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ABSTRACT
Recent proposals for trusted hardware platforms, such as Intel SGX

and the MIT Sanctum processor, offer compelling security features

but lack formal guarantees. We introduce a verification method-

ology based on a trusted abstract platform (TAP), a formalization

of idealized enclave platforms along with a parameterized adver-

sary. We also formalize the notion of secure remote execution and

present machine-checked proofs showing that the TAP satisfies the

three key security properties that entail secure remote execution:

integrity, confidentiality and secure measurement. We then present

machine-checked proofs showing that SGX and Sanctum are refine-

ments of the TAP under certain parameterizations of the adversary,

demonstrating that these systems implement secure enclaves for

the stated adversary models.

CCS CONCEPTS
• Security and privacy → Formal methods and theory of se-
curity; Security in hardware; Trusted computing; Informa-
tion flow control;

KEYWORDS
Enclave Programs; Secure Computation; Formal Verification; Con-

fidentiality; Integrity; Remote Attestation

1 INTRODUCTION
An application executing on a typical computing platform con-

tains large privileged software layers in its trusted computing base

(TCB), which includes the operating system (OS), hypervisor and

firmware. Vulnerabilities in these privileged software layers have

been exploited to enable the execution of privileged malware with

disastrous consequences [1, 26, 35, 52, 64]. To address this problem,

processor designers and vendors are now developing CPUs with

hardware primitives, such as Intel SGX and MIT Sanctum, which

isolate sensitive code and data within protected memory regions,

called enclaves, that are inaccessible to other software running

on the machine. With these primitives, enclaves become the only
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trusted components of an application, and a carefully programmed

enclave can execute safely even when the privileged software layers

are compromised.

Despite growing interest, there has only been informal security

analysis of these new platforms, which we refer to as enclave plat-
forms. This lack of formalization has a number of consequences.

Developers of enclave programs cannot formally reason about se-

curity of their programs; incorrect use of hardware primitives can

render enclave programs vulnerable to security breaches. Hardware

designers cannot formally state security properties of their archi-

tectures and are unable to reason about potential vulnerabilities of

enclaves running on their hardware.

Going beyond the difficulty of reasoning about specific programs

and platforms, this lack of formalization also makes it difficult

to compare and contrast potential improvements to these plat-

forms. For example, a number of proposals have developed soft-

ware defenses to strengthen the security guarantees of Intel SGX

enclaves [55, 68, 69]. However, comparing the security guarantees

and adversary models (of say T-SGX [68] and Shinde et al. [69]) is

difficult without a unified framework for such reasoning. Further-

more, as we move towards a world in which enclave platforms are

widespread, it is conceivable that future data centers will support a

number of different enclave platforms. Developers will likely tackle

this diversity by relying on tools and libraries that provide a com-

mon application programming interface (API) for enclave programs

while supporting different target platforms. Reasoning about the

security guarantees of such toolchains is also challenging without

a unified framework. This paper bridges each of the above gaps by

presenting a unified formal framework to specify and verify the

security properties of enclave platforms.

We address the formal modeling and verification of enclave

platforms in three parts. First, we define the properties required

for secure remote execution of enclaves. Next we introduce the

trusted abstract platform (TAP), an idealization of enclave platforms

along with a parameterized adversary model. We present machine-

checked proofs showing that the TAP provides secure remote execu-

tion against these adversaries. Finally, we present machine-checked

proofs demonstrating that formal models of Intel SGX and MIT Sanc-
tum are refinements [13] of the TAP for different parameterizations

of the adversary, and thus also provide secure remote execution.

Secure Remote Execution of Enclaves: This paper first for-
malizes a model of computation of an enclave program, and the

attacker’s operations and observations — we assume a privileged

software adversary that has compromised the host OS, hypervi-

sor, network, and persistent storage. The execution model allows

the developer (or user) to precisely define the expected runtime

https://doi.org/10.1145/3133956.3134098


behavior of an enclave in the presence of a privileged software ad-

versary. When the user outsources an enclave to a remote platform,

she seeks a guarantee that the enclave be executed according to

the expected behavior, i.e., the platform must respect the enclave’s

semantics. We term this property secure remote execution (SRE):
any execution of that enclave on the trusted enclave platform must

be one of enclave’s expected executions (formalized in § 3). Any

enclave platform, such as SGX or Sanctum, must guarantee SRE to

the user, and this paper describes a formal framework and method-

ology to prove secure remote execution. SRE is decomposed into

lower-level properties — specifically, integrity, confidentiality, and

secure measurement — for which we develop machine-checked

proofs on models of SGX and Sanctum.

Trusted Abstract Platform: We develop an idealized abstrac-

tion of the aforementioned enclave platforms, named Trusted Ab-

stract Platform (TAP), consisting of a small set of formally-specified

primitives sufficient to implement enclave execution. As a precursor

to proving that TAP satisfies SRE, we define a parameterized model

of a privileged software attacker with varying capabilities. We then

present machine-checked proofs showing that TAP satisfies the

integrity, confidentiality, and secure measurement properties for

these attackers. The TAP is a general framework for reasoning

about and comparing different enclave platforms, adversary models

and security guarantees. For enclave platform implementers, the

TAP is a golden model or specification of platform behavior. From

the perspective of enclave program developers, the TAP provides a

means of reasoning about program security without being bogged

down by implementation details of individual enclave platforms.

Refinement: Next, we use the TAP to reason about the security

of Intel SGX and MIT Sanctum. We develop formal models of SGX

and Sanctum and present machine-checked proofs showing that

SGX and Sanctum are refinements of our idealized TAP: every oper-

ation on SGX and Sanctum can be mapped to a corresponding TAP

operation. Since all executions of an enclave on SGX and Sanctum

can be simulated by a TAP enclave, and because TAP guarantees

SRE, it follows that the SGX and Sanctum models also guarantee

SRE. There is a caveat that SGX only refines a version of TAP which

leaks some side channel observations to the attacker (see § 5.3),

therefore providing a weaker confidentiality guarantee. This form

of parameterization demonstrates that the TAP allows us to develop

a taxonomy of enclave platforms, each of which provides varying

guarantees against different threat models.

1.1 Contributions
This paper makes the following key contributions:

(1) A formalization of enclave execution in the presence of a

privileged software adversary, and the notion of secure re-

mote execution (SRE) of an enclave program.

(2) The Trusted Abstract Platform, which formally specifies

the semantics of a small set of trusted primitives for safely

creating and destroying enclaves, entering and exiting from

enclaves, and generating attested statements from within

enclaves. We also define a parameterized attacker model, for

which the TAP gives varying degrees of confidentiality.

(3) Decomposition of the SRE property into a triad of integrity,

confidentiality, and secure measurement properties, which

are more easily formally verified using a theorem prover.

(4) A refinement-based methodology for proving the SRE guar-

antee of enclave platforms and machine-checked proofs of

refinement for models of SGX and Sanctum.

All ourmodels and proof scripts are beingmade open-source [75].

Thesemodels are designed to bemodular and amenable to extension

by the community.

2 FORMAL MODEL OF ENCLAVE EXECUTION
An enclave platform implements primitives to create protected mem-

ory regions, called enclaves, that contain both code and data and

are isolated from all other software in the system. The processor

monitors all accesses to the enclave: only code running in the en-

clave can access the enclave’s memory. As an example, Intel’s SGX

instructions enable the creation of user-mode enclaves in the host-

ing application’s address space. Since the privileged software lay-

ers (OS/Hypervisor) cannot be trusted to modify enclave memory

(which is why system calls are disabled in enclave mode), the en-

clave platform allows the enclave to access the entire address space

of the hosting application. This enables efficient I/O interaction

with the external world. The external world can only transfer con-

trol to the enclave at statically-defined locations called entrypoints.
In addition to enabling isolated execution, the enclave platform

implements primitives for generating attested statements: code

inside an enclave can get messages signed using a per-processor

private key along with a hash-based measurement of the enclave.

This allows other trusted entities to verify that messages originated

from the desired enclave running on a genuine platform. Finally,

we assume the enclave platform implements a cryptographically

secure random number generator which the enclave can use for

cryptographic operations such as key generation.

User

Host

App
Enc e

Other

Encs

Other

Apps

Privileged SW (OS/Hypervisor)I/O

Enclave Platform

Remote Server

Enc e

µ(e) rand

Figure 1: Execution of Enclave Program

To outsource the enclave’s execution, the user sends the enclave

program to a remote machine over an untrusted channel (Figure 1).

The untrusted OS invokes the enclave platform’s primitives to

launch an enclave containing the program. While running, an en-

clave may invoke the enclave platform’s primitives to get attested

statements (with hash-based measurement µ(e)) and random bits.



The enclave may also send outputs to the user by proxying them via

the host application’s unprotected memory. We present a sample

application in § 3.3 to discuss details of secure remote execution of

an enclave program.

2.1 Formal Model of Enclave Programs
An enclave is launched with a set of code pages, containing user-

mode instructions, and a set of data pages, which can be used for

private heap and stack space. This forms the initial state of the

enclave — the enclave platform includes a hash-based measurement

of this initial state in all attested statements, which allows the user

to verify that the enclave was launched in an expected initial state.

