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Abstract

We propose and investigate a formal language operation inspired by
the naturally occurring phenomenon of DNA primer extension by a DNA-
template-directed DNA Polymerase enzyme. Given two DNA strings u
and v, where the shorter string v (called primer) is Watson-Crick com-
plementary and can thus bind to a substring of the longer string u (called
template) the result of the primer extension is a DNA string that is com-
plementary to a suffix of the template which starts at the binding position
of the primer. The operation of DNA primer extension can be abstracted
as a binary operation on two formal languages: a template language L1

and a primer language L2. We call this language operation L1-directed ex-
tension of L2 and study the closure properties of various language classes,
including the classes in the Chomsky hierarchy, under directed extension.
Furthermore, we answer the question under what conditions can a given
language of target strings be generated from a given template language
when the primer language is unknown. We use the canonic inverse of
directed extension in order to obtain the optimal solution (the minimal
primer language) to this question.

1 Introduction

Computational models inspired by nature abound in theoretical computer sci-
ence. Several formal language operations that have their basis on naturally
occurring biochemical reactions have been proposed and studied. The actions
of various enzymes on DNA strands, most of which are widely used in the field
of biotechnology, are of particular interest. In this paper we propose and inves-
tigate a formal language operation that models the action of DNA Polymerase
enzyme, an enzyme that plays a major role in the replication of DNA strands.

0This research was supported by a Natural Science and Engineering Council of Canada
(NSERC) Discovery Grant and a University of Western Ontario Grant to L.K.
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Other bio-inspired operations in the literature include splicing, insertion and
deletion, substitution, and hairpin extension. Splicing is a formal language
operation originally proposed by Tom Head [10] to model the recombination
of DNA strands under the action of restriction enzymes and ligase enzymes.
Various types of splicing systems have been developed based on this phenomenon
and their properties were studied in, e.g., [29] [9] [19] [11] [15]. Insertion-deletion
operations are basic to DNA processing and RNA editing in molecular biology.
Insertion-Deletion systems were defined as formal models of computation based
on these operations and have been widely studied in the literature, see, e.g., [17]
[31] [33] [34] [30] [18] [5]. Insertion-deletion systems that are context-free [27],
that have one sided-context [28] [23], and that are graph controlled [6] were also
proposed. P -systems with insertion-deletion rules have been extensively studied
in [22] [24] [2] [1] [7] [8]. A type of substitution operation inspired by errors
occurring in biologically encoded information was proposed in [16]. Hairpin
formation is a naturally occurring phenomenon whereby a DNA strand that
is partially self-complementary attaches to itself. Based on this phenomenon,
the formal language operation called hairpin completion as well as its inverse
operation called hairpin reduction have been defined and extensively studied in
the literature [4] [26] [25] [21].

In this paper we define and investigate a formal language operation that
models the action of the DNA Polymerase enzyme on DNA strands. Recall that
a DNA single-strand consists of four different types of units called nucleotides or
bases strung together by an oriented backbone like beads on a wire. The distinct
ends of a DNA single strand are called the 5’ end and the 3’ end respectively.
The bases are Adenine (A), Guanine (G), Cytosine (C) and Thymine (T ), and
A can chemically bind to an opposing T on another single strand, while C can
similarly bind to G. Bases that can thus bind are called Watson/Crick (W/C)
complementary, and two DNA single strands with opposite orientation and with
W/C complementary bases at each position can bind to each other to form a
DNA double strand in a process called base-pairing.

The activity of DNA Polymerase presupposes the existence of a DNA sin-
gle strand called template (Figure 1 (a)), and of a second short DNA strand
called primer, that is Watson-Crick complementary to the template (Figure 1
(b)). Given a supply of individual nucleotides, the DNA polymerase enzyme
extends the primer, at one of its ends only, by adding invididual nucleotides
complementary to the template nucleotides, one by one, until the end of the
template is reached (Figure 1 (c)). The newly formed DNA strand is a strand
that starts with the primer and is partially Watson-Crick complementary to the
template (Figure 1 (d)). In molecular biology laboratories, an iterated version
of this process is used to obtain an exponential replication of DNA strands, in
a protocol called Polymerase Chain Reaction, or PCR.

