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[1] Estimation of parameter and predictive uncertainty of hydrologic models has
traditionally relied on several simplifying assumptions. Residual errors are often
assumed to be independent and to be adequately described by a Gaussian probability
distribution with a mean of zero and a constant variance. Here we investigate to what
extent estimates of parameter and predictive uncertainty are affected when these
assumptions are relaxed. A formal generalized likelihood function is presented, which
extends the applicability of previously used likelihood functions to situations where
residual errors are correlated, heteroscedastic, and non‐Gaussian with varying degrees of
kurtosis and skewness. The approach focuses on a correct statistical description of the data
and the total model residuals, without separating out various error sources. Application
to Bayesian uncertainty analysis of a conceptual rainfall‐runoff model simultaneously
identifies the hydrologic model parameters and the appropriate statistical distribution of
the residual errors. When applied to daily rainfall‐runoff data from a humid basin we
find that (1) residual errors are much better described by a heteroscedastic, first‐order,
auto‐correlated error model with a Laplacian distribution function characterized by
heavier tails than a Gaussian distribution; and (2) compared to a standard least‐squares
approach, proper representation of the statistical distribution of residual errors yields
tighter predictive uncertainty bands and different parameter uncertainty estimates that
are less sensitive to the particular time period used for inference. Application to daily
rainfall‐runoff data from a semiarid basin with more significant residual errors and
systematic underprediction of peak flows shows that (1) multiplicative bias factors can
be used to compensate for some of the largest errors and (2) a skewed error distribution
yields improved estimates of predictive uncertainty in this semiarid basin with near‐zero
flows. We conclude that the presented methodology provides improved estimates of
parameter and total prediction uncertainty and should be useful for handling complex
residual errors in other hydrologic regression models as well.
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1. Introduction

[2] Assessment of parameter and predictive uncertainty of
hydrologic models is an essential part of any hydrologic
study. Uncertainty analysis forms the basis for model com-
parison and selection [Schoups et al., 2008], allows identi-
fication of robust water management strategies that take
account of prediction uncertainties [Ajami et al., 2008], and
provides an impetus for targeted data collection aimed at

improving hydrologic predictions and water management
[Feyen and Gorelick, 2004]. Furthermore, accurate parame-
ter uncertainty estimation is often required for regionaliza-
tion and extrapolation of hydrologic parameters to ungauged
basins [Vrugt et al., 2002; Zhang et al., 2008].
[3] Uncertainty analysis is commonly based on a regres-

sion model, whereby observations are represented by the sum
of a deterministic component, i.e., the hydrologic model, and a
random component describing remaining errors or residuals.
These residual errors typically consist of a combination of
input, model structural, output, and parameter errors. Model
parameter inferences are then based on a likelihood function
quantifying the probability that the observed data were gen-
erated by a particular parameter set [Box and Tiao, 1992]. The
mapping from parameter space to likelihood space results in
the identification of a range of plausible parameter sets
given the data and allows estimation of parameter and pre-
dictive uncertainty.

1Department of Water Management, Delft University of Technology,
Delft, Netherlands.

2Center for Nonlinear Studies, Los Alamos National Laboratory,
Los Alamos, New Mexico, USA.

3Institute for Biodiversity and Ecosystem Dynamics, University of
Amsterdam, Amsterdam, Netherlands.

4Department of Civil and Environmental Engineering, University of
California, Irvine, California, USA.

Copyright 2010 by the American Geophysical Union.
0043‐1397/10/2009WR008933

WATER RESOURCES RESEARCH, VOL. 46, W10531, doi:10.1029/2009WR008933, 2010

W10531 1 of 17

http://dx.doi.org/10.1029/2009WR008933


[4] In recent years, much debate has focused on the use of
either a formal or informal approach for specifying the like-
lihood function [Mantovan and Todini, 2006; Beven et al.,
2008; Vrugt et al., 2008b; Stedinger et al., 2008; McMillan
and Clark, 2009]. In the formal approach, one starts from an
assumed statistical model for the residual errors, i.e., the func-
tional form of the joint probability density function (pdf) of
the residual errors is specified a priori. This statistical model
is then used to derive the appropriate form for the likeli-
hood function [Box and Tiao, 1992]. For example, assum-
ing that the errors are independent and identically distributed
according to a normal distribution with zero mean and a con-
stant variance s2, results in the standard least squares (SLS)
approach for parameter estimation. An advantage of the
formal approach is that error model assumptions are stated
explicitly, and their validity can be verified a posteriori [e.g.,
Stedinger et al., 2008].
[5] The formal approach has been criticized for rely-