The enclave’s configuration also includes (1) the entrypoint, (2) the

virtual address range evrange which maps the enclave’s protected

memory (i.e., each address in evrange either maps to a physical

address that is owned by the enclave or is inaccessible due to page

permissions) and (3) permissions for each address within evrange.
Enclave Programs: The user ships an enclave e = (inite , confige ).

confige defines the enclave’s entrypoint: confige .entrypoint, its vir-
tual address range: confige .evrange, and its access permissions:

confige .acl. inite specifies the enclave’s initial state at launch, in-

cluding values of code and data pages within confige .evrange.
We assume that the enclave’s virtual address range and corre-

sponding access permissions (confige .evrange, confige .acl) are the
same for local and remote executions. The assumption is required

in order to ensure that enclave measurement (see § 3.1.1) returns a
predictable value.

1

Enclave State: At any point of time, the machine is in some

state σ , which we leave abstract for now and defer its definition

to § 4.1. The enclave’s state Ee (σ ) is a projection of the machine

state, and specifies a valuation of the following state variables: (1)

memory vmem : VA → W which is a partial map from virtual

addresses (within confige .evrange) to machine words, (2) general-

purpose registers regs : N→ W which are indexed by a natural

number, (3) program counter pc : VA, and (4) configuration confige ,
which is copied verbatim from e and remains constant throughout

the enclave’s execution. inite specifies the state of enclave’s mem-

ory (vmem) at the time of launch. We abuse notation to also write

inite (Ee (σ )) to mean that Ee (σ ) is in its launch-time state (prior to

first entry into the enclave).

Enclave Inputs and Outputs: In addition to the private state

Ee (σ ), an enclave accesses non-enclave memory for reading in-

puts and writing outputs, both of which are under adversary con-

trol — since addresses outside evrange can be read and modified

by both the adversary and the enclave, we assume reads from

these addresses return unconstrained values. The enclave may also

invoke the enclave platform’s primitive to get random numbers

(which we also treat as inputs). Therefore, we define enclave’s input

Ie (σ ) � ⟨I
R
e (σ ), I

U
e (σ )⟩, where I

R
e (σ ) is any random number that

is provided by the platform in that step (ϵ if randomness was not

requested), and IUe (σ ) is the projection of the machine state that e

may read and the attacker may write; specifically, IUe (σ ) specifies
an evaluation of non-enclave memory: a partial map from virtual

1
This is not a restrictive assumption because techniques such as Address Space Layout

Randomization (ASLR) of the enclave’s virtual memory layout can be implemented

after the enclave is initialized à la SGX Shield [67].

addresses (outside confige .evrange) to machine words. Similarly, we

define enclave’s output Oe (σ ) to be a projection of the machine

state that e can write and the attacker may read; specifically,Oe (σ )
specifies an evaluation of non-enclave memory: a partial map from

virtual addresses (outside confige .evrange) to words. Furthermore,

an attacker runs concurrently with e and maintains state that can-

not be accessed by the enclave (e.g., hypervisor private memory,

other malicious enclaves), which we denote as Ae (σ ).
Enclave Execution: Our semantics of enclave execution as-

sumes that an enclave program is deterministic modulo the input

Ie (σ ), i.e., the next state of the enclave is a function of the current

state Ee (σ ) and input Ie (σ ) (which includes IUe (σ ) and I
R
e (σ )). This

is not a restriction in practice as both Sanctum and SGX enclaves

interact with the external world via memory-based I/O (IUe (σ )),

and besides the random bits (IRe (σ )) from an entropy source, there

are no other sources of non-determinism — we only assume single

threaded enclaves in this work. Since we make this determinism

assumption while defining an enclave’s semantics, we must prove

that the platform does not allow non-determinism.

The enclave computes by performing steps, where in each step

the enclave platform first identifies the instruction to execute (based

on the current state of vmem and pc), and then transitions to the next
state based on the operational semantics of the platform’s instruc-

tions. The instructions include bitvector operations on registers,

memory accesses, and the enclave primitives for generating attested

statements, randomness, and exiting enclave mode — the platform

also includes privileged instructions (e.g., MSR instructions in x86)

which can cause arbitrary updates to Ae (σ ). This model of execu-

tion lets us define the platform’s transition relation{, where (σi ,
σj ) ∈ { indicates that the platform can transition from σi to σj ;
from hereon, we write this in infix form as σi { σj . We treat{
as a relation as opposed to a function to allow non-determinism

for the platform. The non-determinism includes randomness from

entropy sources, direct memory accesses from I/O peripherals, etc.

Let us refer to these bits of non-determinism in a particular state

as IP (σ ), which is only available to the privileged software — the

enclave’s source of non-determinism is captured in Ie (σ ). We re-

quire that the platform be deterministic relative to IP (σ ). A secure

platform must also ensure an enclave program e is deterministic

relative to its input Ie (σ ). We state two properties in § 3 that imply

these determinism guarantees.

2.2 Formal Model of the Adversary
An enclave executes in the presence of a privileged adversary that

has compromised all software layers including the OS, except for the

enclave platform. In this section, we abstractly define the effect of

the adversary’s operations and observations. § 4.2 precisely defines

the set of attacker operations and observations for the TAP.

2.2.1 Adversary Tampering. The privileged adversarymay pause

the enclave at any time, and execute arbitrary instructions that mod-

ify the attacker’s stateAe (σ ), enclave’s input I
U
e (σ ) for any enclave

e , and launch or destroy any number of enclaves. We model the

adversary’s effect through the tamper relation over pairs of states:

(σ1,σ2) ∈ tamper if the attacker can change the machine’s state

from σ1 to σ2, with the constraint that Ee (σ1) = Ee (σ2). That is,
the attacker may modify Ae (σ1), Ie (σ1), and Oe (σ1), but not the



enclave’s state Ee (σ1). The constraint that tamper does not affect
an enclave’s state is assumed while defining the enclave’s semantics.

Our integrity property (§ 3) for enclave platforms must prove that

this constraint is forced upon the attacker’s operations.

tamper ⊂ { because a software attacker uses the platform’s

instructions to update the platform’s state. Furthermore, tamper is
reflexive because the adversary can always leave state unmodified:

∀σ . (σ ,σ ) ∈ tamper . In addition to running concurrently with an

enclave e , the adversary may tamper the machine’s state prior to

launch and modify e’s launch state inite and configuration confige .

2.2.2 Adversary Observations. Untrusted software may also ob-
serve an enclave’s execution, depending on the confidentiality guar-

antees provided by the enclave platform. At the very least, the

adversary observes any output, but it may also observe certain

side channels such as memory access patterns. Observations are

performed by executing arbitrary instructions (e.g., any x86 instruc-

tion) and invoking the platform’s primitives (e.g., launching other

enclaves), and then observing the results of these operations. Let

obse (σ ) denote the result of an observation for the machine state σ .
For instance, an attacker that only observes outputs enjoys the ob-

servation function obse (σ ) � (Oe (σ )). We specify the observation

functions in detail in § 4.2.

2.3 Enclave Execution with an Attacker
An execution trace of the platform is an unbounded-length se-

quence of states denoted π = ⟨σ0,σ1, . . . ,σn⟩, such that ∀i . σi {
σi+1; π [i] refers to the ith element of the trace. Since the attacker

may pause and resume e at any time, we define e’s execution to

be the subsequence of states from π where e is executing. To that

end, let the function curr (σ ) denote the current mode of the plat-

form, where curr (σ ) = e iff the platform executes enclave e in

state σ . Using this function, we can filter out the steps in π where

e is not executing. We write the resulting sequence as ⟨σ ′
0
,σ ′

1
,

. . . ,σ ′m⟩
2
where inite (Ee (σ ′

0
)) ∧ ∀i . curr (σ ′i ) = e . This subse-

quence is the enclave’s execution trace: ⟨(Ie (σ ′
0
),Ee (σ

′
0
),Oe (σ

′
0
)),

. . . , (Ie (σ
′
m ),Ee (σ

′
m ),Oe (σ

′
m ))⟩. Since an execution trace of e only

includes the steps where e invokes an instruction, the attacker may

perform tamper between any two consecutive steps of e’s execution
trace. Therefore, we also have the property that ∀i . (σ ′i ,σ ′i+1) ∈
tamper . This has the effect of havocingAe (σ ) and IUe (σ ) in all these

steps, thus supplying the enclave with fresh inputs at each step.

The semantics of an enclave e , denoted ⟦e⟧, is the set of finite
or infinite execution traces, containing an execution trace for each

input sequence, i.e., for each value of non-enclave memory and

randomness at each step of execution.

⟦e⟧ = {⟨(Ie (σ ′0),Ee (σ ′0),Oe (σ
′
0
)), . . .⟩ | inite (Ee (σ0))} (1)

We must account for all potential input sequences in ⟦e⟧ because
e may receive any value of input at any step. We note that ⟦e⟧ may

contain traces of any length, and also contain prefixes of any other

trace in ⟦e⟧, i.e., it is prefix-closed. We adopt this definition of ⟦e⟧
because the attacker can pause and destroy the enclave at any time;

denial of service is not in scope. Due to the determinism property

of enclave programs, a specific sequence of inputs ⟨Ie (σ
′
0
), Ie (σ

′
1
),

2 ⟨σ ′
0
, σ ′

1
, . . . , σ ′m ⟩ = filter(λσ . curr (σ ) = e , π ).