In this paper we introduce a simplified formal language model of DNA Poly-
merase enzymatic activity, called template-directed extension, or simply directed
extension. The paper is organized as follows. Section 2 contains definitions and
notations, including the definition of directed extension. In Section 3, we give
proofs for the closure properties of the various language classes under directed
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Figure 1: Template directed extension of a primer, effected by DNA Polymerase
enzyme. By θ(x) we denote the Watson-Crick complement of a DNA strand x.

extension. In particular, we show that the directed extension between two lan-
guages in LOGSPACE can result in an undecidable language. In Section 4,
we define an inverse of directed extension and study language equations involv-
ing this operation. In Section 5, we compare our operation with related string
operations, and we discuss iterated versions of directed extension.

2 Basic definitions and notations

An alphabet Σ is a finite non-empty set of symbols. Σ∗ denotes the set of all
words over Σ, including the empty word λ. Σ+ is the set of all non-empty
words over Σ. For words w, x, y, z such that w = xyz we call the subwords x,
y, and z prefix, infix, and suffix of z, respectively. The sets Pref (w), Inf (w),
and Suff (w) contain, respectively, all prefixes, infixes, and suffixes of w. This
notation is extended to languages as follows: Suff (L) =

⋃
w∈L Suff (w). The

complement of a language L ⊆ Σ∗ is Lc = Σ∗\L. By FIN, REG, LIN, CF, CS,
and RE we denote the families of finite, regular, linear (context-free), context-
free, context-sensitive, and recursively enumerable languages, respectively.

An involution is a function θ : Σ∗ → Σ∗ with the property that θ2 is identity.
θ is called an antimorphism if θ(uv) = θ(v)θ(u). Traditionally, the Watson-Crick
complementarity of languages has been modelled as an antimorphic involution
over the DNA alphabet ∆ = {A,C,G, T}, [12, 14]. Assuming the convention
that a word x over this alphabet represents the DNA single strand x in the 5’
to 3’ direction, the activitity of DNA polymerase in Figure 1, given a template
αyβ and a primer y that occurs only once in αyβ, can be modelled as:

αyβ • θ(y) = θ(y)θ(α) = θ(αy).

Assuming that all involved DNA strands are initially double-stranded, that
is, whenever the strand x is available also its Watson-Crick complement θ(x) is
available, we can further simplify this model and, given two words x, y over an
alphabet Σ, we can define the left x-directed extension of y as
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x⊕′ y = {w ∈ Σ∗ | ∃α, β ∈ Σ∗ : x = αyβ,w = αy},

and the right x-directed extension of y as

x⊕ y = {w ∈ Σ∗ | ∃α, β ∈ Σ∗ : x = αyβ,w = yβ},

From a mathematical point of view the left- and right-directed extensions are
similar. For the remainder of this paper we will consider only the right-directed
extension, which we will call simply directed extension.

Note also that, from a biological point of view, it does not make sense to
consider an “empty primer” (a primer with length 0), but from a mathematical
point of view this is well-defined and y = λ is valid. We extend the definition
of directed extension to languages in a natural way:

Lx⊕Ly =
⋃

x∈Lx,y∈Ly

x⊕y = {w ∈ Σ+ | ∃α, β ∈ Σ∗, y ∈ Ly : αyβ ∈ Lx, w = yβ}.

3 Closure Properties

In this section we study closure properties of various language classes under
directed extension. Throughout this section all languages are considered to
be defined over a fixed alphabet Σ. The next lemma expresses the directed
extension operation in terms of concatenation, intersection and suffix.

Lemma 3.1. If Lx and Ly are two languages over Σ, then Lx⊕Ly = Suff (Lx)∩
LyΣ∗.

Proof. For the direct inclusion, consider w ∈ Lx⊕Ly. This implies that w = yβ
where y ∈ Ly and αyβ ∈ Lx. Therefore, w ∈ LyΣ∗ and w ∈ Suff(Lx).

Conversely, let w ∈ Suff(Lx) ∩ LyΣ∗. Because w ∈ Suff(Lx), there exists
α ∈ Σ∗ such that αw ∈ Lx. Because w ∈ LyΣ∗, there exists y ∈ Ly and β ∈ Σ∗

such that w = yβ. Thus, w ∈ Lx ⊕ Ly.

