formula,
a justification and an adaptive condition. The latter is a finite subset of Ω (the union of the sets
of abnormalities of a prioritized adaptive logic). Finally, the PAL-proof theory consists of both
deduction rules and a marking criterion. Both of these will be discussed below.

4.2.5 Deduction rules
The deduction rules determine how new lines may be added to a proof. Below, the deduction rules
are listed in shorthand notation, with

A �

expressing that the formula A occurs in the proof on a line with condition �.

PREM If A∈Γ : … …
A ∅

RU If A1,...,An �LLL B: A1 �1
...

...

An �n

B �1 ∪ ...∪�n

RC If A1,...,An �LLL B∨Dab(Θ) : A1 �1
...

...

An �n

B �1 ∪ ...∪�n ∪Θ

The adaptive condition of a line i expresses that as long as all its elements can be considered as
false, the formula on that line may be considered as derivable from the premise set. Secondly, in
order to indicate that not all elements of the adaptive condition of a line i can be considered as false,
line i is marked—formally, this is done by placing the symbol � next to the adaptive condition.
Obviously, when a line is marked, the formula on that line may not be considered as derivable
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anymore. Finally, the marking in a PAL-proof is dynamic: at some stage of the proof, a line might
be marked (resp. unmarked), while at a later stage, it might become unmarked (resp. marked) again.

4.2.6 Marking criterion
At every stage of a PAL-proof, the marking criterion determines which lines have to be marked. To
determine whether a line has to be marked at a stage s of a PAL-proof, both the reliability strategy as
well as the normal selections strategy first determine the minimal Dab-consequences of the premise
set at stage s.

DEFINITION 11
Dabi(�) is a minimal Dab-consequence of a premise set Γ at stage s of a proof, iff (i) Dabi(�)
occurs on an unmarked line k at stage s, (ii) all members of the adaptive condition of line k belong
to some Ωj in the sequence Ω> such that Ωj >Ωi and (iii) there is no �′ ⊂� such that (i) and (ii)
apply to Dab(�′) as well.

It is important to notice that the minimal Dab-consequences of a premise set at a stage s are deter-
mined in a stepwise manner: first for priority level 1, then for priority level 2,...

Well now, the marking definitions for PAL based on the reliability strategy and the normal
selections strategy are the following.

DEFINITION 12 (Reliability)
Line i with adaptive condition � is marked at stage s iff Dabi(Θ) is a minimal Dab-consequence of
Γ at stage s and Θ∩� �=∅.

DEFINITION 13 (Normal selections)
Line i with adaptive condition � is marked at stage s iff Dabi(Θ) is a minimal Dab-consequence of
Γ at stage s, and Θ⊂�.

4.2.7 Defining derivability
A formula is considered as derivable from a premise set Γ , in case it occurs as the second element
of an unmarked line in a proof from Γ .

DEFINITION 14 (Derivability)
The formula A is derived from Γ at stage s of a PAL-proof iff A is the second element of an
unmarked line at stage s.

Because of the dynamic nature of adaptive proofs, markings may change at every stage. Hence,
at every stage of a proof, it has to be reconsidered whether or not a formula is derivable. In other
words, derivability is stage dependent. Although this may seem problematic at first, it nevertheless
reflects the way people treat abductive consequences. For, given that abductive consequences are
provisional consequences, conclusions drawn by relying on abductive inference steps are hardly ever
conclusive. Hence, at any moment, two options are available to people, namely, to keep on reasoning
until conclusiveness has been reached or to base one’s actions on the provisional conclusions. As
the first option may take more time than available, the latter option will be the only viable one in a
lot of cases.12

12For a more extensive justification of this claim, see Batens et al. [22]. In [22], the (un)decidability of AL is discussed
as well. In short, AL are undecidable. This is not surprising, for AL are intended to capture consequence relations that
are undecidable such as for example the abductive consequence relations in this article. Of course, one may consider only
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Besides a stage-dependent notion of derivability, a stable notion of derivability can be defined as
well. It is called final derivability, which refers to the fact that, for some formulas, derivability is
only decided at the final stage of a proof.