. . . , Ie (σ
′
m )⟩ uniquely identifies a trace from ⟦e⟧ and determines

the expected execution trace of e under that sequence of inputs.

3 SECURE REMOTE EXECUTION OF
ENCLAVES

Imagine a user who wishes to outsource the execution of an en-

clave program e onto a remote platform. The user desires that the

platform respect the semantics ⟦e⟧ by executing trace(s) from ⟦e⟧.
However, the privileged software layers on the platform are un-

trusted, therefore the user’s trust is based on guarantees provided

by the enclave platform. We propose the following notion of secure

remote execution (SRE) of enclaves:

Definition 3.1. Secure Remote Execution of Enclaves. A remote

platform performs secure execution of an enclave program e if

any execution trace of e on the platform is contained within ⟦e⟧.
Furthermore, the platform must guarantee that a privileged soft-

ware attacker only observes a projection of the execution trace, as

defined by the observation function obs .

It is important to note that SRE does not force the platform

to execute e — the attacker may deny service, and this is easily

detectable by the user because the attacker cannot forge attested

statements as if they originated from the user’s enclave. Nor are

we forcing the platform to execute e a fixed number of times. The

attacker has the capability to execute e as many times as it wishes,

and a user can easily defend against these attacks by refusing to

provision secrets to other copies of the enclave. With that said, SRE

requires the platform to execute traces from ⟦e⟧, and recall that ⟦e⟧
only contains enclave executions that start in the initial state of the

enclave (see Equation 1). Furthermore, this definition of ⟦e⟧ assumes

secure execution of e in that the attacker only affects e’s execution
by affecting the inputs, which are assumed to be untrusted anyway

— we later state an integrity property that validates this assumption

of the enclave platform.

3.1 Proof Decomposition of SRE
A rational user will outsource the enclave only to a platform that

provides a formal guarantee of SRE. To that end, we describe a

method for formally verifying that an enclave platform provides

SRE to any enclave program. We provide machine-checked proofs

of SRE for the TAP in § 4, and show how this applies to models of

Intel SGX and MIT Sanctum in § 5. The key idea is to decompose

the SRE property into the following set of properties.

• Secure Measurement: The platform must measure the en-
clave program to allow the user to detect any changes to

the program prior to execution, i.e., the user must be able to

verify that the platform is running an unmodified e .
• Integrity: The enclave program’s execution cannot be af-

fected by a privileged software attacker beyond providing

inputs, i.e., the sequence of inputs uniquely determines the

enclave’s execution trace, and that trace must be allowed by

the enclave’s semantics ⟦e⟧.
• Confidentiality: A privileged software attacker cannot dis-

tinguish between the executions of two enclaves, besides

what is already revealed by obs .



3.1.1 Secure Measurement. During launch, the platform com-

putes a hash of the enclave’s initial contents (init ) along with rele-

vant configuration bits (config ). The hash-based measurement acts

as a unique identity for the enclave, which follows directly from the

collision resistance assumption of the cryptographic hash function,

and therefore finds use in authenticating the enclave. Any devia-

tion from the desired enclave program will be detected when the

enclave sends an attested statement to the user — we assume that

attested statements are produced using a quoting scheme that is

unforgeable under chosen message attacks (UF-CMA); we do not

model the cryptography of this scheme, and refer the reader to [58]

for a formal treatment of this subject. The secure measurement

property states that any two enclaves with the same measurement

must also have the same semantics: they must produce equivalent

execution traces for equivalent input sequences.

Let µ(e) be themeasurement of enclave e , computedwhen launch-

ing the enclave. The operation must be such that two enclaves with

the same measurement have identical initial states.

∀σ1,σ2. inite1 (Ee1 (σ1)) ∧ inite2 (Ee2 (σ2)) ⇒
µ(e1) = µ(e2) ⇐⇒ Ee1 (σ1) = Ee2 (σ2) (2)

Next we need to ensure that the if two enclaves e1 and e2 have
the same state, then they produce equivalent execution traces for

equivalent input sequences. This is the determinism property we

assumed (while defining ⟦e⟧ in § 2.1) of the enclave platform, so

we must prove it here.

∀π1,π2. (3)(
Ee1 (π1[0]) = Ee2 (π2[0]) ∧

∀i . (curr (π1[i]) = e1) ⇐⇒ (curr (π2[i]) = e2) ∧

∀i . (curr (π1[i]) = e1) =⇒ Ie1 (π1[i]) = Ie2 (π2[i])
)

=⇒(∀i . Ee1 (π1[i]) = Ee2 (π2[i]) ∧Oe1 (π1[i]) = Oe2 (π2[i])
)

Equation 3 states that if: (i) the two traces π1 and π2 start with
the same initial state for enclaves e1 and e2, (ii) if π1 and π2 enter
and exit the enclaves in lockstep (i.e., the two enclaves execute for

the same number of steps), (iii) if the input sequence to the two

enclaves is the same, then the two enclaves execute identically in

both traces: they have the same sequence of state and output values.

3.1.2 Integrity. The integrity guarantee ensures that the execu-

tion of the enclave in the presence of attacker operations is identical

to the execution of the program without the attacker’s operations.

In other words, the attacker only impacts an enclave’s execution

by controlling the sequence of inputs — all other operations, such

as controlling I/O peripherals and executing supervisor-mode in-

structions, has no effect on the enclave’s execution. Any two traces

(of the same enclave program) that start with equivalent enclave

states and have the same input sequence will produce the same

sequence of enclave states and outputs, even though the attacker’s

operations may differ in the two traces.

∀π1,π2. (4)(
Ee (π1[0]) = Ee (π2[0]) ∧

∀i . (curr (π1[i]) = e) ⇐⇒ (curr (π2[i]) = e) ∧

∀i . (curr (π1[i]) = e) =⇒ Ie (π1[i]) = Ie (π2[i])
)

=⇒(∀i . Ee (π1[i]) = Ee (π2[i]) ∧Oe (π1[i]) = Oe (π2[i])
)
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Figure 2: Integrity property

Figure 2 shows the two traces from the integrity property. The

adversary’s steps are labelled A1 and A2 while the enclave’s steps

are labelled e . Assumptions are annotated in blue, and proof obli-

gations are shown in red. The enclave’s inputs are assumed to be

the same in both traces; this is shown by the ≈I symbol. The ini-

tial state of the two enclaves is assumed to be the same and this

is shown by the ≈E symbol. The adversary’s actions are defined

by the tamper function (see § 2.2.1), and these actions may differ

between the two traces. The integrity proof must show that the

enclave’s state and outputs do not differ despite this: ∀i . Ee (π1[i]) =
Ee (π2[i]) ∧Oe (π1[i]) = Oe (π2[i]). These proof obligations are de-
noted by the red ≈E and ≈O symbols. We assume that the adversary

executes for the same number of steps in both traces. This does

not restrict the adversary’s power as any attack that requires the

adversary to execute for a different number of steps in the two

traces can be simulated in our model by padding the adversary’s

shorter trace with the appropriate number of “no-ops.”

The theorem states that, given the above assumptions, enclave

state and outputs are identical in the two traces at every step:

∀i . Ee (π1[i]) = Ee (π2[i]) ∧Oe (π1[i]) = Oe (π2[i]).

3.1.3 Confidentiality. The enclave platform must ensure that

the attacker does not observe the enclave’s execution beyond what

is allowed by the observation function obs , which must include

the init and config components of the enclave’s description, out-

puts to non-enclave memory, exit events from enclave mode to

untrusted code, and other side channels leakage as permitted by

the observation function obs . The privileged software attacker may

use any combination of machine instructions to perform an attack,

and the attacker should observe the same results from executing

these instructions for any pair of enclaves that produce the same

observation via the function obs . In other words, all enclave traces

with the same observations, but possibly different enclave states,

must be indistinguishable to the attacker. If a platform allows the

attacker to observe different values in two such traces, we say that

such a platform does not provide confidentiality.

Formally, to prove that an attacker learns no other information

beyond obs , we must prove that for any two traces that have equiva-

lent attacker operations and equivalent observations of the enclave



execution, but possibly different enclave private states and execu-

tions, the attacker’s execution (its sequence of states) is identical.

∀π1,π2. (5)(
Ae1 (π1[0]) = Ae2 (π2[0]) ∧

∀i . curr (π1[i]) = curr (π2[i]) ∧ IP (π1[i]) = IP (π2[i]) ∧

∀i . curr (π1[i]) = e =⇒ obse1 (π1[i + 1]) = obse2 (π2[i + 1])
)
=⇒(∀i . Ae1 (π1[i]) = Ae2 (π2[i])

)
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Figure 3: Confidentiality property

Figure 3 depicts the confidentiality property. As in Figure 2, the

attacker’s steps are labelled A while the enclave’s steps are labelled

e1 and e2. The two traces start off in equivalent states (shown by

the blue ≈A) but diverge (at state σi ) because the two enclaves may

perform different computation. The enclave’s adversary-visible

observations are assumed to be the same in both traces when the

enclave is executing (shown by the blue obs≈). Adversary non-

determinism, IP (σ ), is assumed to be the same in both traces and

this ensures that adversary actions (defined by the tamper function
from § 2.2.1) are the same in both traces. The theorem states that

adversary state is identical at every step: ∀i .Ae1 (π1[i]) = Ae2 (π2[i])
and is illustrated by the red ≈A. The theorem implies that adversary

state is a deterministic function of only adversary actions and initial

state. In particular, adversary state does not depend on enclave

state. This shows that the attacker has not learned any additional

information beyond the observation function.