Corollary 3.2. Let X and Y be two language classes where X is closed under
the suffix operator and Y is closed under concatenation with Σ∗.

i.) If X is closed under intersection with languages from Y, then for all Lx ∈
X and Ly ∈ Y we have Lx ⊕ Ly ∈ X .

ii.) If Y is closed under intersection with languages from X , then for all Lx ∈
X and Ly ∈ Y we have Lx ⊕ Ly ∈ Y.

In particular, REG and RE are closed under directed extension and, if X is
LIN (CF) and Y is REG, then the result Lx ⊕ Ly is in LIN (CF).

Next, we show that directed extension can “simulate” intersection by utiliz-
ing markers at the beginning and end of words.
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Lemma 3.3. Let L1 and L2 be languages over the alphabet Σ and let $ /∈ Σ be
a new symbol. Then,

$L1$⊕ $L2$ = $(L1 ∩ L2)$.

Proof. For the direct inclusion, let x ∈ L1 and y ∈ L2. If the word $x$ has
a factorization $x$ = α$y$β, it is clear that x = y and α = β = λ because $
does not occur as letter in x. Therefore, if w ∈ $x$⊕ $y$ for some x ∈ L1 and
y ∈ Ly, then w ∈ $(L1 ∩ L2)$.

For the converse inclusion, let w be any string in (L1 ∩ L2). This implies
that $w$ ∈ $L1$ and $w$ ∈ $L2$. Thus $w$ ∈ $L1$⊕ $L2$.

Lemma 3.3 allows us to classify the result of directed extension between two
(linear) context-free languages.

Theorem 3.4. Let Lx be a context-free language and Ly be a context-free (or
context-sensitive) language. The language Lx ⊕ Ly is context-sensitive, but not
necessarily context-free.

Proof. Consider the two (linear) context-free languages

Lx = {$ambncn$ | m ≥ 1, n ≥ 1}, Ly = {$anbncm$ | m ≥ 1, n ≥ 1}.

By Lemma 3.3, the Lx-directed extension of Ly yields the context-sensitive but
not context-free language

Lx ⊕ Ly = {$anbncn$ | n ≥ 1}.

In order to show that Lx⊕Ly is context-sensitive for Lx ∈ CF and Ly ∈ CS,
we use Lemma 3.1 and note that the suffix operator applied to a context-free
language gives a context-free language and that the class of context-sensitive
languages is closed under intersection.

Let LOG = DSPACE(log) be the language class which contains all languages
that can be accepted by a deterministic Turing Machine using at most O(log n)
space on an input of length n. For a language Lx ∈ LOG we will show that
the Lx-directed extension of a singleton language can produce an undecidable
language. In order to do so, we utilize the undecidable Post Correspondence
Problem (PCP) in the following formulation: Determine, for an arbitrary set
(x1, y1), (x2, y2), · · · , (xk, yk) of pairs of corresponding non-null strings over the
alphabet {a, b}, whether or not there exists a solution n, i1, i2, i3, · · · , in such
that xi1xi2xi3 · · ·xin = yi1yi2yi3 · · · yin , n ≥ 1, ij ∈ {1, 2, · · · , k}.

Theorem 3.5. There exists a language L1 in LOG and a singleton language
L2 such that L1 ⊕ L2 is not decidable.

Proof. Let L1 be a language over Σ∪{$} consisting of all strings of the form α$β
where $ does not appear within α or β. Here β is the encoding of an instance
of the PCP and α is the encoding of a solution of this instance. We let L2 be
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the singleton language {$}. The resulting language L1 ⊕L2 contains all strings
of the form $β such that α$β ∈ L1; therefore, $β ∈ L1 ⊕ L2 if and only if β is
the encoding of an instance of PCP which has a solution. Formally,

L1 = {α$β | β is a PCP instance and α is a solution to β},
L2 = {$},

L1 ⊕ L2 = {$β | β is a PCP instance that has a solution}.