DEFINITION 15 (Final Derivability)
The formula A is finally derived from Γ on line i of a PAL-proof at stage s iff (i) A is the second
element of line i, (ii) line i is not marked at stage s and (iii) every extension of the proof in which
line i is marked may be further extended in such a way that line i is unmarked again.

Because of its stability, the notion of final derivability is used to define PAL-derivability.

DEFINITION 16
Γ �PAL A (A is PAL–derivable from Γ ) iff A is finally derived on a line of a PAL-proof from Γ .

4.3 The prioritized adaptive logics AbLp and AbLt

In this final section, I will characterize the prioritized adaptive logics AbLp and AbLt. First, I will
show how these logics fit the standard format. Secondly, I will show that both logics characterize
abductive reasoning as a combination of multiple defeasible inference rules. Thirdly, I will argue that
the abductive consequences of both logics still satisfy the conditions put forward by the traditional
logic-based approaches to abduction. To conclude, I will also point out the main difference between
both logics.

4.3.1 Preliminary remark
I will limit myself to the propositional fragment of both AbLp and AbLt. However, extending these
logics to their full predicate versions is completely straightforward, and hence can safely be left to
the reader.

4.3.2 Characterizing AbLp and AbLt

As both AbLp and AbLt are prioritized adaptive logics in standard format, they are characterized by
means of a lower limit logic, an ordered sequence of sets of abnormalities and an adaptive strategy.
First, consider those characterizing the logic AbLp:

– The LLL of AbLp is the modal logic RBK (see Section 2).
– The abnormalities of AbLp are characterized by the ordered sequence Ω> = Ωbk >Ωp, with

Ωbk = {�xA | x∈{n,e} and A∈W }.
Ωp = {�n(A⊃B)∧B∧¬�eB∧¬A |B∈S∪S¬, A in Conjunctive Normal

Form, and B is not a subformula of A }.
– The adaptive strategy of AbLp is the reliability strategy.

Next, consider the elements characterizing the logic AbLt. These differ from those of AbLp with
respect to the sequence Ω> as well as with respect to the adaptive strategy.

decidable fragments of these consequence relations, a popular trick in AI approaches to abduction—see Gabriele [6]. However,
as a lot of interesting theories are undecidable, this is not always the most interesting option—see Meheus [23] for a more
extensive discussion.
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– The LLL of AbLt is the modal logic RBK (again, see Section 2).
– The abnormalities of AbLt are characterized by the ordered sequence Ω> = Ωbk >Ωt , with

Ωbk = { �xA | x∈{n,e} and A∈W }.
Ωt = { �n(A⊃B) ∧ ¬�nB ∧ B ∧ ¬�eB ∧ ¬A | A,B∈S∪S¬, and B is not a

subformula of A } ∪ { �n((A1 ∧ ...∧An)⊃B) ∧ ¬�n((A2 ∧ ...∧An)⊃B)
∧ ¬�n((A1 ∧A3 ∧ ...∧An)⊃B) ∧ ... ∧ ¬�n((A1 ∧ ...∧An−1)⊃B) ∧ B ∧
¬�eB ∧ ¬(A1 ∧ ...∧An) | A1,...,An,B∈S∪S¬, and B is not a subfor-
mula of A1 ∧ ...∧An }.

– The adaptive strategy of AbLt is the normal selections strategy.

In view of the standard format of (prioritized) adaptive logics outlined above, a semantic or proof
theoretic characterization for these logics need not be provided anymore.

4.3.3 A formal explication of abductive explanation
Earlier on, I stated that to capture the layered character of abduction adaptive logics characterize
abduction processes proof theoretically as specific combinations of multiple defeasible inference
rules. For the kinds of abductive explanation explicated by the logics AbLp and AbLt, these defea-
sible inference rules are NEN, NNN and ACm (see Section 3).

4.3.4 Preliminary remarks
Because of space limitations, all proofs presented below are AbLp-proof as well as AbLt-proofs.
In order to make a clear distinction between both kinds of proofs, lines in a proof are given two
adaptive conditions, one for each logic. Markings related to the logics AbLp and AbLt are placed
next to the corresponding adaptive condition. Some abbreviations are introduced as well. First of
all, �n(A⊃B)∧ ...∈Ωp is abbreviated as 〈A,B〉p. Analogously, �n(A⊃B)∧ ...∈Ωt is abbreviated as
〈A,B〉t . When the ambiguous 〈A,B〉p/t is used, 〈A,B〉p is meant in the AbLp-proof, while 〈A,B〉t is
meant in the AbLt-proof. Finally, Ωi1,...,in is used to refer to the union of the adaptive conditions of
lines i1,...,in.