3.2 Soundness of SRE Decomposition
Theorem 3.2. An enclave platform that satisfies secure measure-

ment, integrity, and confidentiality property for any enclave program
also satisfies secure remote execution.

Proof Sketch: Suppose that the user sends an arbitrary enclave e to
a remote server for execution, and the platform launches enclave er
some time later — because e is sent over an untrusted channel, e may

or may not equal er . If the user finds µ(er ) , µ(e), then the platform
has no obligations to execute a trace from ⟦e⟧. Otherwise, if µ(er ) =
µ(e), we have that ⟦er ⟧ = ⟦e⟧ thanks to the measurement and

integrity properties. So, the two programs have identical runtime

behaviors, which is a prerequisite for SRE. Finally, confidentiality

implies that the attacker’s observation is restricted to obs.

3.3 Application of Secure Remote Execution
The measurement and integrity properties guarantee that the re-

mote platform executes a trace from ⟦e⟧, while the confidentiality

property ensures that the attacker does not learn more informa-

tion than what the enclave wishes to reveal. Together, these three

properties imply SRE.

SRE is useful for building practical trusted applications. Consider

the problem of executing a batch job securely in the cloud. The

user sends an enclave program, which implements a function on

sensitive data, to an enclave platform in the cloud. The protocol

includes the following steps:

(1) The user sends an enclave program e to the cloud provider,

which launches the program on an enclave platform.

(2) The user and enclave establish an authenticated TLS channel

via an ephemeral Diffie-Hellman (D-H) exchange.

(a) User sends her public parameter дx to the enclave, where

x is a randomly generated fresh value.

(b) Enclave sends its public parameter attest(дy ) to the user,
in the form of an attested statement, thus guaranteeing

that a genuine enclave platform launched the expected

enclave e .
(c) User and enclave compute a shared master secret дxy , and

derive symmetric session keys sue and seu , a key for each

direction.

(3) The user now sends encrypted input to enclave using this

shared secret: {in}sue .
(4) The enclave decrypts its input, performs the computation

and returns the encrypted result to the user: {out}seu .

Consider the following security property: the attacker neither

learns secret input {in} nor the secret output {out}. To that end, the
user 1) develops an enclave program that only accepts encrypted

inputs and sends encrypted outputs, and 2) specifies an observation

function (obs) where a privileged software adversary is only allowed
to view the enclave’s outputs to non-enclave memory — this is

acceptable because e encrypts its outputs.
The measurement guarantees that the user will only establish a

channel with the expected enclave on a genuine enclave platform.

Integrity ensures that the platform will execute a trace from ⟦e⟧,
thus respecting e’s semantics. The platform may choose to not

launch e or prematurely terminate e , but such executions will not

generate {out}seu and hence can be trivially detected by the user. In-

tegrity also ensures that the platform does not rollback the contents

of enclave’s memory while it is alive (i.e., not destroyed) as such

attacks will cause the enclave’s execution to proceed differently

from ⟦e⟧, and SRE guarantees ⟦e⟧. SRE does not require the plat-

form to defend against rollback attacks on persistent storage. This

protection is not needed for the batch service because the enclave

does not update {in}sue , and any tampering to {in}sue will fail the

cryptographic integrity checks. Finally, confidentiality ensures that

the enclave platform only reveals the obs function of enclave’s exe-

cution to the software attacker, which only includes the encrypted

outputs. We now have our end-to-end security property.

Should the enclave require state beyond enclave’s memory to

perform the job, it would require integrity, freshness, and confi-

dentiality for non-enclave state, which is not covered by SRE. The

enclave can implement cryptographic protections (e.g., Merkle tree)

and techniques for state continuity [57] to address this concern.



State Var. Type Description

pc VA The program counter.

regs N→W Architectural registers: map from natural numbers to words.

mem PA→W The memory: a map from physical addresses to words.

addr_map VA→ (ACL × PA) Map from virtual addresses to permissions and physical addresses for current process.

cache (Set ×Way) → (B × Tag) Cache: map from a tuple of cache sets and ways to valid bits and cache tags.

current_eid Eid Current enclave. current_eid = OS means that no enclave is being executed.

owner PA→ Eid Map from physical address to the enclave address is allocated to.

enc_metadata Eid → EM Map from enclave ids to metadata record type (EM ).

os_metadata EM Record that stores a checkpoint of privileged software state.

Table 1: Description of TAP State Variables

4 THE TRUSTED ABSTRACT PLATFORM
The trusted abstract platform (TAP) consists of a processor with a

program counter, general purpose registers, virtual address trans-

lation and a set of primitives to support enclave execution. In this

section, we first introduce a formal model of the TAP. We present

a range of adversary models with varying capabilities. We then

present a set of machine-checked proofs showing that the TAP

satisfies the properties required for secure remote execution: (i)

secure measurement, (ii) integrity and (iii) confidentiality.

4.1 TAP Model
Recall that the TAP is modeled as a finite state transition system:

TAP = (Σ,{, init). Σ is the set of states,{ is the transition relation

and init ∈ Σ is the initial state.

4.1.1 TAP State Variables. The states Σ of the TAP are defined as

a valuation of the state variables Vars. These variables are described
in Table 1. pc, regs, mem have their usual meanings. addr_mapmaps

individual virtual addresses to physical addresses and permissions.

This is unlike a typical processor which uses a page table to map

virtual page numbers to physical page numbers. The TAP is an

abstraction and must abstract a diverse set of architectures with

different page table structures and page sizes. Therefore, it maps

each virtual address to a physical address.

The TAPmodels a cache to show that confidentiality is preserved

in the presence of a software adversary attempting cache attacks.

The cache model assumes a physically-indexed and physically-

tagged cache with symbolic parameters: an unbounded number

of sets, unbounded associativity, and an arbitrary deterministic

replacement policy. The TAP cache model leaves the mapping of

physical addresses to cache sets and mapping of physical addresses

to cache tags uninterpreted. In other words, the TAP formalism

applies to a broad space of set associative caches, and only requires

that the cache set and cache tag for each memory access be deter-

ministic functions of the physical address. The exact functions and

parameters are specified by implementations (refinements) of TAP,

which are models of SGX and Sanctum in this paper.

The variable current_eid tracks the enclave currently being

executed. owner maps each physical address to the enclave which

exclusively “owns” it. If owner[p] = e , only enclave e can access

(fetch/read/write) this word of memory. We abuse notation and

use e to refer to both the “enclave id,” a unique integer assigned

by the platform to an enclave, as well the enclave itself. Attempts

to access physical address p by all other enclaves and privileged

software are blocked. owner[p] = OS means that address p is not

allocated to any enclave. owner corresponds to the EPCM in SGX

and the DRAM bitmap in Sanctum. It is the primary mechanism

to enforce isolation of enclave’s private memory. enc_metadata
stores metadata about each initialized enclave.

State var. Description

entrypoint Enclave entrypoint.

addr_map Virtual to physical mapping/permissions.

excl_vaddr Set of private virtual addresses.

measurement Enclave measurement.

pc Saved PC (in case of interrupt).

regs Saved registers (in case of interrupt).

paused Flag set only when enclave is interrupted.

Table 2: Fields of the enc_metadata record

Enclave Metadata: Table 2 lists various fields within the enclave

metadata record. It stores the entrypoint to the enclave, its virtual to

physical mappings and what set of virtual addresses are private to

the enclave. The pc and regs fields are used to checkpoint enclave

state when it is interrupted. The paused flag is set to true only

when an enclave is interrupted and ensures that enclaves cannot

be tricked into resuming execution from invalid state.

Privileged Software Metadata: The os_metadata record con-

tains three fields: pc, regs, and addr_map. The pc and regs fields
store a checkpoint of privileged software state. These are initialized

when entering enclave state and restored when the enclave exits.

The addr_map field is the privileged software’s virtual to physical

address mapping and associated permissions.

4.1.2 TAP Operations. Table 3 describes the operations sup-

ported by the TAP. fetch, load, storework as usual. The platform
guarantees that memory owned by enclave e is not accessible to
other enclaves or privileged software. Each of these operations up-

date cache state, set the access bit in addr_map, and return whether

the operation was a hit or a miss in the cache.

The virtual to physical mappings of both enclave and privileged

software are controlled using get_addr_map and set_addr_map.



