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Abstract. Cyber physical systems are examples of a new emerging mod-
elling paradigm that can be defined as multi-dimensional system co-
engineering (MScE). In MScE, different aspects of complex systems are
considered altogether, producing emergent properties, or loosing some
useful ones. This holistic approach requires interdisciplinary methods
that result from formal mathematical and AI co-engineering. In this
paper, we propose a formal framework consisting of a reference model
for multi-agent cyber physical systems, and a formal logic for express-
ing safety properties. The agents we consider are enabled with continu-
ous physical mobility and evolve in an uncertain physical environment.
Moreover, the model is user centric, by defining a complex control that
considers the output of a runtime verification process, and possible com-
mands of a human controller. The formal logic, called safety analysis logic
(SafAL), combines probabilities with epistemic operators. In SafAL, one
can specify the reachability properties of one agent, as well as prescrip-
tive commands to the user. We define symmetry reduction semantics and
a new concept of bisimulation for agents. A full abstraction theorem is
presented, and it is proved that SafAL represents a logical character-
ization of bisimulation. A foundational study is carried out for model
checking SafAL formulae against Markov models. A fundamental result
states that the bisimulation preserves the probabilities of the reachable
state sets.
Keywords: multi agent systems, cyber-physical systems, user centric
control, stochastic model checking, bisimulation, runtime analysis, sym-
metries.

1 Introduction

Cyber physical systems (CPS) are tight integrations of computation with physi-
cal processes. Examples can be found in diverse areas as aerospace, automotive,
chemical processes, civil infrastructure, energy, manufacturing, transportation
and healthcare. A realistic formal model for CPS will consider the randomness



of the environments where there are deployed, as well as the fact that in most
applications these are interacting agents. The agents are used to model enti-
ties enabled with physical mobility (e.g. cars, planes or satellites), which are
able to do autonomous or guarded transitions, which are able to communicate
and with evolutions continuous in both time and space. In the past all these
essential system features were studied separately or shallowly integrated. The
new technologies like CPS and ubiquitous computing require deep integration of
orthogonal multiple features, raising the issue of modelling of emerging or lost
system properties. This problem is approached in this problem by proposing a
formal framework called multi-dimensional system co-engineering [7, 6] (MScE),
a holistic view combining formal, mathematical and control engineering. With
this respect, formal methods for the specification and verification have been
only recently developed, like Hilbertean formal methods [4, 5] or stochastic model
checking [10] . The most effective verification method has proved to be model
checking [17]. This paper is a foundational study of model checking for a sto-
chastic model of agents. In this model, each agent is a new computational model
called agent stochastic cyber-physical system (aCPS), i.e. each agent can move
physically, thus it can be thought of as a hybrid system. Moreover, uncertainty
is considered for both environment and for agent’s hybrid behavior, and this
uncertainty is quantified probabilistically. In the multi-agent stochastic cyber-
physical system (MAPS) model all agents are embedded in a common physical
environment and they communicate using channels. The new model, which is
the kernel of MScE, addresses three new issues:

— provide real time information about the changing environment of agent based
CPS.

— represent the information collected during runtime system analysis
— model the co-existence of the human control and automated control (making
the model user-centric)

User enabled control is very important for CPS, where failures or incorrect
usage may be catastrophic.

The MScE framework comprises:

— The holistic, mathematical models of aCPS and MAPS, and
— A formal logic, called safety analysis logic (SafAL), that offers original spec-
ification techniques for the probabilistic properties of single agent reacha-
bility. It also contains coloring types and two imperative operators: one of
control theoretic nature saying that a discrete transition (a control) will take
place, and a recommendation operator that prescribes a discrete transition.

— A verification strategy of safety properties expressed in SafAL against aCPS
using system symmetries. We investigate the issues of bisimulation and of
model checking.

There are two key concepts in model checking: reachability analysis and
bisimulation. The first concept gives the effective behavior of the system, while



bisimulation means the elimination of the computationally irrelevant states (du-
plicate or the unreachable states). Our approach departs by introducing a new
and natural concept of bisimulation. Two continuous stochastic processes are
considered bisimilar if their reachable sets have the same hitting probabilities.

A fully abstract semantics is constructed for the SafAL and it is proved that
two states are bisimilar iff they are spatially symmetric. This result shows that
bisimulation is a concept too strong for practical verification and it justifies
the coloring approach. Using colors, more flexible equivalence concepts can be
introduced.

Recent advances in probabilistic model checking have been achieved using the
state space symmetries [19]. We use space symmetries to define a new semantics
for SafAL. One main advantage of this new semantics is that we can refine the
bisimulation concept. In practice, the probabilities are approximated and their
equality is difficult to check. Most of current approaches consider a metric and
ask that the transition probabilities differ very little [11]. In our approach, we ask
the equality only for the reach set probabilities associated to some sets selected
using the symmetries. One advantage of this definition is that some transition
probabilities might be different, but these differences should ‘compensate’ when
we consider global behaviors.

Using state space symmetries, we establish two important results. One of
them assures the full abstraction of this new logic. The second one opens the
possibility of model checking of SafAL formulas.