4.3.5 Combining defeasible inference rules
In order to show how AbLp and AbLt combine multiple defeasible inference rules to explicate abduc-
tive explanation, consider the adaptive proof below. It is based on the premise set Γ = {�n(p⊃q), q}.
1 �n(p⊃q) –;PREM ∅ ∅
2 q –;PREM ∅ ∅
At this stage of the proof, the premises have been introduced. These clearly show that p is a possible
explanation for q. In order to derive p as an abductive consequence of Γ , the formulas ¬�eq and
¬�nq have to be derived first. This is done as follows:

3 �eq∨¬�eq –;RU ∅ ∅
4 �nq∨¬�nq –;RU ∅ ∅
5 ¬�eq 3;RC {�eq} {�eq}
6 ¬�nq 4;RC {�nq} {�nq}
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Both ¬�eq and ¬�nq are conditional consequences of the premise set Γ . As is shown below, their
derivation is necessary in order to derive p as an abductive consequence of the premise set Γ .13

7 p∨¬p –;RU ∅ ∅
8 p∨〈p,q〉p/t 1,2,5,(6,)7;RU Ω5 Ω5,6

9 p 8;RC Ω5 ∪{〈p,q〉p} Ω5,6 ∪{〈p,q〉t}

At this stage of the proof, the formula p has been conditionally derived on line 9. Hence, as long as
all elements of the adaptive condition of line 9 may be interpreted as false, p may be considered a
(conditional) abductive consequence of the premise set Γ .

The first two applications of RC in the proof above, namely, those resulting in the conditional
derivation of the formulas ¬�eq and ¬�nq, clearly correspond to applications of the defeasible
inference rules NEN and NNN. On the other hand, the third application of RC in the proof, namely,
the one resulting in the conditional derivation of the formula p, corresponds to an application of the
defeasible inference rule ACm. Remark that the formulas obtained by the first two applications of
RC are required for the third application of RC. In other words, the formulas obtained by applying
the inference rules NEN and NNN correspond to some of the conditions that have to be satisfied
before the inference rule ACm may be applied (see Section 3). However, notice that AbLp and AbLt

require slightly different conditions to be satisfied. For AbLp only formulas of the form ¬�eA are
required. For AbLt on the other hand, also formulas of the form ¬�nA are required. In the proof
above, this is clear from the fact that in the AbLt-version the formula on line 6 is necessary for the
derivation of p on line 9, while it is not in the AbLp-version.

4.3.6 Meaning of the additional conditions
Let us have a closer look at the additional conditions captured by the consequences of the inference
rules NEN and NNN. Firstly, consider the formulas of the form ¬�eA obtained by means of the
defeasible inference rule NEN. Both AbLp and AbLt only allow applications of ACm in case ¬�eA
is derivable for the explanandum A. The reason for this is quite simple: the formula ¬�eA guarantees
that the explanandum A cannot be explained by means of the background theory alone. Hence, A
is in need of an explanation and is allowed to trigger abductive inferences. It is easily verified that
in case the explanandum A is derivable from the background theory alone, �eA will be derivable
from the premises. As a consequence, ¬�eA will be withdrawn, as will all abductive consequences
triggered by A. To illustrate this, consider again the proof above, but suppose that the formula �ep
is added to the premise set Γ . As a consequence, the proof can be extended in the following way:

... ... ... ... ...
5 ¬�eq 3;RC {�eq} � {�eq} �
... ... ... ... ...
8 p∨〈p,q〉p/t 1,2,5,(6,)7;RU Ω5 � Ω5,6 �
9 p 8;RC Ω5 ∪{〈p,q〉p} � Ω5,6 ∪{〈p,q〉t} �
10 �ep –;PREM ∅ ∅
11 �eq 1,10;RU ∅ ∅

13In the justification of line 8, the reference to line 6 is placed between brackets in order to express that it is only necessary
in the AbLt version of the proof.
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At this stage of the proof, the formula �eq has been derived on line 11. As this is a minimal,
Dab-consequence of Γ at stage 11, lines 5, 8 and 9 are marked. Consequently, the formula ¬�eq
cannot be considered as derivable anymore, and neither can the formula p.