Operation Description

fetch(v)
Fetch/read/write from/to virtual address v . Fail if v is not executable/readable/writeable respectively

according to the addr_map or if owner[addr_map[v].PA] , current_eid.
load(v)
store(v)

get_addr_map(e,v)
Get/set virtual to physical mapping and associated permissions for virtual address v .

set_addr_map(e,v,p,perm)

launch(e,m,xv ,xp , t) Initialize enclave e by allocating enc_metadata[e].
destroy(e) Set mem[p] to 0 for each p such that owner[p] = e . Deallocate enclave enc_metadata[e].
enter(e), resume(e) enter enters enclave e at entrypoint, while resume starts execution of e from the last saved checkpoint.

exit(), pause() Exit enclave. pause also saves a checkpoint of pc and regs and sets enc_metadata[e].paused = true.
attest(d) Return hardware-signed message with operand d and enclave measurement e: {d | | µ(e)}SKp .

Table 3: Description of TAP Operations

(
current_eid = OS ∧ e < enc_metadata ∧

executable(m[t]) ∧ t ∈ xv ∧

∀p. p ∈ xp =⇒ owner[p] = OS ∧

∀v . v ∈ xv =⇒ (valid(m[v]) =⇒ m[v]PA ∈ xp ) ∧

∀v1,v2. (v1 ∈ xv ∧v2 ∈ xv ) =⇒ (m[v1]PA ,m[v2]PA)
)

⇐⇒ (launch_status = success)

Note:m[v]PA refers to physical address that virtual address v
points to under the mappingm.

Figure 4: Conditions for the success of launch

As enclave’s memory access pattern can leak via observation of

the access/present bits in addr_map, get_addr_map(e,v) must fail

(on a secure TAP) for virtual addresses in the set enc_metadata[e].
evrange when called from outside the enclave. However, SGX does

permit privileged software to access an enclave’s private page tables.

We introduce a “setting” in the TAP, called priv_mappings, and
this insecure behavior is allowed when priv_mappings = false.
Enclave Creation: The launch(e,m,xv ,xp , t) operation is used to

create an enclave. The enclave’s virtual to physical address mapping

and associated permissions are specified by m. xv is the set of

enclave-private virtual addresses (evrange). It corresponds to the

base address and size arguments passed to ECREATE in SGX and

create_enclave in Sanctum. xp is the set of physical addresses
allocated to the enclave and its entrypoint is the virtual address t .

The launch operation only succeeds if enclave id e does not

already exist, if the entrypoint is mapped to an enclave-private

executable address, if every virtual address in xv that is accessible

to the enclave points to a physical address in xp , and if there is

no aliasing among the addresses in xv . A precise statement of the

conditions that result in a successful launch shown in Figure 4.

These conditions have subtle interactions with the requirements

for SRE. For example, if virtual addresses within xv are allowed

to alias, an adversary can construct two enclaves which have the

same measurement but different semantics. The potential for such

attacks emphasizes the need for formal modeling and verification.

Enclave Destruction: An enclave is deallocated using destroy,
which zeroes out the enclave’s memory so that its private state

is not leaked when the privileged software reclaims the memory.

This is necessary for confidentiality because untrusted privileged

software can destroy an enclave at any time.

Enclave Entry/Exit: The operation enter(e) enters enclave e by
setting the pc to its entrypoint and current_eid to e . resume con-

tinues execution from a checkpoint saved by pause. The enclave
may transfer control back to the caller via exit. pause models

forced interruption by privileged software (e.g., device interrupt).

Attestation: The attestation operator provided by the TAP en-

sures that the user is communicating with a bona fide enclave. The

attest operation can only be invoked from within the enclave and

may be used by the enclave to establish its identity as part of an

authentication protocol. attest returns a hardware-signed crypto-

graphic digest of datad and ameasurement:d | | µ(e) | | {d | | µ(e)}SKp .
The signature uses the processor’s secret key SKp , whose corre-
sponding public key is signed by the trusted platform manufacturer.

4.2 The TAP Adversary
As described in § 2.2, the TAP adversary model is based on a privi-

leged software attacker and consists of two components: (i) a tam-

pering relation that describes how the adversary can change the

paltform’s state, and (ii) an observation function that describes what

elements of machine state are visible to the adversary. The adver-

sary model is parameterized and has three instantiations: Adversary

MCP , adversary MC and adversary M , which are defined below.

MCP is the most general adversary and models all capabilities of a

privileged software attacker, whileMC andM are restricted.

4.2.1 Adversary Tampering. The tamper relation for the TAP

formalizes all possible actions that may be carried out by a software

attacker. It serves two purposes. When reasoning about integrity,

the tamper relation defines all operations that an adversary may

carry out to interferewith enclave execution.When reasoning about

enclave confidentiality, the tamper relation models computation

performed by the adversary in order to learn an enclave’s private

state. The most general tamper relation corresponds to Adversary

MCP , and is defined as the adversary carrying out an unbounded

number of the following actions:



(1) Unconstrained updates to pc and regs. These are modeled

using the havoc statement commonly used in program veri-

fication: havoc pc, regs.
(2) Loads and stores to memory with unconstrained address (va)

and data (data) arguments.

• ⟨op,hitf ⟩ ← fetch(va)
• ⟨regs[ri],hitl ⟩ ← load(va)
• hits ← store(va,data)

(3) Modification of the adversary’s view of memory by calling

set_addr_map and get_addr_mapwith unconstrained argu-

ments.

• set_addr_map(e,v,p,perm)
• regs[ri] ← get_addr_map(e,v)

(4) The invocation of enclave operations with unconstrained

arguments.

• Launch enclaves: launch(e,m,xv ,xp , t).
• Destroy enclaves: destroy(e).
• Enter and resume enclaves: enter(e) and resume(e).
• Exit (exit) from and interrupt (pause) enclaves.

Any adversary program, including malicious operating systems,

hypervisors, malicious enclaves and privileged malware, can be

modeled using the above actions. Therefore, this adversary model

allows us to reason about TAP security guarantees in presence of a

general software adversary.

Restricted Adversaries: AdversaryMC is restricted to computa-

tion based onmemory values and cache state; it ignores the value re-

turned by get_addr_map. AdversaryM only computes using mem-

ory values; it ignores hitf ,hitl and hitm returned by fetch, load
and store, respectively, in addition to the result of get_addr_map.

4.2.2 Adversary Observation Model. The observation function

captures what state the user expects to be attacker-visible.

AdversaryM : The observation function obsMe (σ ) is a partial map

from physical addresses to words and allows the adversary to ob-

serve the contents of all memory locations not private to enclave e .
It is defined as σ (mem[p]) when σ (owner[p]) , e and ⊥ otherwise.

obsMe (σ ) � Oe (σ ) � λp. ite(σ (owner[p]) , e,σ (mem[p]),⊥)

AdversaryMC : The observation function obsMC
e (σ ) specifies that

besides contents of memory locations that are not private to an

enclave, the adversary can also observe whether these locations

are cached. It is also a partial map from physical addresses to

words and is defined to be the tuple ⟨σ (mem[p]), cached(σ ,p)⟩ when
σ (owner[p]) , e and ⊥ otherwise. cached(σ ,p) is true iff physical

address p stored in the cache in the machine state σ .

obsMC
e (σ ) � λp. ite(σ (owner[p]) , e, ⟨σ (mem[p]), cached(σ ,p)⟩,⊥)

Note that the adversary cannot directly observe whether an

enclave’s private memory locations are cached. However, unless

cache sets are partitioned between the attacker and the enclave,

cache attacks [78, 84] allow the adversary to learn this information.

AdversaryMCP : TheMCP adversary’s capabilities are extended

beyondMC to include observation of the virtual to physical map-

pings and associated access/permission bits for each virtual address.

obsMCP
e (σ ) � λσ . ⟨obsMC

e (σ ), λv . σ (get_addr_map(e,v)⟩

The notation σ (get_addr_map(e,v)) refers to the result of evaluat-

ing get_addr_map(e,v) in the state σ .

4.2.3 Enclave and Adversary State and Inputs. Recall that the
state of an enclave e is Ee (σ ), which is defined as the tuple〈
Evmem(e,σ ),Eregs(e,σ ),Epc(e,σ ),Ecfg(e,σ )

〉
if e ∈ enc_metadata

and ⊥ otherwise. The components of this tuple are as follows:

• Evmem(e,σ ) is a partial map from virtual addresses to words. It

is defined to be σ (mem[enc_metadata[e].addr_map[v]PA]) if
v ∈ σ (enc_metadata[e].evrange) and⊥ otherwise. In other

words, Evmem refers to the content of each virtual memory

address in the enclave’s evrange.
• Eregs(e,σ ) is σ (regs) if curr (σ ) = e (when the enclave is

executing), and σ (enc_metadata[e].regs) otherwise.
• Epc(e,σ ) is σ (pc) if curr (σ ) = e (when the enclave is execut-

ing), and σ (enc_metadata[e].pc) otherwise.
• The tuple Ecfg(e,σ ) consists of the following elements:

(i) σ (enc_metadata[e].addr_map)
(ii) σ (enc_metadata[e].entrypoint)
(iii) σ (enc_metadata[e].evrange)

Recall that the input to enclave e at state σ is Ie (σ ), which is the

tuple Ie (σ ) � ⟨I
R
e (σ ), I

U
e (σ )⟩. I

R
e (σ ) is the random number provided

at the state σ . IUe (σ ) is a partial map from virtual address to words.