The paper is organized as follows. The next section succinctly presents a com-
municating multi-agent model. In section 3, safety analysis logic is introduced
for the specification of safety properties for the multi-agent model. Section 4 is
devoted to the development of a formal semantics for the logic, based on symme-
tries, which makes possible the model checking. In section 5, a new bisimulation
concept is introduced, and a full abstraction result is proved. The paper ends
with some concluding remarks. An appendix contains background material on
stochastic processes.

2 A stochastic model for multi-agent cyber-physical
systems

A cyber-physical system (CPS) is a system featuring a tight combination of,
and coordination between, the system’s computational and physical elements
[24]. The US National Science Foundation (NSF) has identified cyber-physical
systems as a key area of research. Starting in late 2006, the NSF and other
United States federal agencies sponsored several workshops on cyber-physical
systems.1

1 ”Cyber-physical systems”. Grant opportunities. Grants.gov, a United States govern-
mental resource. http://www.grants.gov/search/search.do?



2.1 An informal presentation

An agent stochastic cyber-physical system (aCPS) is based on the concept of
stochastic hybrid system [8, 23] (SHS). A hybrid automaton consists of a discrete
controller that switches between different continuous dynamical systems via some
control laws modeled as guards. The evolution of every dynamical system is
depicted as an open set in the Euclidean space, called location. The controller
is represented as guarded transitions between modes.

The aCPS model considers nondeterminism in mode change and introduces
two classes of probabilities:

• the noise in the modes; the evolution of each dynamical system is governed by
a stochastic differential equation

• the probabilities of discrete transition, described by reset maps. These prob-
abilities (formally probability kernels) evaluate the chances to restart a given
dynamical system and depend on time and on the current evolution in a mode.

The agents can have physical mobility, i.e. the differential equation in modes
may describe the moving equations of some devices (perhaps cars, planes or
satellites) in a physical environment. This mobility can be affected by the envi-
ronment uncertainty (captured formally by the SDEs from modes) and the agent
decisions (the reset maps) can be also unpredictable (captured by the probability
kernels).

Moreover, a MAPS has communication labels, and the transitions are classi-
fied in send transitions and receive transitions. A multi-agent model then con-
siders several SHS, each one with an associated agent, and the communications
between them is done via a given set of communication channels.

To every channel l there are associated two distinct labels:

• ls denotes the action of sending a message through the channel l, and

• lr denotes the action of receiving a message through the channel l.

In the standard models of hybrid systems, the transitions are guarded, with
guards interpreted as boundaries of the location’s invariant set. In the colored
version, the boundary is extended to a colored region (red in this example),
where a discrete transition must be triggered.

The first extension of the SHS model which allows to model agents is given
by the concept of user triggered transitions. These are unguarded transitions
(i.e. mode changes) that offer to an agent more freedom in controlling their
evolution. An autonomous transition can be triggered, for example, by the inter-
agent communication or by a driver after being warned by the brake assistance
system. In the colored model, there is a colored region (yellow in this case) where
the user is required to perform a discrete transition.



Figure 1

A further development of the model requires that the two types of discrete
transitions and colored region coexist. Moreover, the red regions are always in-
cluded in the yellow regions, which means that a controlled transition takes place
only if the user has not triggered any discrete transition. It is also essential that
any of the user triggered or the controlled transition produces the same post lo-
cation (otherwise it means that the user is allowed to make unsafe procedures).
These conditions are depicted in Figure 2.

Figure 2

The models illustrated in Figures 1 and 2 can be interpreted as two different
viewpoints on a CPS. In Figure 1, it is expressed the viewpoint of observing an
autonomous car. The viewpoint from Figure 2 is that of observing the behaviour
of a driver. The model in Figure 3 can be thought of as a viewpoint integra-
tion, where the automated control and the human control coexist. Moreover,
the model is user centric because the two forms of control are hierarchical, user
decisions having the higher priority.



Figure 3

2.2 The formal model

An agent stochastic cyber-physical system (aCPS) is a collection
〈(Q,d,X ), (y,r),((J, λ,R), (m, f, σ)), L〉 where:
(i) (Q, d,X ) describes the state space, which is a countable union of open sets
from an euclidean space (the modes), each one corresponding to a discrete loca-
tion. Note that the dimension of embedding euclidean space might be different
for different locations.
(ii) (y,r) is the coloring structure. At each time, the coloring functions give, for
each mode, the dangerous region (the guard), colored as red, and, respectively,
the potentially dangerous zone (the safety awareness guard) colored as yellow.
(iii) ((J, λ,R), (m, f, σ)) gives the transition structure, comprising the discrete
transition structure (J, λ, R) and the continuous (physical) transition structure
(m, f, σ). J = C ∪ U is the set of all discrete transitions (or jumps). This is
the union of the controlled transitions C and the user triggered transitions U .
The controlled transitions C depend on the transition-choice function R. λ is
the jump rate (it determines the rate of process discrete transitions). (m,f, σ)
characterizes the continuous dynamics within the modes.
(iv) L is the set of communication channels (or labels).