Secondly, consider the formulas of the form ¬�nA obtained by means of the defeasible infer-
ence rule NNN. These are used in the logic AbLt to guarantee that the inference step known as
strengthening the antecedent does not enable one to derive abductive explanations containing irrel-
evant parts. For, the logic AbLt only validates an abductive inference based on a nomological for-
mula �n((A1 ∧ ...∧An)⊃q) in case the formulas ¬�n((A2 ∧ ...∧An)⊃q), ¬�n((A1 ∧A3 ∧ ...∧An)⊃
q),...,¬�n((A1 ∧ ...∧An−1)⊃q) are derivable. It is easily verified that this will never be the case when
the formula �n((A1 ∧ ...∧An)⊃q) has been obtained by means of strengthening the antecedent. To
illustrate this, suppose the proof above (the original proof, i.e. lines 1–9) is extended in the following
way:

10 �n((p∧r)⊃q) 1;RU ∅ ∅
11 ¬�n(p⊃q) –;RC {�n(p⊃q)} � {�n(p⊃q)} �
12 ¬�n(r ⊃q) –;RC {�n(r ⊃q)} {�n(r ⊃q)}
13 p∧r 2,5,10(,11,12);RC Ω5 ∪{〈p∧r,q〉p} Ω5,11,12 ∪{〈p∧r,q〉t} �

Clearly, the antecedent of �n((p∧r)⊃q) contains an irrelevant part, namely, r. The latter has been
added to the antecedent of the nomological formula on line 1 by an application of strengthening
the antecedent. However, as �n(p⊃q) is a minimal Dab-consequence of the premise set Γ , lines
11 and 13 are marked. Hence, neither ¬�n(p⊃q) nor p∧r are considered as derivable from Γ at
stage 13 of the proof (and at all later stages of the proof). A small digression is necessary at this
point. Line 13 is only marked for the logic AbLt. Hence, the formula p∧r seems to be derivable
from Γ by the logic AbLp. This is not the case though, for AbLp also blocks abductive inferences
based on nomological statements obtained by strengthening the antecedent. Only, AbLp does not
need formulas of the form ¬�nA to do so, as the following extension of the proof above shows.

13 p∧r 2,5,10(,11,12);RC Ω5 ∪{〈p∧r,q〉p} � Ω5,11,12 ∪{〈p∧r,q〉t} �
14 〈p∧r,q〉p ∨ 1,5;RC Ω3 Ω3

〈p∧¬r,q〉p

To conclude, suppose that in the example above the formulas �n(p⊃q) and �n((p∧r)⊃q) are both
elements of the premise set Γ . Hence, the latter is not obtained from the former by application of
the inference rule strengthening the antecedent. Nonetheless, this does not change the status of the
formula p∧r, for it is still not finally derivable from Γ by AbLp or AbLt. Actually, this means
that these logics not only block the abductive inferences of explanations based on nomological
background knowledge implications that are in fact obtained by means of strengthening of the
antecedent, but also those that are based on nomological background knowledge implications that
could have been obtained by means of strengthening the antecedent. In other words, these logics
only enable one to derive the minimal explanations for a given phenomenon.

4.3.7 Comparison with the ‘backwards deduction’-approaches
In order to show that both AbLp and AbLt capture abductive explanation in an adequate way, I will
show that both logics satisfy the conditions for abductive explanation put forward by the traditional
‘backwards deduction’-approaches to abduction (see Section 1, Table 1).
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Condition (i) states that the background knowledge extended by an abductive explanation has to
yield the explanandum. Given the dependency of the defeasible inference rule ACm on nomological
statements derivable from the background knowledge, this condition is satisfied a priori.

Condition (ii) states that an abductive explanation has to be compatible with the background
knowledge. It is easily verified that this will be the case for both AbLp and AbLt. For, in case an
abductive consequence derived on a line i in a proof is incompatible with the background knowledge,
line i will irrevocably be marked at some stage of the proof. For example, consider the premise set
Γ = {�n(p⊃q),q,�e¬p}. As in the proof above (lines 1–9), the formula p is conditionally derivable
from the premise set Γ . However, the proof can be extended in such a way that line 9 is marked.