It is σ (mem[enc_metadata[e].addr_map[v]PA]) if each of these con-

ditions hold: (i) enclave e is executing: curr (σ ) = e , (ii) v is mapped

to some physical address: σ (valid(enc_metadata.addr_map[v])),
and (iii) v is not private: v < σ (enc_metadata[e].evrange); it is
⊥ otherwise. In other words, IUe (σ ) refers to the contents of each

virtual address not in the enclave’s evrange.
The output Oe (σ ) contains memory values outside enclave’s

evrange. Oe (σ ) is defined identically to IUe (σ ). The adversary’s

stateAe (σ ) is modeled as the tuple ⟨S(σ ), Êe (σ )⟩. S(σ ) � ⟨Svmem(σ ),
Sregs(σ ), Scfg(σ )⟩ denotes privileged software state. Svmem(σ ) �
λv . σ (mem[os_metadata.addr_map[v]PA]) is its view of memory.

Sregs(σ ) denotes the privileged software’s registers: σ (regs) when
privileged software is executing, and σ (os_metadata.regs) other-
wise. Scfg(σ ) is the privileged software’s virtual to physical map-

pings: σ (os_metadata.addr_map). Êe (σ ) is the state of all the other
enclaves in the system except for enclave e: Êe (σ ) � λe ′. ite(e ,
e ′,Ee ′(σ ),⊥), where ite denotes if-then-else.

4.3 Proof of Secure Remote Execution for TAP
We proved three machine-checked theorems that correspond to the

requirements for secure remote execution as described in § 3.

TAP Integrity: We proved that the integrity result (Equation 4)

holds for the TAP for all three adversaries:M ,MC andMCP . This
shows that these adversaries have no effect on enclave execution

beyond providing inputs via non-enclave memory.

TAP Measurement: We showed that Equation 2 and Equation 3

are satisfied by the TAP. The proof for Equation 3 need not include

adversarial operations because integrity ensures that an adversary

cannot affect enclave’s execution beyond providing inputs.

TAP Confidentiality: We showed three confidentiality results,

each corresponding to the three TAP adversaries:M ,MC , andMCP .
Confidentiality holds unconditionally for adversaryM .

For adversary MC , let pa2set : PA → Set be the function that

maps physical addresses to cache sets. This function is uninter-

preted (abstract) in the TAP and will be defined by implementation.



We showed that confidentiality holds for adversary MC if Equa-

tion 6 is satisfied: a physical address belonging to an enclave never

shares a cache set with a physical address outside the enclave.

∀p1,p2,σ , e . (6)

σ (owner[p1] = e ∧ owner[p2] , e) =⇒ (pa2set(p1) , pa2set(p2))

Finally, we showed that confidentiality holds for adversaryMCP
if Equation 6 is satisfied by the TAP implementation and the TAP

configuration Boolean priv_mappings is true.

5 REFINEMENTS OF THE TAP
We prove that models of MIT Sanctum and Intel SGX are refine-
ments of the TAP under certain adversarial parameters. Refinement

shows that each operation, including all adversarial operations, on

Sanctum and SGX processors can be mapped to an “equivalent”

TAP action. The refinement proof implies SRE, which was proven

on the TAP, also holds for for our models of SGX and Sanctum.

5.1 Refinement Methodology
Let Impl = ⟨ΣL ,{L , initL⟩ be a transition system with states ΣL ,
transition relation {L and initial state initL . We say that Impl
refines TAP , or equivalently TAP simulates Impl, if there exists a
simulation relation R ⊆ (ΣL × Σ) with the following property:(
∀sj ∈ ΣL , sk ∈ ΣL ,σj ∈ Σ. (7)

(sj ,σj ) ∈ R ∧ sj {L sk =⇒(
(sk ,σj ) ∈ R ∨ (∃σk ∈ Σ. σj { σk ∧ (sk ,σk ) ∈ R)

) )
∧

(init, initL) ∈ R

sj sk

σj σk

{L

{

R R
R

Figure 5: Illustration of Stuttering Simulation

The condition states that for every pair of states (sj ,σj ) (belong-
ing to Impl and TAP respectively) that are related by R, if Impl steps
from sj to sk , then either (i) the TAP takes no steps, and sk is related

to σj , or (ii) there exists a state σk of TAP such that σj steps to σk
and (sk ,σk ) are related according to R. In addition, the initial states

of Impl and TAP must be related by R. This is illustrated in Fig-

ure 5. This corresponds to the notion of stuttering simulation [13],

and we require stuttering because a single invocation of launch
corresponds to several API calls in Sanctum and SGX.

Refinement states that every trace of Impl can be mapped using

relation R to a trace of TAP ; effectively this means that TAP has a su-

perset of the behaviors of Impl. The security properties of the TAP

are hyperproperties, which in general, are not preserved by refine-

ment [19]. However, the properties we consider are 2-safety prop-

erties [77] that are variants of observational determinism [48, 62].

These are properties are preserved by refinement. Intuitively, refine-

ment asserts that any behavior observable on Impl has an equivalent
behavior on TAP via R, so any attacker advantage available on Impl
but not on TAP precludes refinement. The SRE properties proven

on the TAP therefore also hold for SGX and Sanctum, as we show

that these architectures (conditionally) refine the TAP.

5.2 MIT Sanctum Processor
Sanctum [21] is an open-source enclave platform that provides

strong confidentiality guarantees against privileged software at-

tackers. In addition to protecting enclave memory from direct obser-

vation and tampering, Sanctum protects against software attackers

that seek to observe an enclave’s memory access patterns.

5.2.1 Sanctum Overview. Sanctum implements enclaves via a

combination of hardware extensions to RISC-V [5] and trusted

software at the highest privilege level, called the security monitor.
Sanctum Hardware: Sanctum minimally extends Rocket Chip [4,

5], an open source reference implementation of the RISC-V ISA [81,

82]. Specifically, Sanctum hardware isolates physical addresses by

dividing system memory (DRAM) into regions, which use disjoint

last level cache sets, and allocating each region to an enclave ex-

clusively. Since enclaves have exclusive control over one or more

DRAM regions, there is no leakage of private memory access pat-

terns through the cache. An adversary cannot create a TLB entry

that maps its virtual address to an enclave’s private cache set.

Sanctum Monitor: The bulk of Sanctum’s logic is implemented

in a trusted security monitor. The monitor exclusively operates in

RISC-V’s machine mode, the highest privilege-level implemented

by the processor, and solely able to bypass virtual address transla-

tion. Monitor data structures maintain enclave and DRAM region

state. The monitor configures the Sanctum hardware to enforce

low-level invariants that comprise enclave access control policies.

For example, the monitor places an enclave’s page tables within

that enclave’s DRAM region, preventing the OS frommonitoring an

enclave’s page table metadata to infer memory access patterns. The

monitor exposes an API for enclave operations, including measure-

ment. A trusted bootloader bootstraps the system, loads the monitor

and creates a chain of certificates authenticating the Sanctum chip

and the loaded security monitor.

5.2.2 Sanctum Model. Our Sanctum model combines the Sanc-

tum hardware and the reference security monitor, and includes

hardware registers, hardware operations, monitor data structures

and the monitor API. The hardware registers include the DRAM

bitmap which tracks ownership of DRAM regions, page table base

pointers, and special regions of memory allocated to the moni-

tor and for direct memory access (DMA). Hardware operations

modeled include page tables and address translation, and memory

instruction fetch, loads and stores. All monitor APIs are modeled.

5.2.3 Sanctum Model Refines TAP. The Sanctum refinement

proof is expressed in three parts.

1. Concrete MMU refines Abstract MMU: We constructed an

abstract model of a memory management unit (MMU). The abstract



MMU’s address translation is similar to the TAP; it is a single-level

map from virtual page numbers to permissions and physical page

numbers. In contrast, the concrete Sanctum MMU models a multi-

level page table walk in memory. We showed that the concrete

Sanctum MMU model refines the abstract MMU. We then used the

abstract MMU in modeling the Sanctum Monitor. This simplifies

the simulation relation between Sanctum and TAP.

2. Sanctum Simulates TAP: We showed that every Sanctum state

and every Sanctum operation, which includes both enclave and

adversary operations, can be mapped to a corresponding TAP op-

eration. For this, (i) we constructed a simulation relation between

Sanctum states and corresponding TAP states, and (ii) we con-

structed a Skolem function [72] mapping each Sanctum operation

to the corresponding TAP operation. We proved that for every pair

of states in the simulation relation, every Sanctum operation can be

mapped by the Skolem function to a corresponding TAP operation

such that the resultant states are also in the simulation relation.

3. Proof of Cache Partitioning: The Sanctum model instantiates

the function pa2set which maps physical addresses to cache sets.

We showed that the Sanctum API’s init_enclave operation and

the definition of pa2set together ensure that all Sanctum enclaves’

cache sets are partitioned, i.e. Equation 6 is satisfied.

5.3 Intel SGX
Intel Software Guard Extensions extend the Intel architecture to

enable execution of enclave programs.