These entities are formally defined next.
The complex structure of the state space (i) is defined as follows:

— Q is a finite set (of locations),
— d : Q→ N is a map giving for each location the dimension of the continuous
state space in that location,

— X : Q → R
d(.) is the mode definition function that maps each q ∈ Q into

an open subset X (q) = Xq of Rd(q) i.e. for each q ∈ Q, Xq is the mode (the
invariant set) associated to the location q.



Let us denote by X the whole space, i.e. X = ∪{(q,Xq)|q ∈ Q}. Define
the boundary set ∂Xq := Xq\Xq of Xq and the whole space boundary ∂X =
∪{(q, ∂Xq)|q ∈ Q}.

The coloring structure (ii) is given by

— two coloring functions, the yellow function y : R→ 2X and the red function
r : R → 2X , where R is the set of reals. For any location, every red colored
state set must be included in the yellow colored one, i.e. if r(t) = (q, A) and
y(t) = (q,B) then A ⊂ B. Moreover, every colored set must be included in
a single location, i.e. A,B ⊂ Rd(q).

The jump structure from (iii) is given as follows:

— Each controlled transition v ∈ C is a quadruple v =: (q, l, q′, Rb) where q
is the origin location, l is the label of the jump, q′ is the target location,
and Rv is the reset map of the jump (or the green coloring function), i.e. for
each x ∈ ∂Xq with R(v, q, x) > 0 (see next item) and for all Borel sets A of
Xq′ the quantity Rv(x,A) is the probability to jump in the set A when the
transition v is taken from the guard state x (boundary state).

— U is the set of user triggered transitions. Each element u ∈ U is a pentuple
u =: (q, l, q′,Ru, λ), where q is the origin location, l is the label of the jump,
q′ is the target location, Ru is the reset map of the jump.

— The function R : C ×Q× ∂X → [0, 1] is defined such that for all q ∈ Q, all
x ∈ ∂Xq , and all v ∈ C, which are outgoing transitions of q, the quantity
R(v, q, x) is the probability of executing a controlled transition v. In rest, R
takes the zero value. Moreover,

∑

v∈Cq→

R(v, l, x) = 1 for all l, x, where Cq→

is the set of all elements of C that are outgoing transitions of q.

The continuous motion parameters from (iii) are given as follows:

— f : X → Rd(.) is a vector field
— m : Q→ N is a function that returns the dimension of the Wiener processes
(that governs the evolution in the continuous state space, see the next item)

— σ : X → Rd(·)×m(·) is a X(·)-valued matrix. For all q ∈ Q, the functions
fq : Xq → Rd(q) and σq : Xq → Rd(q)×m(q) are bounded and Lipschitz con-
tinuous and the continuous motions is governed by the following stochastic
differential equation (SDE):

dx(t) = fq(x(t))dt+ σq(x(t))dWt

where (Wt, t ≥ 0) is an m(q)-dimensional standard Wiener process in a
complete probability space.

— Moreover, we assume the following axioms:
Assumption about the diffusion coefficients: for any i ∈ Q, the existence and
uniqueness of the solution of the SDEs f : Q×X(·) → Rd(·), σ : Q×X(·) →
Rd(·)×m(·) are bounded and Lipschitz continuous in z.



Assumption about non-Zeno executions: if we denote Nt(ω) =
∑

I(t≥Tk)
then for every starting point x ∈ X, ExNt <∞, for all t ∈ R+.
Assumption about the transition measure and the transition rate function:
(A) λ : X → R+ is a measurable function such that t → λ(xit(ωi)) is
integrable on [0, ε(xi)), for some ε(xi) > 0, for each zi ∈ Xi and each ωi
starting at zi.
(B) for all A Borel measurable set, R(·, A) is measurable; for all x ∈ X the
function R(x, ·) is a probability measure; R(x, {x}) = 0 for x ∈ X.

The communication structure from (iv) is given by a structured set labels,
each label l ∈ L is a set l = {ls, lr}. There is a function which assigns a label to
each jump from J, but we do not use it here.

Theorem 1. Every aCPS is a strong Markov process.

We assume that M is transient [13]. The transience of M means that any
process trajectory which will visit a Borel set of the state space it will leave it
after a finite time.

In this model, the environment is represented in two forms: the noise pertur-
bation of system behavior in each location, and the information provided by the
coloring functions. One can suppose the following scenario: The multi-sensorial
perception of the changes in the environment is input to a safety analysis process.
The results of the safety analysis consist of probabilities in reaching dangerous
state sets. The safety evaluations of these probabilities are communicated to the
human operator in the form of colored state sets. A yellow colored region means
that a change (discrete transition) is recommended. A red colored region means
that the automatic control must act.

A multi-agent stochastic cyber-physical system is a finite set of aPCS which
can communicate pairwise using a common set of communication channels.

3 SafAL, the safety analysis logic

In this section, we define a model theoretic logic, the safety analysis logic (
SafAL), for specifying probabilistic safety properties of the aCPS model defined
in the previous section. This is a qualitative approach that can complement
the already existing numerical approaches. The qualitative reasoning provides
a global and symbolic expression of the reach set probabilities, which is a good
starting point for numerical evaluations. This logic is necessary in the formal
specification of the coloring maps, as well as for the specification of normative
prescriptions to the human operator.