... ... ... ... ...
9 p 8;RC Ω5 ∪{〈p,q〉p} � Ω5,6 ∪{〈p,q〉t} �
10 �e¬p –;PREM ∅ ∅
11 〈p,q〉p/t 1,2,5,(6,)10;RU Ω5 Ω5,6

At stage 11 of the proof, the formula 〈p,q〉p/t is a minimal Dab-consequence of the premise set Γ .
As a consequence, line 9 is marked.

Condition (iii) states that the explanandum may not be derivable from the background knowledge
alone. As I have shown above, this condition is satisfied for both AbLp and AbLt.

Condition (iv) states that an abductive explanation may not yield the explanandum by itself.
Actually, this is satisfied by the fact that applications of ACm are only validated conditionally in
AbLp and AbLt in case the nomological statements involved are of a specific syntactic form. This
is a consequence of the way Ωp and Ωt were defined. For example, the elements of Ωt are of the
form �n((A1 ∧ ...∧An)⊃B)∧ ...∧¬(A1 ∧ ...∧An). However, B is not allowed to occur in A1 ∧ ...∧An

(check the definition of Ωt above)! As a consequence, it is impossible for A1 ∧ ...∧An to yield B by
itself. The same reasoning also applies to the elements of Ωp.

Finally, as I have shown above, the abductive explanations obtained by AbLp and AbLt are
minimal explanations (and hence, never contain irrelevant parts). Although Aliseda–Llera did not
state this as a necessary condition for consistent and explanatory abduction in [1], it is easily verified
that this should be a necessary condition (and in a lot of traditional logic based approaches, it also is).

4.3.8 Practical versus theoretical abductive explanation
The logics AbLp and AbLt explicate different kinds of abductive explanation, namely, practical
abductive explanation and theoretical abductive explanation, respectively. As stated at the beginning
of this section, in case a puzzling phenomenon has multiple possible explanations, practical abduction
only yields the disjunction of these explanations, while theoretical abduction yields all explanations
separately.14 As a consequence, the former is more cautious than the latter, for practical abduction
would not enable one to act on a single possible explanation in case there are multiple. This is
appropriate for contexts in which it is important that no possible explanations are overlooked,
e.g. when trying to diagnose the disease causing a patient’s symptoms—in case there is more than
one possibility, acting on a single one would be foolish, for this could leave the patient uncured. On
the other hand, in some contexts one might want to derive all possible explanations, e.g. in case one
wishes to compare the predictions yielded by various scientific explanations. On the basis of this
comparison, one may then decide which explanation should be favoured.

14The distinction between both kinds of abduction was introduced by Meheus and Batens [10, p. 224].

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/article/20/2/497/827271 by U

.S. D
epartm

ent of Justice user on 17 August 2022



[15:53 26/3/2012 jzq053.tex] Paper Size: a4 paper Job: JIGPAL Page: 514 497–516

514 A formal explication of the search for explanations

Example
To illustrate the different kinds of abductive explanation explicated by the logics AbLp and
AbLt, respectively, consider the example below, based on the premise set Γ = {�n(p⊃q),�n(r ⊃
q),�n¬(p∧r),q}. For the premise set Γ , the logic AbLp should enable one to derive the disjunction
p∨r, while the logic AbLt should enable one to derive both p and r separately. As a matter of fact,
this is exactly what happens.

1 �n(p⊃q) –;PREM ∅ ∅
2 �n(r ⊃q) –;PREM ∅ ∅
3 q –;PREM ∅ ∅
4 p 1,3;RC {�eq,〈p,q〉p} {�eq,�nq,〈p,q〉t}
5 r 2,3;RC {�eq,〈r,q〉p} {�eq,�nq,〈r,q〉t}
At stage 5 of the proof, p and r have been derived on an unmarked line in both the AbLp-proof
and the AbLt-proof. Both proofs now proceed differently. Hence, I will consider them separately,
starting with the AbLp-proof.