Because PCP is undecidable, it will follow that the language L1 ⊕ L2 is
undecidable as well. Let us show next how to encode α and β in a word α$β ∈ Lx

and how to decide Lx using logarithmic space.

Let x1, x2, ..., xk and y1, y2, ..., yk be an instance of PCP and let i1, i2, ...in be
a solution to this instance. We encode each integer ij using a binary encoding,
symbolized as |ij |, which is of length dlog2 ke or less. Let α$β be encoded as

|i1|M |i2|M |i3|M...|in|M$Mx1Mx2Mx3...MxkMCMy1My2My3...MykM

where M and C are separating symbols.
In order to decide if an arbitrary string w is in L1, the first step is to verify

that it is of the format described above and the second step is to verify that the
integer sequence α is a solution of β. In order to decide L1 we have to verify
whether or not xi1xi2xi3 · · ·xin and yi1yi2yi3 · · · yin are equal. We can easily see
that the first step can be done in logarithmic space and that the second step
can (at least) be decided. Thus, the language L1 is decidable.

Now, we give a high-level construction of a Turing Machine which uses log-
arithmic working space with respect to the length of the input and decides
whether α is a solution to β or not. Instead of generating both strings com-
pletely and then comparing them, we generate and compare both strings letter
by letter. In order to do so, we only need to store pointers to the input tape
on the work tape which can be implemented using only logarithmic space. A
more detailed description of this Turing Machine follows.

We may assume the symbol S is written to the left of input and refer to it
as the start symbol. The strings xi1xi2 · · ·xin and yi1yi2 · · · yin are referred to
as x and y respectively.

When we say address, we refer to the address on the input tape with respect
to S, i.e. the number of symbols we have to move to the right starting from S
on the input tape. The input tape looks as follows:

S|i1|M |i2|M |i3|M...|in|M$Mx1Mx2Mx3...MxkMCMy1My2My3...MykM

The computation of the Turing Machine is described by Algorithm 1. We
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use the following variables in the pseudo-code:

xaddr − The address of current symbol of x that is being looked into
yaddr − The address of current symbol of y that is being looked into
xsoln − The value of the current index (i.e. ij) of x
ysoln − The value of the current index (i.e. ij) of y
xsolnAddr − Contains the address of xsoln
ysolnAddr − Contains the address of ysoln
AddrV alue − A buffer storing the address to be calculated/used

Moreover, we use following simple functions:

• Addr(s), where s is one of the symbols S, $, C, returns the unique address
of the symbol s on the input tape,

• V alueAt(addr), where addr is an address, returns the symbol on the input
tape at address addr,

• ReadIndex(index, addr), where index is a variable on the work tape and
addr is an address, copies the binary representation of an index ij which
begins at address addr into index; it also increments the address addr
such that it points to the first bit of |ij+1| if j < n and to Addr($) if
j = n.

Then Algorithm 1 will always halt with either a yes or a no because there
is only a finite number of indexes encoded in α and hence in the case of not-
finding a mismatch(including the mismatch due to one string finishing earlier
than the other), the condition a = b = $ will be satisfied giving a yes answer.
The variables used in this algorithm are xaddr, yaddr, xsoln, ysoln, xsolnAddr,
ysolnAddr and AddrV alue. All of them except for xsoln and ysoln are pointers to
locations on read-tape and, hence, require only logarithmic space with respect
to the input. We already know that xsoln and ysoln are within dlog2 ke space and
hence within logarithmic space with respect to the input. Since all the variables
can be stored in space logarithmic with respect to the input, we conclude that
L1 can be decided in logarithmic space. We conclude that if L1 is in LOG and
L2 is a singleton language, then L1 ⊕ L2 can be an undecidable language.

Theorem 3.5 can be extended to any time or space complexity class which
contains LOG as well as to decidable languages. In particular, CS is not closed
under directed extension of singleton languages.

Corollary 3.6. The family of context-sensitive languages is not closed under
directed extension. More precisely, for Lx ∈ CS the Lx-directed extension of a
singleton language may not be decidable.