3.1 Syntax and functional semantics

We depart from a variant of Larsen and Skou’s probabilistic modal logic [20],
a logic that has also inspired the real valued logic for the (discrete) labeled



Markov Processes from [15]. Our approach differs fundamentally. The formulas
of the logic are upper bounds for probabilities of reachable sets. In [15], the
meaning of a formula is some measurable function.

The syntax is constructed from a formal description of a Markov process.
That means we have a logic language where we can specify concepts like proba-
bility space, random variables, transition probabilities.

The main design scheme is based on the following principles. The system
is modeled by a general Markov process. The sets of states are coded by their
indicator functions. Obviously, these are elements of B(X). The application of
the kernel operator on these functions generates the probabilities of the events
that the system trajectories hit the respective sets.

The vocabulary of the logic is given by a family of measurable sets in a Lusin
space. Each set is represented by its indicator function. For example, the interval
A = [0, 1/2] is represented, in the logic, by the function 1A, which in each point
x takes the value 1 if 0 ≤ x ≤ 1/2 and the value 0 otherwise. The union of
two disjoint sets A and B will be represented by the function 1A + 1B . The
intersection of two sets A and B will be represented by the function inf(1A, 1B).
The complementary of the set A is represented by 1− 1A.

We consider a linear space of bounded measurable functions, ranged over by
the variable f . We define the terms by the following rules:

- the atomic terms are given by 1 or �.f, where � is an ‘action operator ’

- any other term is obtained from the atomic terms using:

g := g + g′|g − g′| inf(g, g′)| supn∈N gn
The set of terms is denoted by T .

A reach type formula is a statement of the form g ≤ v, where g is a term and v is
a real in [0, 1]. Other reach type formulae are obtained using the usual Boolean
operators.

A color consists of a sub-interval [a, b] of [0, 1] and a subset C of the vocabulary
such that �.f takes values in [a, b], for all f ∈ C.

A safety formula is obtained using the predefined predicate � and the logical
operator ∇ (which can not be nested).

The meaning of � is that a discrete transition is triggered. A formula of the
form∇P means that it is “obligatory” [2] that the predicate P will be fulfilled. In
particular, ∇� means that a jump is requested. The formula ¬∇¬P means that
the predicate P is “permitted”,∇¬P means that the predicate P is “forbidden”.

The semantic domain consists of a Markov process M = (xt, Px) satisfying
the hypotheses of Section 2 and a countable set of Boolean variables Prop.

We consider only those bounded measurable functions that are indicator func-
tions of measurable sets of states. For simplicity, consider a term, which contains
only a bounded measurable function f . Intuitively, a term denotes a function
that, when applied to a state x, provides the probability of all trajectories,
starting from x, reaching a set ‘indicated’ by f . The reachability property is
formulated relatively to several sets of states, then the term is formed with their
indicator functions.



The interpretation of a term f ∈ T is a function f : X → R, which is a
measurable bounded function. The interpretation ℑ of the atomic terms is given
by:

ℑ(1) = 1, ℑ(�.f) = �.f

where, for all x ∈ X : 1(x) = 1, (�.f)(x) =
∫
[
∫∞
0

f(xt(ω))dt]Px(dω)

The infimum and supremum are defined pointwise.

The following characterization of the action of � to a term g is insightful

(�.f)(·) = E·[

∫ ∞

0

f(xt)dt] =

∫ ∞

0

Ptf(·)dt = V f(·). (1)

The terms are statistical statements about sets in the state space. An atomic
term is the expectation of the random variable provided by the “visits” of a
target set.

The formal semantics of the ∇ operator is defined considering a family of
Markov processes P and a “normative” relation ≎⊆ P × P and a valuation
function V :Prop × P → {0, 1}. The P ≎ Q denotes that P is an alternative
norm to Q. The function V assign a truth value to any variable in a MAPS P
and we write M P � A whenever V (A, P ) = 1.

M P � A iff V (A,P ) = 1.

M P � ¬A iff not M P � A.

M P � ∇A iff .∀Q ∈ P (if P ≎ Q then M Q � A).

Example 1. Consider the case of an aircraft for which we want to check that
the probability to reach the sphere S(u, 2) starting from an initial point x
is less than 0.01. We can consider a Markov process in the Euclidean space
modelling the aircraft dynamics. The probability is given by the following
SafAL formula �.(1S(u,2))(x) ≤ 0.01 which in the above semantics means

Ex[
∫∞
0
1S(u,2)(xt)dt] ≤ 0.01. This formula appears frequently in the mathemat-

ical models used in air traffic control.

Example 2. The SafAL formula �.1A ≥ 0.25 ⊃ ∇� describes a yellow colored
state set, where the dangerous area is described by the term A and the danger
level for a reach probability is 0.25.

Example 3. The graphs from Fig. 4 depict SafAL terms (i.e. functions) that can
be used for defining colors. Each graph depict the values of the probability of a
discrete transition relative to the time of the first discrete transition. In the case
(a) it is depicted the probability of a required discrete transition. In the case (b)
it is shown the user ability to trigger a controlled transition, in the form of a
probability. The case (c) illustrates the probability distribution for a supervisory
controller to react, and it depends on the previous probabilities.