... ... ... ... –
4 p 1,3;RC {�eq,〈p,q〉p} � –
5 r 2,3;RC {�eq,〈r,q〉p} � –
6 〈p,q〉p ∨〈r∧¬p,q〉p 1–3;RC {�eq} –
7 〈r,q〉p ∨〈p∧¬r,q〉p 1–3;RC {�eq} –
8 p∨r 1–3;RC {�eq,〈p∨r,q〉p} –

At stage 10 of the AbLp-proof, two minimal Dab-consequences of the premise set Γ have been
derived, namely, 〈p,q〉p ∨〈r∧¬p,q〉p on line 8 and 〈r,q〉p ∨〈p∧¬r,q〉p on line 9. As a consequence,
lines 6 and 7 are marked, which implies that neither p nor r is considered as derivable anymore.
However, the disjunction of p and r is considered as derivable, for the formula p∨r occurs on
an unmarked line of the proof (line 10 to be precise). Moreover, it is easily verified that line 10
will remain unmarked in any extension of the proof. Hence, the formula p∨r is a final abductive
AbLp-consequence of Γ .

Now, consider the AbLt-proof below. At first, this proof seems to proceed as the AbLp-proof
above. However, because the logic AbLt is based on the normal selections strategy instead of the
reliability strategy, neither line 6 nor line 7 is marked (nor will these lines be marked in any extension
of the proof). As a consequence, both p and r are final abductive AbLt-consequences of Γ .

... ... ... – ...
6 p 1,3;RC – {�eq,�nq,〈p,q〉t}
7 r 2,3;RC – {�eq,�nq,〈r,q〉t}
8 〈p,q〉t ∨〈r∧¬p,q〉t 1–3;RC – {�eq,�nq,�n(r ⊃q),�n(¬p⊃q)} �
9 〈r,q〉t ∨〈p∧¬r,q〉t 1–3;RC – {�eq,�nq,�n(p⊃q),�n(¬r ⊃q)} �
10 p∧r 6,7;RU – {�eq,�nq,〈p,q〉t,〈r,q〉t}
To conclude, consider the formula on line 10 of the AbLt-proof above. This is the formula p∧r,
namely, the conjunction of both possible explanations for q. As line 10 is unmarked at this stage of
the proof, the formula p∧r is a conditional consequence of the premise set Γ . As distinct possible
explanations are usually considered as mutually exclusive, this clearly is absurd. However, different
possible explanations for the same phenomenon do not have to be mutually exclusive, for one of
these may yield the other(s)—in the example above, this would be the case if �n(r ⊃p) would have
been an element of the premise set Γ . In this case, the derivation of the conjunction of multiple
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possible explanations makes perfect sense. Nonetheless, in case the possible explanations are mutu-
ally exclusive, their conjunction should not be derivable. As is shown below, this is exactly what
happens in AbLt-proofs. Given that �n¬(p∧r)∈Γ , p and r are mutually exclusive. Hence, the line
on which their conjunction occurs will get marked eventually. For example, in case the proof is
extended as follows.

... ... ... – ...
10 p∧r 6,7;RU – {�eq,�nq,〈p,q〉t,〈r,q〉t} �
11 �n¬(p∧r) –;PREM – ∅
12 〈p,q〉t ∨〈r,q〉t 1–3,11;RC – {�eq,�nq}

5 Conclusion

The (prioritized) adaptive logics AbLp and AbLt provide a formal explication of practical and
theoretical abductive explanation, respectively. In contradistinction to the traditional logic-based
approaches to abduction, these logics not only capture abductive explanation metatheoretically and/or
semantically, but also proof theoretically, namely, as a combination of multiple defeasible inference
rules. In general, this shows that logics for abduction based on the adaptive logics programme provide
a more realistic explication of abductive explanation than most traditional logic-based approaches.

5.1 Further research

In this article, I only provided a formal explication of practical and theoretical abductive explanation.
These are not the only kinds of abductive reasoning though, for a lot of other abduction processes have
been characterized in the literature—e.g. preferential abductive explanation, abductive explanation
triggered by an anomaly (a formula contradicting the background theory),… —for an overview,
see e.g. Aliseda–Llera [2]. The formal explication of these abduction processes is left for further
research. As a consequence, the logics presented in this article should be considered as the first step
in the direction of a general formal approach to abductive reasoning based on the adaptive logics
programme.
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