Corollary 3.7. The language classes NTIME, DTIME, NSPACE and DSPACE
(all of which include LOG) are not closed under directed extension. More pre-
cisely, if Lx ∈ NTIME, DTIME, NSPACE, DSPACE then the Lx-directed ex-
tension of a singleton language may not be decidable.
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Algorithm 1

xaddr := Addr($);
yaddr := Addr(C);
xsolnAddr = ysolnAddr := Addr(S);
repeat

xaddr := xaddr + 1;
yaddr := yaddr + 1;
if V alueAt(xaddr) = M then

if V alueAt(xsolnAddr) = $ then
xaddr := Addr($);

else
ReadIndex(xsoln, xsolnAddr);
AddrV alue := Addr($);
while xsoln > 0 do

if V alueAt(AddrV alue) = M then
xsoln := xsoln − 1;

end if
AddrV alue := AddrV alue+ 1;

end while
xaddr := AddrV alue;

end if
end if
a := V alueAt(xaddr);
if V alueAt(yaddr) = M then

if V alueAt(ysolnAddr) = $ then
yaddr := Addr($);

else
ReadIndex(ysoln, ysolnAddr);
AddrV alue := Addr(C);
while ysoln > 0 do

if V alueAt(AddrV alue) == M then
ysoln := ysoln − 1;

end if
AddrV alue := AddrV alue+ 1;

end while
yaddr := AddrV alue;

end if
end if
b := V alueAt(yaddr);

until (a 6= b)OR(a = b = $)
if a 6= b then

return no;
else

return yes;
end if
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In Table 1 we summarize the results from this section. For two language
classes X and Y, it shows the language class Z from the Chomsky hierarchy
such that for all Lx ∈ X and Ly ∈ Y we have Lx ⊕ Ly ∈ Z. Note that if
we consider two language classes X , Y which both contain the free monoid
Σ∗ for any alphabet Σ, we will require that $L$ = $L$ ∩ $Σ∗$ ∈ Z for all
languages L ∈ X or L ∈ Y which are defined over Σ, due to Lemma 3.3. If we
restrict ourselves to classes in the Chomsky hierarchy (or standard space/time
complexity classes), this statement can be strengthend as X ∪ Y ⊆ Z. This
shows that all entries in Table 2 can also be considered “lower bounds” for the
language class Z.

Finally, let us also note that if Lx is a finite language, then Lx⊕Ly is finite
for any Ly, even though it is not necessarily effectively finite if Ly is undecidable.

Lx\Ly FIN or REG CF CS RE

REG
REG CF CS RE

(Cor. 3.2) (Cor. 3.2) (Cor. 3.2) (Cor. 3.2)

CF
CF CS RE

(Cor. 3.2) (Thm. 3.4) (Cor. 3.2)

CS
RE

(Cor. 3.2 and Cor. 3.6)

RE
RE

(Cor. 3.2)

Table 1: Summary of closure properties: each entry shows which language class
Lx ⊕ Ly belongs to if Lx is from the corresponding language class in the left
column and Ly is from the corresponding language class in the top row.

4 Equations and inverse operation

In this section we investigate the following problem: Given two languages Lx,
L0 over Σ∗, does there exist a language Y over Σ∗ such that Lx⊕Y = L0? Fur-
thermore, we show how to effectively construct maximal and minimal solutions,
with respect to the inclusion relation. Throughout this section, we consider the
languages Lx and L0 to be constants. For the equation Lx ⊕ Y = L0 we call a
language Ly a solution if it satisfies Lx ⊕ Ly = L0.

We can use the canonical right-inverse of the directed extension in order to
decide the existence of a solution as well as to find the maximal solution. The
canonical right-inverse of an arbitrary binary language operation ′′+′′ is the
binary language operation ′′−′′ defined as

x− w = {y ∈ Σ∗ | w ∈ x+ y}.

It was proved that proved that, if there exists a solution Ly of the equation
Lx + Y = L0, then Lmax = (Lx − Lc

0)c is also a solution, and every other
solution L′y of this equation is contained in Lmax [13]. In other words, for
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languages Lx, Ly, and L0

Lx + Ly = L0 ⇐⇒ Ly ⊆ (Lx − Lc
0)c.

It is easy to see that the right-inverse of directed extension is

x	 w = {y ∈ Σ∗ | w ∈ x⊕ y}

=

{
Pref (w) if x = αw

∅ otherwise.