Figure 4

3.2 A formal semantics based on symmetries

Symmetry reduction is an efficient method for exploiting the occurrence of repli-
cation in discrete probabilistic model checking [19]. The verification of a model
can be then performed for a bisimilar quotient model, which is up to factorial
smaller. This is why, in this section, we explore the possibility of an alternative
semantics of SafAL based on symmetries.

Let S(X) be the group of all homeomorphisms ϕ : X → X, i.e. all bijective
maps ϕ such that ϕ, ϕ−1 are B(X)-measurable. When X is finite, S(X) is the
set of (finite) permutations of X.

Any permutation2 of X induces a permutation of the group of measurable
functions (in particular of the terms) as follows. Let ∗ : S(X) → Perm[B(X)]
be the action S(X) to B(X) defined by ∗(ϕ) = ϕ∗ : B(X)→ B(X) where ϕ∗ is
the linear operator on B(X) given by

ϕ∗f = f ◦ ϕ. (2a)

The range of ∗ is included in Perm[B(X)] (the permutation group of B(X)).
This fact is justified by the invertibility of ϕ∗. The invertibility of ϕ∗ can be
derived from the bijectivity of ϕ ∈ S(X) because it is clear that (ϕ∗)−1 = (ϕ−1)∗.
Then ϕ∗ can be thought of as a symmetry of B(X) for each ϕ given in the
appropriate set (see also the appendix).

Consider now a Markov process M , as in the Section 2 and the excessive
function cone EM (clearly a semigroup included in B(X)). We can not define
the action of S(X) to EM using formula (2a) because the result of composition
in (2a) is not always an excessive function.
Therefore it is necessary to consider some subgroups of permutations of the state
space such that we can define the action of these subgroups on the semigroup of
the excessive functions EM .
We consider themaximal subgroup of permutations of the state space X, denoted
by H, such that we can define the action of H to EM ∗ : H→ Perm[EM ] defined
as the appropriate restriction of (2a). The elements of H ‘preserve’ through ‘∗’

2 Here, permutation is used with the sense of one-to-one correspondence or bijection.



the excessive functions, or, in other words, the stochastic specifications of the
system.
In the spirit of [19], the elements of H are called automorphisms. Note that in
[19], the automorphisms are permutations of the state space, which preserve the
transition system relation. For the Markov chains, the automorphisms defined in
[19] preserve the probability transition function. For the case of continuous-time
continuous space Markov processes, a transition system structure is no longer
available (the concept of next state is available only for Markov chains). There-
fore, it should be the case that the definition of the concept of automorphism to
be different: An automorphism must preserve the probabilistic dynamics of the
system. To express formally this idea, we need to use global parameterizations
of Markov processes different from transition probabilities, which are local and
depend on time. This is the reason why we have defined these automorphisms
as maps which preserve the excessive functions.
UsingH, an equivalence relation O ⊂ X×X, called orbit relation, can be defined
on the state space X as follows.

Definition 1. Two states x, y are in the same orbit, written xOy, if and only
if there exists an automorphism ϕ ∈ H such that ϕ(x) = y.

Let us denote by [x] the equivalence class containing the point x in X. The
equivalent classes of O are called orbits. It is clear that an orbit [x] can be
described as [x] = {ϕ(x)|ϕ ∈ H}. Let X/O denote the set of orbits, and let ΠO

the canonical projection

ΠO : X → X/O, ΠO(x) = [x]. (3)

The space X/O will be equipped with the quotient topology by declaring a set
A ⊂ X/O to be open if and only if Π−1

O
(A) is open in X. It is clear now that ΠO

is a continuous map with respect to the initial topology of X and the quotient
topology of X/O .

Example 4. In Figure 5 there are illustrated some basic situations for using sym-
metries and permutations. In the (a), the agent trajectories on the side are sym-
metric in respect with the middle agent trajectory. In the case (b), the symmetric
agents from case (a) are permuted. In the case (c), the agent trajectories denoted
by 3, 4 and 5 can be obtained by symmetry from the configuration formed with
the agents 1 and 2: agent 3 is the symmetric of agent 1 with respect with agent
2; then, considering agent 1 trajectory as reference, agent 4 is the symmetric of
agent 2 and agent 5 is the symmetric of agent 3.

Figure 5



Example 5. Consider that in Figure 5.(a) there are depicted three cars on a
motorway. The symmetry approach allows one to consider only two cars placed
in lanes next to each other.

Consider an automorphism ϕ ∈ H.

Definition 2. A term g is called ϕ-symmetric in x, y ∈ X if

ϕ(x) = y⇒ g(x) = g(y). (4)

The ϕ-symmetry property of a term gives rise to a new concept of satisfaction
for a formula.

Definition 3. A formula g ≤ v is equally satisfied in x, y ∈ X if there exists
an automorphism ϕ ∈ H such that g is ϕ-symmetric in x, y ∈ X.

4 Model checking safety properties

In this section, we investigate the issue of model checking the SafAL formulae.
Because SafAL is a qualitative approach to probabilistic risk analysis, the model
checking should be defined in an abstract way, rather than computationally.
We establish mathematical properties relative to bisimulation and reachability
analysis. In the first step, it is natural to consider model checking relative to any
target set regardless their coloring.