5.3.1 SGX Overview. Unlike Sanctum, enclaves in SGX are im-

plemented in hardware (microcode), which provides an instruc-

tion set extension [33] to create enclaves (ecreate), enter enclaves
(eenter), generate attested statements (ereport), etc. The SGX pro-

cessor dedicates a contiguous region of physical memory (called the

enclave page cache, or EPC), exclusively usable for storing enclave

pages. While this provides confidentiality of enclave’s memory,

SGX does not protect several side channel leaks such as cache tim-

ing or page access patterns. The last level cache is shared between

the enclave and the adversary, and adversary memory can map to

the same cache set as the enclave’s private address, allowing the

attacker to perform cache attacks [12, 49, 78, 84]. SGX also allows

the OS to examine the page tables that control the enclave’s private

memory, enabling the OS to read the accessed and dirty bits, thus

learning the enclave’s memory access pattern at the page-level

granularity. The OS also gets notified on page fault exceptions (as

part of demand paging), and this is another channel to learn the

enclave’s page-level memory access patterns [69, 83].

5.3.2 SGX Model. Similar to Sanctum, we use a formal model of

the SGX instruction set, following the approach of Moat [71], which

models the SGX platform at the level of abstraction presented in

the Intel Programmer Reference manual [33]. The model contains

ISA-level semantics of the SGX instructions. It includes hardware

state such as enclave page cache metadata (EPCM), page tables,

private core registers, etc. The model elides details such as attesta-

tion, hardware encryption of DRAM pages, and the cryptographic

protections (encryption, integrity, and freshness) of demand paging

and instead assumes several axioms about these features.

5.3.3 SGX Model Refines TAP. We attempted to prove that SGX

refines TAP, in that all SGX traces can be mapped to TAP traces.

However, we cannot prove SGX refinement unconditionally. We

show that refinement holds only when priv_mappings = false
(see Sec. 4.1.2). This is because SGX implements a mechanism for

the attacker (OS) to view page table entries, which contain the

accessed and dirty bits. As TAP confidentiality for AdversaryMCP
only holds when priv_mappings = true, SGX is not secure against

MCP . Furthermore, the lack of cache partitioning also prevents us

from showing that Equation 6 holds, so SGX does not refine TAP

instantiated with AdversaryMC . We are able to prove refinement

of TAP by SGX for the restricted adversary M . This shows SGX

provides similar guarantees to Sanctum, except for leakage through

the cache and page table side-channels.

6 VERIFICATION RESULTS
This section discusses our models and machine-checked proofs. Our

models of the TAP, Intel SGX and MIT Sanctum are constructed

using the BoogiePL [7, 24] intermediate verification language. Boo-

giePL programs can be annotated with assertions, loop invariants

and pre-/post-conditions for procedures. The validity of these an-

notations are checked using the Boogie Verification Condition Gen-

erator [7], which in turn uses the Z3 SMT solver [23].

Procedure pre-/post-conditions enable modular verification us-

ing Boogie. For example, we specify the behavior of each TAP

operation using pre- and post-conditions and verify that the im-

plementation of these procedures satisfies these post-conditions.

Once the post-conditions are verified, the TAP’s proofs of integrity,

confidentiality and secure measurement can soundly ignore the

implementation and only reason about the pre- and post-conditions

of these operations.

6.1 BoogiePL Model Construction

Description Size Verif.
#pr #fn #an #ln Time (s)

TAP 22 49 204 1752 5

Integrity 12 13 145 985 26

Measurement 6 3 100 800 6

Confidentiality 8 - 200 1388 194

MMU Model 9 13 68 739 7

MMU Refinement 3 2 38 216 8

Sanctum 23 321 44 780 1

Sanctum Refinement 12 3 94 548 11

SGX 36 113 4 1526 -

SGX Refinement 10 1 38 351 2

Total 141 518 935 9085 260

Table 4: BoogiePL Models and Verification Results

Table 4 shows the approximate size of each of our models. #pr,

#fn, #an and #ln refers to the number of procedures, functions,

annotations and lines of code, respectively. Annotations refer to

the number of loop invariants, assertions, assumptions, pre- and



post-conditions that we manually specify. While Boogie can infer

discharge some assertions automatically, we found that we had to

manually specify 935 annotations before it accepted our proofs.

The rows TAP, MMU Model, Sanctum and SGX correspond to

models of the functionality of the TAP, the SanctumMMU, Sanctum,

and SGX, respectively. The other rows correspond to our proofs

of SRE and refinement. In total, the models are about 4800 lines of

code while the proofs form the remaining ≈ 4300 lines of code. A

significant part of the effort in developing the proofs was finding

the correct inductive invariants to help Boogie prove the properties.

BoogiePL can only verify safety properties. But many of our the-

orems involve hyperproperties [19]. We used the self-composition

construction [8, 77] to convert these into safety properties. Boo-

giePL is also incapable of verifying properties involving alternating

nested quantifiers, for example, ∀x . ∃y. ϕ(x ,y). We Skolemized [72]

such properties to take the form: ∀x . ∀y .(y = f (x)) =⇒ ϕ(x ,y);
f (x) is called a Skolem function and must be manually specified.

6.2 Verification Results
Table 4 lists the total time taken by Boogie/Z3 to check validity of all

the manually specified annotations — by verifying the annotations,

we omit them from the trusted computing base, which only includes

the Boogie/Z3 theorem prover. The verification times for the TAP,

MMU Model and Sanctum rows is for proving that procedures in

these models satisfy their post conditions, which specify behavior

and system invariants. The verification times for the remaining

rows is the time taken to prove the SRE properties and refinement.

The total computation time in checking validity of the proofs once

the correct annotations are specified is only a few minutes.

7 DISCUSSION
We argue that TAP-based verification of enclave platforms is more

than just a set of proofs of correctness for our models of Intel SGX

and MIT Sanctum. The TAP serves as a specification of primitives

for enclave execution, and is designed to be extensible towards

additional features (e.g., non-volatile monotonic counters, demand

paging) and additional guarantees against sophisticated attackers

(e.g., timing attacks). It provides an extensible verificationmethodol-

ogy that enables rigorous reasoning about the security properties of

future enclave platforms. It is also an extensible model for reasoning

about enclave programs.

7.1 Implications for Enclave Platforms
The TAP can be beneficial to implementers of enclave platforms

in the following ways. First, the TAP can be used as a top-down

specification for what operations an enclave platform must support.

Implementers can use refinement checks to ensure that the TAP’s

security guarantees apply to the implementation as well. A impor-

tant implementation challenge is that security is not compositional:

addition of operations to a secure platform canmake it insecure. The

insecurity of SGX to AdversaryMCP [69, 83] stems from demand

paging, using which the OS observes the state of enclave’s page

tables; this feature is not present in the current implementation of

Sanctum. Suppose that the next version of Sanctum supports de-

mand paging through the use of oblivious RAM to maintain TAP’s

confidentiality guarantee. Reasoning about these more complex

enclave platforms is infeasible without a verification methodology

and TAP-like specification of the platform’s primitives.

Second, the TAP can also be used bottom-up, as this paper does,

to reason about the security properties of existing platforms. Such

analysis exposes differences between various platforms, e.g., leak-

age through the cache and page tables for SGX. The refinement

methodology described in this paper can be used to show that imple-

mentations of enclave platforms (e.g., the Sanctum implementation)

are refinements of corresponding models (e.g., Sanctum model).

Since we have shown that the Sanctum model is a refinement of

the TAP, this proof would mean that the security properties of the

TAP also hold for the Sanctum implementation.

7.2 Implications for Enclave Software
While techniques for verifying security properties of enclave pro-

grams [70, 71] have been developed, they rely on models of the

underlying enclave platform. We argue that such reasoning is bet-

ter done using TAP’s clean abstraction, which is simpler than the

instruction-level model of SGX and API-level model of Sanctum.

This simplification makes automated verification more scalable, yet

retains soundness because of the refinement checks. It is also a step

towards enabling portability among different enclave platforms.

Most importantly, this paper provides a common language for

research into security properties of enclaves. While side-channel

defenses have been proposed for SGX enclaves [55, 68, 69], the lack

of formalization of the enclave’s execution, attacker’s operations

and observations, and the desired confidentiality property makes it

infeasible to systematically compare two defenses.

7.3 Limitations
7.3.1 Limitations of the TAP. The TAP does not model the full

space of systems for which enclaves are relevant. Instead, it focuses

on enclave platforms that provide memory-based isolation. The

TAP’s current adversary model assumes platform memory (DRAM)

is trusted: memory can only be modified via software. Extending

the adversary model beyond this to include, for example, memory

probing/DMA attacks would require augmenting the TAP’s mem-

ory operations (fetch/load/store) with encryption and integrity

protection. The TAP also does not support demand paging as a naïve

implementation is vulnerable to the pigeonhole attack [69, 83]. One

path towards confidentiality-preserving demand paging in the TAP

would be to use an oblivious-RAM protocol.

The TAP model and proofs are currently limited to concurrent

execution on a single-threaded single-core processor. A fully gen-

eral proof showing that the TAP ensures SRE on multicore sys-

tems would require parameterized verification of these proper-

ties for an unbounded number of cores, using for example, the

CMP method [18]. We would also need to show linearizability of

operations in the Sanctum/SGX models [31]. In this context, lin-

earizability means that each operation appears to be atomic and

there exists an ordering of operations across all cores that is consis-

tent with their sequential orders of completion in individual cores.