Therefore, we obtain that Lmax = (Lx 	 Lc
0)c is the maximal solution (with

respect to inclusion) of (Lx ⊕ Y = L0) if and only if Lx ⊕ Y = L0 has at least
one solution.

This already implies that we can decide whether or not the equation Lx⊕Y =
L0 has a solution Ly. Yet, we want to present a “more direct” approach to test
solvability of this equation: we will show that the equation has a solution if and
only if Lx ⊕ L0 = L0.

Theorem 4.1. The equation Lx ⊕ Y = L0 has a solution Ly if and only if L0

is a solution as well.

Proof. Trivially, if Lx⊕L0 = L0, then there exists an Ly such that Lx⊕Ly = L0.
Conversely, we need to prove that if Lx⊕Ly = L0, then Lx⊕L0 = Lx⊕Ly.

Let us consider a string w ∈ Lx ⊕ Ly. This implies that w is a suffix of a word
x ∈ Lx and, therefore, w ∈ x⊕w ⊆ Lx⊕L0. This proves that Lx⊕L0 ⊇ Lx⊕Ly.

Now, take any w′ ∈ Lx⊕w for some w ∈ L0 = Lx⊕Ly. Hence, w′ is a suffix
of some word x ∈ Lx and, furthermore, there exists a word y ∈ Ly which is a
prefix of w which in turn is a prefix of w′ by Lemma 3.1. Clearly, this implies
that w′ ∈ x⊕ y ⊆ Lx ⊕ Ly. We conclude Lx ⊕ L0 = Lx ⊕ Ly.

Next, we investigate solutions which are minimal with respect to inclusion;
that is, a solution Ly of the equation Lx ⊕ Y = L0 is minimal if for all words
y ∈ Ly the language Ly \{y} is not a solution: Lx⊕(Ly \{y}) 6= L0. We present
a general method to find a minimal solution if we already know one solution.

Theorem 4.2. If Lx⊕Y = L0 has the solution Ly, then Lmin = (Ly\LyΣ+)∩
Inf (Lx) is a minimal solution.

Proof. First, let us show that Lmin is indeed a solution. Because Lmin ⊆ Ly,
we have Lx ⊕ Lmin ⊆ Lx ⊕ Ly = L0. Vice versa, for every w ∈ L0 there exists
x ∈ Lx and y ∈ Ly such that w ∈ x⊕ y. Let y′ be the shortest prefix of y such
that y′ ∈ Ly. Because y′ does not have a shorter prefix in Ly and because y′ is
an infix of x, we obtain that y′ ∈ Lmin. Now, since y′ is also a prefix of w, we
obtain that w ∈ x⊕ y′ ⊆ Lx ⊕ Lmin.

For the sake of obtaining a contradiction, let us assume that Lmin is not
a minimal solution. This implies that either (a) there is y ∈ Lmin such that
Lx ⊕ y = ∅ or (b) there are two distinct strings y1, y2 ∈ Lmin such that a word
w in Lx ⊕ y1 ∩ Lx ⊕ y2 exists. Case (a) does not hold because it would imply
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that y is not an infix of any word in Lx. Case (b) implies that y1 and y2 are
both prefixes of the word w which means that we may assume that y1 is a prefix
of y2 without loss of generality. Since both words have to belong to Ly and
y2 ∈ y1Σ∗, we conclude that y2 /∈ Lmin — a contradiction.

From the two results in this section, Theorems 4.1 and 4.2, we infer that if
the equation Lx ⊕ Y = L0 has a solution, then L0,min = (L0\L0Σ+) ∩ Inf (Lx)
is a minimal solution.

5 Discussion and conclusions

We now compare the directed extension operation with two other formal
language operations that are biologically motivated and extend strings: the
PA-matching operation and the superposition operation. The PA-matching op-
eration is a binary operation proposed by Kobayashi et al [20] and inspired
by the PA-match operation that was part of Parallel Associate Memory(PAM)
model proposed by Reif [32]. The PA-matching operation is meant to be imple-
mented by some recombinant DNA processes and is defined as follows. Given
two words x ∈ V +

1 and y ∈ V +
2 , the result of the PA-matching between x and y

is defined as:

PAm(x, y) = {uv|x = uw, y = wv, for some w ∈ (V1∩V2)+, and u ∈ V ∗1 , v ∈ V ∗2 }

Note that PA-matching results in the extension of a the word x by a suffix
of y, if x has a suffix which is the same with a prefix of y. The main differ-
ence between this operation and directed extension is that here the common
suffix/prefix that guides the extension is deleted from the result, while in the
case of directed extension no deletion takes place.