4.1 Safety equivalence

The computational equivalence of processes (or bisimulation) is the traditional
tool for reducing the complexity of the system state space. In the following, we
define this bisimulation for a class of strong Markov processes in an analytical
setting. Safety properties can be much more easily checked using a bisimilar
system abstraction as illustrated in [11]. In our approach, computational equiv-
alence means equal risk, and two states (safety) are bisimilar if they carry equal
risk. We develop a series of mathematical results that constitute the key for the
risk assessment. Roughly speaking, these results allow to interpret the risk in
terms of the mathematical potentials associated to a Markov process.

For a continuous time continuous space Markov process M with the state
space X, an equivalence relation R on X is a (strong) bisimulation if for xRy
we have

pt(x,A) = pt(y,A), ∀t > 0,∀A ∈ B(X/R) (5)

where pt(x,A), x ∈ X are the transition probabilities of M and B(X/R) rep-
resents the σ-algebra of measurable sets closed with respect to R. This variant
of strong bisimulation considers two states to be equivalent if their ‘cumulative’
probability to ‘jump’ to any set of equivalent classes that this relation induces
is the same. The relation (5) is hard to be checked in practice since the time t
runs continuously. Therefore, to construct a robust bisimulation relation on M



it is necessary to use other characterizing parameters of M , such that formula
(5) becomes a particular case of this new bisimulation.

In the following we briefly present the concept of bisimulation defined in [11].
This concept is more robust because it can be characterized by an interesting
pseudometric [11].
Let E ∈ B(X∆) be a measurable set. Let us consider TE = inf{t > 0|xt ∈ E),
the first time at which a given process “hits” a given subset E of the state space.
It is possible to define a linear operator on B(X) (set of measurable bounded
functions), denoted PE by

PEf(x) = Px[f(xTE)|TE <∞]. (6)

If f is excessive, then so is PEf . In particular, PE1(x) = Px[TE <∞] is excessive
for any E ∈ B(X∆). It can be shown that this function represents the probability
measure of the set of process trajectories which hit the target set E, in infinite
horizon time [11].

Suppose we have given a Markov process M on the state space X, with re-
spect to a probability space (Ω,F ,P). Assume thatR ⊂X ×X is an equivalence
relation such that the quotient process M |R is still a Markov process with the
state space X/R, with respect to a probability space (Ω,F ,Q). That means that
the projection map associated to R is a Markov function.

Definition 4. A relation R is called a behavioral bisimulation on X if for any
A ∈ B(X/R) we have that

P[TE <∞] = Q[TA <∞]

where E = Π−1
R
(A) (i.e. the reach set probabilities of the process M and M|R

are equal).

Our first major assumption is that X/O is a Lusin space. Often, this assump-
tion can be checked, but there are some cases when X/O fails to be Hausdorff
(i.e. it is possible that two different orbits to share the same vicinity system). In
these cases some minor modifications of X (changing, for example, the original
topology) lead to a Hausdorff quotient space.

The main result of this section is that the orbit relation O is indeed a bisim-
ulation relation defined on the state space X.

Theorem 2. The orbit relation O is a behavioral bisimulation (as in the Defi-
nition 4).

To prove this theorem we need some auxiliary results, which will be developed
in the following.

Lemma 1. If f ∈ EM and ϕ ∈ H then

PEf = ϕ∗[PF (ϑ)] (7)

where F = ϕ(E); ϑ = ϕ−1∗f the action of ‘∗’ is given by (2a) and PF is the
hitting operator associated to F .



Proof of Lemma 1. It is known (Hunt’s balayage theorem [3]) that

PEf(x) = inf{h(x)|h ∈ EM , h ≥ f on E}
(if ϕ∈H)
=

= inf{h ◦ ϕ−1(ϕ(x))|h ∈ EM , h ◦ ϕ−1 ≥ f ◦ ϕ−1 on ϕ(E)}

= inf{k(ϕ(x))|k ∈ EM , k ≥ f ◦ ϕ−1 on ϕ(E)}

= Pϕ(E)(f ◦ ϕ
−1)(ϕ(x))

= Pϕ(x)[(f ◦ ϕ
−1)(xTϕ(E))|Tϕ(E) <∞].

Remark 1. The equality (7) remains true for functions of the form f1−f2 where
f1 and f2 are excessive functions, and from there to arbitrary Borel measurable
functions.

Proposition 1. Let g : X/O → R be a B(X/O)-measurable and let E = Π−1
O (A)

for some A ∈ B(X/O). Then

PEf = ϕ∗[PAf ], ∀φ ∈ H (8)

where f : X → R, f = g ◦ΠO.