Linearizability of a model of SGX was shown by Leslie-Hurd et

al. [39]. Extending the TAP to model security of simultaneously

multithreaded (SMT) processors would require modeling many

more side channels (e.g., branch predictors, shared resources such



as instruction queues and function units) and the development of

architectural mechanisms that prevent leakage through these side

channels.

Finally, the TAP does not model the cryptography in the attesta-

tion operation. Instead, we model the hash function using uninter-

preted functions and assume the properties of collision resistance

and second pre-image resistance.

7.3.2 Limitations of the Sanctum/SGX Models. Our SGX model

does not include demand paging, memory encryption or memory

integrity protection and assumes correctness of SGX measurement.

Unlike the TAP, the Sanctum implementation’s measurement is

not computed on a single snapshot of state, but is instead updated

incrementally during enclave creation. A proof that this incremental

measurement is identical to the TAP’s measurement is ongoing.

Like the TAP, our Sanctum model also uses uninterpreted functions

to model the cryptography in the measurement operation.

8 RELATEDWORK
Secure Processors: There have been several commercial deploy-

ments of secure processors. ARM TrustZone [2] implements a se-

cure and normal mode of execution to effectively create a single

privileged enclave in an isolated address space. TPM+TXT [29] en-

ables attestation of the platform’s state, but includes all privileged

software layers in the trusted computing base. Most recently, Intel

SGX [3, 20, 32, 47] implements unprivileged enclaves protecting

the integrity of memory and enclave state against software adver-

saries and certain physical access attacks. Academic work seeking

to improve the security of aspects of conventional processors is

also abundant [25, 43, 44].

Several clean-slate academic projects have been seeking to build

a trusted system. The XOM [42] architecture introduced the concept

of isolated software containers managed by untrusted host software,

and employed encryption and HMAC to protect DRAM. Aegis [76]

showed how a security kernel could measure and sign enclaves,

and employed counter-mode memory encryption and a Merkle tree

to guarantee freshness of data in DRAM. Bastion [16] encrypts

and HMACs DRAM and employs a trusted (and authenticated as

part of remote attestation) hypervisor which is invoked at each

TLB miss to check address translation against a policy. Fides [74]

uses a small trusted hypervisor to provide security guarantees for

so-called protected modules; protected modules offer very similar

programming abstractions and security guarantees as enclaves.

Sancus [54] builds upon Fides, and proposes hardware extensions

that ensure security of protected modules in the context of resource-

constrained embedded processors. Ascend [27] and Phantom [46]

ensure privacy and integrity of all CPU memory accesses through

a hardware ORAM primitive.

Attacks on Secure Processors: Secure systems often expose com-

plex threat models in practice, leading to vulnerabilities in the

application layers. Side channel observations, such as attacks ob-

serving cache timing, are known to compromise cryptographic keys

used by numerous cryptosystems [11, 14, 15, 37]. Attacks exploiting

other shared resources exist as well, such as those observing a core’s

branch history buffers [38]. These attacks are viable at any privilege,

separated by arbitrary protection boundaries [34, 45, 56]. Similar

attacks apply on trusted hardware, as shown on SGX with attacks

observing shared caches [12, 49, 66], and shared page tables [69, 83].

Formal Models/Verification of Enclave Platforms: A formal

cryptographic model of SGX’s anonymous attestation scheme is

presented in [58]. Barbosa et al. [6] present a formal analysis of

cryptographic protocols for secure outsourced computation using

enclave platforms. In contrast to these efforts, which reason about

cryptographic protocols in the context of enclaves, our work for-

malizes the security guarantees of enclave platforms themselves.

Patrignani et al. [60, 61] develop abstract trace semantics for low-

level code (not including side-channels) on protected module archi-

tectures – Fides [74] and Sancus [54] – in order to build secure com-

pilers for these platforms [59]. This is complementary to our work

which focuses on formalizing the security guarantees of enclave

platforms in presence of a precisely modelled adversary (including

side-channel observations).

While our work analyzes models of enclave platforms, verify-

ing actual implementations remains an important challenge. One

aspect of this was studied by Leslie-Hurd et al. [39]. They verified

linearizability of concurrent updates to shared SGX data structures.

Non-Interference and Hyperproperties: The security proper-

ties of secure measurement, integrity, and confidentiality are for-

mulated as 2-safety observational determinism properties [48, 62],

which is a restricted class of hyperproperties [19]. SRE relates

closely to the notion of non-interference introduced by Goguen and

Meseguer [28], and separability proposed by Rushby [63]. Our con-

fidentiality definition is an adaptation of standard non-interference

to the enclave execution model. Separability provides isolation from

other programs on the system, but it is too strict for practical appli-

cations as it forbids communication between programs and assumes

the absence of covert channels; it also does not consider privileged

software adversaries as the formalism assumes a safe underlying

hardware-software system.

Security Type Systems: A large body of work has studied type sys-

tems that enforce information-flow security [17, 22, 65, 73, 80]. Re-

cent examples for hardware design are [40, 41, 85]. SecVerilog [85]

extends the Verilog hardware description language with dependent

type annotations that define a security policy statically verified by

the SecVerilog compiler. One could conceivably implement SGX

or Sanctum processors using SecVerilog, thus guaranteeing the

implementation does not have unsafe information flow. However,

these techniques reason about the security policy at the level of

individual signals in the hardware. A higher level of abstraction

(like TAP) is needed for reasoning about enclave software. Soft-

ware fault isolation prevents an untrusted software module from

arbitrarily tampering the system’s state, and instead restrict all com-

munication to occur via a narrow interface. RockSalt [50] uses Coq

to reason about an x86 processor model and guarantee software

fault isolation of an untrusted module.

Machine-Checked Proofs of Systems: We perform machine-

checked proofs in this work, and similar efforts have verified other

classes of systems. The seL4 project [36, 51] proves isolation and

information flow enforcement in the seL4 microkernel using the

Isabelle/HOL proof assistant [53]. The Ironclad project [30] built a

fully verified software stack (including an OS, device drivers, and

cryptographic libraries) from the ground-up. ThemiTLS project [10]



is building a verified reference implementation of TLS which com-

plements our work nicely — enclaves indubitably require TLS

channels to communicate with other enclaves and clients. Vija-

yaraghavan et al. [79] used the Coq proof assistant [9] to verify

correctness of a multiprocessor directory-based cache coherence

protocol. While our Boogie [7, 24] proofs do involve manual effort,

we contend that they are more automated than their hypothetical

counterparts in systems such as Isabelle and Coq.

9 CONCLUSION
This paper introduced a framework and methodology to reason

about the security guarantees provided by enclave platforms. We

introduced the Trusted Abstract Platform (TAP), and performed

proofs demonstrating that TAP satisfies the three properties re-

quired for secure remote execution (SRE): secure measurement,

integrity and confidentiality. We then presented machine-checked

proofs stating that models of Intel SGX and Sanctum are refine-

ments of TAP under certain adversarial conditions. Therefore, these

platforms also satisfy the properties required for SRE. Overall, this

paper took a step towards a unified, extensible framework for rea-

soning about enclave programs and platforms.
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Table 5: Glossary of Symbols

.

Symbol Description

N Natural numbers.

B Booleans (B = {true, false}).

λx . expr Function with argument x ; computes expr .
m[i] Element i in mapm.

ite(c,x ,y) If-then-else operator: evaluates to x if c is true, y otherwise.

rec.fld Field fld in record rec.

VA Virtual addresses.

PA Physical addresses.

ACL Permissions for virtual address (Readable/Writeable/eXecutable etc.)

Tag Cache tags.

Eid Type of enclave “ids” (integer/pointer).

EM Enclave metadata type.

Σ Set of all TAP states.

{ TAP transition relation.

init TAP initial state.

σ ,σ0,σ1, . . . TAP states. (σ ∈ Σ).
σi { σj TAP steps from state σj to σj .
π ,π0,π1, . . . Traces of the TAP.

π [0] Initial state of trace π .
π [i] ith state of in trace π .
σ (expr) Expression expr evaluated in state σ .

e, e1, e2, . . . Enclave programs.

Ee (σ ) Enclave e’s state when in platform state σ .
Ie (σ ) Enclave e’s input when in platform state σ .

IRe (σ ) Randomness component of enclave e’s input.

IUe (σ ) Untrusted component of enclave e’s input.
Oe (σ ) Enclave e’s output when in platform state σ .
Ae (σ ) Adversary’s state when in platform state σ .

IP (σ ) Non-deterministic component of platform state.

µ(e) Measurement of enclave e .
⟦e⟧ Set of all traces of e .

m[v]PA Physical address for virtual address v in virtual to physical mappingm.

valid(m[v]) Is virtual address v is mapped to some physical address in the virtual to physical mappingm?

executable(m[v]) Does virtual address v has execute permissions in the virtual to physical mappingm.

ΣL Set of all implementation states.

{L Implementation transition relation.

initL Implementation initial state.

s, s0, s1, . . . Implementation states. (s ∈ ΣL).
si {L sj Implementation steps from state σj to σj .

m1 | |m2 m1 concatenated withm2.

PKk Public key k .
SKk Secret key k .
{m}SKk Msgm encrypted/signed with key SKk .
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