The superposition operation is a binary operation proposed by Bottoni et
al in [3] and can be implemented by the use of the DNA Polymerase enzyme.
The result of the superposition operation between words x ∈ V +

1 and y ∈ V +
2 ,

denoted by x�y, consists of the set of all words z ∈ (V1∪ V̄2)+ defined as follows
(ȳ denotes the complement of y, that is, the image of y through a morphic
involution):

1. If there exist u ∈ V ∗1 , w ∈ V +
1 , v ∈ V ∗2 such that x = uw, y = w̄v, then

z = uwv̄.

2. If there exist u, v ∈ V ∗1 such that x = uȳv, then z = uȳv.

3. If there exist u ∈ V ∗2 , w ∈ V ∗1 such that x = wv, y = uw̄, then z = ūwv.

4. If there exist u, v ∈ V ∗2 such that y = ux̄v, then z = ūxv̄.

The superposition operation also extends words but, in the case of superposi-
tion the extension can be bidirectional, while in the case of directed extension
the extension is always uni-directional. This and other differences lead to the
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two operations being different, as illustrated by the difference in the closure
properties of the two operations.

Table 2 summarizes the closure properties of the operations of directed ex-
tension, PA-matching and superposition.

Class of Lx and Ly ⊕ PAm �
Regular Closed Closed Closed
Context Free Not Closed Not Closed Not Closed
Context Sensitive Not Closed Not Closed Closed
Recursively Enumerable Closed Closed Closed

Table 2: Closure properties under the directed extension operation, ⊕, compared
to the PA-Matching and superposition operations.

We end this paper by several remarks on iterated directed extension. When
investigating language operations, it is common to investigate an iterated version
of the operation as well. In particular, when studying biologically motivated
operations as is the case here, the iterated version is sometimes the operation
that better reflects the biological phenomenon in question (DNA replication) or
experimental lab protocols (Polymerase Chain Reaction). Let us present here
three natural versions of the iterated directed extension. We define

1. the iterated self-directed extension of L as µ∗(L) = limn→∞ µn(L) where
µ(L) = L ∪ (L⊕ L),

2. the L-iteration-directed extension of Ly as ν∗Ly
(L) = limn→∞ νnLy

(L) where

νLy
(L) = L ∪ (L⊕ Ly), and

3. the iterated Lx-directed extension of L as ξ∗Lx
(L) = limn→∞ ξnLx

(L) where
ξLx(L) = L ∪ (Lx ⊕ L).

Here, we use the notation that for any domain D and function h : D → D we
have h0(L) = L and hi(L) = h(hi−1(L)) for i ≥ 1.

Let us show that in all three cases we have h∗(L) = h(L) for h ∈ {µ, νLy
, ξLx
}

which means that the results that we obtained in this paper can easily be ex-
tended to the iterated versions. Indeed, the only difference is that we add the
term h0(L) = L to the directed extension.

For case 1.) consider a word w ∈ µ2(L), that is (a) w ∈ µ(L) or (b) w = x⊕y
for x, y = µ(L) = L ∪ (L ⊕ L). If (b) holds, we obtain from Lemma 3.1 that
there exists x′ ∈ L such that x is a suffix of x′ an y′ ∈ L such that y′ is a prefix
of y (note that we do allow x = x′ or y = y′). Clearly, we also have w ∈ x′ ⊕ y′
and may conclude that w ∈ L⊕L ⊆ µ(L). This implies that µ2(L) ⊆ µ(L) and,
due to the inductive definition of µi we have µi(L) = µ(L) for any i ≥ 1. We
conclude that µ∗(L) = µ(L). The result follows by analogous arguments for the
cases 2.) and 3.).
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