Proof of Prop. 1. If in Lemma 1, we let f = g ◦ ΠO, then ϑ = ϕ∗−1f =
f ◦ ϕ−1 = g ◦ΠO ◦ ϕ−1 = f . More, ϕ(Π−1

O (A)) = Π−1
O (A), so the proposition

follows from the above lemma.
Formula (8) shows that the function PEf (where f = g ◦ΠO) is constant on

the equivalent classes with respect toO. Then it makes sense to define a collection
of operators (QA) on (X/O ,B(X/O)) by setting QAg([x]) = PE(g◦ΠO)(x) where
E = Π−1

O (A). Proposition 1 allows to use any representative x of [x] in the right
side. It easy to check that QAQB = QB if A and B are open sets of X/O with
B ⊂ A. Under some supplementary hypotheses one can construct a Markov
process M/O = (Ω,F ,Ft, [x]t,Q[x]) with these hitting operators [13].

Now, we have all the auxiliary results needed to prove the Theorem 2.
Proof of the Th.2. If E = Π−1

O (A) for some A ∈ B(X/O) and we let g ≡ 1 then,
for all x ∈ X

Px[TE <∞] = Q[x][TA <∞]. (9)

Formula (9) illustrates the equality of the reach set probabilities, i.e. O is a
bisimulation relation.

4.2 Logical characterization of safety bisimulation

Theorem 3 (Full Abstraction Theorem). Any two states x, y ∈ X are
bisimilar (through O) if and only if, for any SafAL formula is equally satisfied
by x and y.

Proof of the Th. 3.
Necessity:



xOy implies that there exists ϕ ∈ H such that ϕ(x) = y. Since ϕ ∈ H, for
all g ∈ B(X) we have from Lemma 1 (taking E = {∆} and ϕ{∆) = ∆) that
V g(x) = V (g ◦ ϕ−1)(ϕ(x)). Or, taking ϕ = ϕ−1

V g(x) = (V g ◦ ϕ)(x) (10)

and using the fact any excessive function f is the limit of an increasing sequence
of potentials (by Hunt theorem [3]) we can make the following reasoning. For a
stochastic specification f ∈ EM there exists a sequence (gn) ⊂ B(X) such that
V gn is increasingly converging to f . Then, from (10), we obtain that (f◦ϕ)(x) =↑
limV gn(ϕ(x)) =↑ limV gn(x),∀x ∈ X, i.e., we get that f(x) = (f ◦ ϕ)(x),
∀f ∈ EM . Therefore, the evaluations of each stochastic specification f in x and y
are equal when xOy. Then the result is true also for f ∈ T , since any measurable
function can be represented as the difference of two excessive function.
Sufficiency:
In this case, we have to show that if for each f ∈ T there exists ϕ ∈ H such that
(4) is true, then xOy. This statement is straightforward.

The Full Abstraction Theorem establishes that our model is correct and
complete for the safety analysis logic. It provides new insights to the bisimulation
relation O, as follows.

Two states are equivalent when, for all system trajectories passing them
some relevant probabilistic properties are evaluated to be the same. This com-
putational copy of a state is given by the permutation ϕ from (4).
Corollary 1 The action of H to EM can be restricted as the action of H to PM ,
i.e. ∗ : H×PM → PM given by (2a).

This corollary is a direct consequence of the fact that PM generates the cone
EM . Then in the definition of O, we can work not with excessive functions, but
with potentials. This means that we can give the following characterization of
the orbit relation.

Proposition 2. xOy if and only if they have the ‘same potential’, i.e. there
exists ϕ ∈ H such that V f(x) = V f(y), y = ϕ(x) for all f ∈ B(X)

Corollary 1 If xOy then there exists ϕ ∈ H such that ϕ(x) = y and
pt(x,ϕ

−1(A)) = pt(y, A), ∀t ≥ 0,∀A ∈ B.
Summarizing, the model checking problem provides a very good motivation

for the colored model. Without using colors, the only safety bisimilar states exist
only for the systems that exhibit symmetries. Intuitively, two states are bisimilar
only if they are spatially symmetric. Using colors, the bisimulation concept is
coarser because the risk is considered only for colored sets. For example, two
states can be colorly bisimilar even they are not spatially symmetric. For the
car example, a state situated in the vicinity of a colored set, but characterized
by a small velocity can be safety equivalent with a state situated far from the
colored set but characterized by high velocity. Moreover, because the coloring
functions depend on time, the safety equivalence for the colored model varies
over the time. In other words, two safety bisimilar states can not be bisimilar
anymore a few seconds later.



5 Final Remarks

Conclusions
In this paper, we have proposed the multi-dimensional system co-engineering

framework, consisting of a stochastic multi-agent model, a formal logic for ex-
pressing safety properties and a foundational study of the basic formal verifica-
tion concepts of bisimulation and model checking. An agent is modeled as an
evolution of a cyber-physical system, which, in turn is an extension of a stochastic
hybrid system. Agent models have been developed for discrete probabilistic sys-
tems [16] and hybrid systems [1]. Moreover, model checking methodologies have
been developed for these systems. However, these methods can not be extended
for agent models of systems which are simultaneously hybrid and stochastic. In
this case, essential systems properties are lost and new properties emerge, as
described within Hilbertean formal methods [4, 5].

Examples of lost properties include:

— The uniqueness of a continuous trajectories that start from a given point;
— The availability of the “next state” concept
— The representation of the transition probabilities in the compact form of a
matrix. Instead, this situation leads to the use of linear operators. Conse-
quently, their specification logics should be based on a different semantics.

The following situations can be considered as emergent properties:

— In the description of the system behavior, one is constrained to use only
measurable sets of states and measurable sets of trajectories. Therefore, a
specification logic based on such principles needs to be introduced.

— The reachability properties can not be expressed, as in the discrete case, us-
ing only the transition probabilities. Instead, we have to consider measurable
sets of trajectories that visit a target set of states. This situation conducts to
possibly unpleasant consequences: the model checking techniques developed
for deterministic hybrid systems or for discrete probabilistic systems are not
usable anymore.

To the authors knowledge the problems presented in this paper and the
proposed solutions are new.

The existence of a fully abstract model, but still very general and construc-
tive, forms the basis for future automated reasoning systems.

Related work
A model of agents as deterministic hybrid systems that communicate via

shared variables is implemented in the Charon system (see [1] and the references
therein). For discrete time and probabilistic agents, there exist well developed
models [17]. However it is very difficult to model the agents as stochastic hybrid
systems, especially because of the emergent properties presented before.

Symmetries have been used by Frazzoli and coauthors (see [18] and the ref-
erences therein) in the optimal control of single agent, deterministic hybrid sys-
tems.



Bisimulation has got a large palette of definitions for discrete systems, and,
similarly, there exist different definitions in the continuous and hybrid case.
A categorical definition is proposed in [12], and non-categorical variants are
introduced and investigated in [7], [11]. Other approaches to formal verification
of probabilistic systems, like labelled Markov processes [14], consider automata
models which are not agent oriented. The full abstraction theorem from section
6 extend a similar result established for discrete probabilistic automata.

Note that, in contrast with the action operator defined in the probabilistic
modal logic for labeled Markov processes [14], the SafAL operator is defined
using the time.

The SafAL can be fruitfully applied to performance analysis. In [10], it is
shown that the expressions (1), i.e. the semantics of some SafAL formulas, rep-
resent performance measures for the fluid models of communication networks.
Moreover, in the cited paper, it is developed a model checking strategy for a set
of formulae that belong to SafAL against strong Markov processes, which enrich
the formal verification toolset of MScE.

Future work

In a following paper we will extended SafAL to include inter-agent commu-
nication and develop an operational semantics for it. Considering the efficient
model checking methods based on symmetry reduction [19], it is natural to fur-
ther investigate developing similar numerical methods for SafAL. Application
domains where MScE can be used include aerospace engineering3 , air traffic
control and automotive industry.

More background material on stochastic processes and stochastic hybrid sys-
tems can be found in an early version [9] of this paper which is available on-line4 .
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6 Appendix: Background on stochastic processes

Let us consider M = (xt, Px) a strong Markov process with the state space X.
Let F and Ft be the appropriate completion of σ-algebras F0 = σ{xt|t ≥ 0}
and F0t = σ{xs|s ≤ t}. Ft describes the history of the process up to the time t.
Technically, with any state x ∈ X we can associate a natural probability space
(Ω,F , Px) where Px is such that its initial probability distribution is Px(x0 =
x) = 1. The strong Markov property means that the Markov property is still
true with respect to the stopping times of the process M . In particular, any
Markov chain is a strong Markov process.
We adjoin an extra point ∆ (the cemetery) to X as an isolated point, X∆ =X∪
{∆}. The existence of∆ is assumed in order to have a probabilistic interpretation
of Px(xt ∈ X) < 1, i.e. at some ‘termination time’ ζ(ω) when the process M
escapes to and is trapped at ∆. As usual, B(X) denotes the set of bounded real
functions on X.

Suppose that the following hypotheses are fulfilled.
1. M paths are right-continuous with left limits (the cadlag property).
2. X is equipped with Borel σ-algebra B(X) or shortly B. Let B(X∆) be the
Borel σ-algebra of X∆.
3. The operator semigroup of M maps B(X) into itself.
• The set B(X) is the Banach space of bounded real measurable functions

defined on X, with the sup-norm ||ϕ|| = supx∈X |ϕ(x)|, ϕ ∈ B(X).
• The semigroup of operators (Pt) is given by

Ptf(x) = Exf(xt) =

∫
f(y)pt(x, dy), t ≥ 0 (11)

where Ex is the expectation with respect to Px and pt(x,A), x ∈ X, A ∈ B

represent the transition probabilities, i.e. pt(x,A) = Px(xt ∈ A).The semigroup
property of (Pt) can be derived from the Chapman-Kolmogorov equations sat-
isfied by the transition probabilities.
• A function f is excessive with respect to the semigroup (Pt) if it is mea-

surable, non-negative and Ptf ≤ f for all t ≥ 0 and Ptf ր f as tց 0.
To the operator semigroup, one can associate the kernel operator as

V f =

∫ ∞

0

Ptfdt, f ∈ B(X) (12)

The kernel operator is the inverse of the opposite of the infinitesimal operator
associate to M .

Remark 2. The state space X can be chosen to be an analytic space (as the
most general case), but we restrict ourself to the case of a Lusin space since our
work is motivated by a multi-agent model where every agent is a realization of
a stochastic hybrid systems who have, in most of the cases, Lusin state spaces.