ing too strongly on residual error assumptions that do not
hold in many applications [Beven et al., 2008]. In many
cases, residuals errors are correlated, nonstationary, and
non‐Gaussian [Kuczera, 1983]. A common form of non-
stationarity is heteroscedasticity, which in many studies is
observed as an increase in error variance with streamflow dis-
charge [Sorooshian and Dracup, 1980]. Violation of SLS
assumptions may introduce bias in estimated parameter values
and affect parameter and predictive uncertainty [Thyer et al.,
2009]. Alternatively, informal likelihood functions have
been proposed as a pragmatic approach to uncertainty esti-
mation in the presence of complex residual error structures.
A well‐known example is the generalized likelihood uncer-
tainty estimation methodology of Beven and Freer [2001].
Here the likelihood function is specified a priori without
explicitly linking it to an underlying error model. The mod-
eler has flexibility in specifying the form of the likelihood
function, which makes the informal approach attractive in
situations where traditional error assumptions are violated.
For example, Beven et al. [2008] have advocated the use of a
flat likelihood function to avoid overconditioning of the
statistical error model on a single calibration data set. How-
ever, since the informal approach makes no explicit refer-
ence to the underlying error model, its assumptions are
implicit and cannot be checked a posteriori. Further discus-
sion and comparison of formal and informal approaches are
given by Mantovan and Todini [2006], Beven et al. [2008],
Vrugt et al. [2008b], Stedinger et al. [2008], and McMillan
and Clark [2009].
[6] The main goal of this paper is to extend the applica-

bility of the formal approach by deriving and applying a
formal likelihood function based on a general error model
that allows for model bias and for correlation, nonstationarity,
and nonnormality of model residuals. As such, we preserve
advantages of the formal approach (theoretical basis and pos-
sibility of diagnostic checking of error model assumptions),
while gaining flexibility and reducing the need for unreal-
istic assumptions about the residual errors.
[7] We build on previous formal approaches that have been

used to relax some of the SLS error assumptions [Sorooshian
and Dracup, 1980; Kuczera, 1983; Thiemann et al., 2001;
Bates and Campbell, 2001]. In particular, we follow Bates
and Campbell [2001] and account for serial dependence of
residual errors using a general autoregressive (AR) time
series model. The main contribution of our work lies in the

treatment of heteroscedasticity and nonnormality, whereas
previous approaches have used data and model response
transformations, e.g., Box‐Cox transformations [Box and
Tiao, 1992], to induce homoscedasticity (constant variance)
and remove skewness, we instead rely on an explicit sta-
tistical model to account for heteroscedasticity and non-
normality. Error standard deviation is modeled as a linear
function of simulated streamflow, and nonnormality is
accounted for with a parametric error distribution that allows
for separate control of kurtosis and skewness in the model
residuals. As discussed below, our approach is both more
flexible and more intuitive compared to the transformation
method. Focus is on correct simulation and representation
of total residual errors, i.e., measurement, model input, and
model structural errors are treated in a lumped manner, as
opposed to recent attempts at separating the various error
sources in hydrologic modeling [Kavetski et al., 2006a;
Kuczera et al., 2006; Gotzinger and Bardossy, 2008; Vrugt
et al., 2008b; Reichert and Mieleitner, 2009; Thyer et al.,
2009; Renard et al., 2010]. The lumped approach provides
less insight into the sources of error but yields practical
estimates of parameter and total prediction uncertainty.
[8] The next section presents the statistical modeling

approach, derives a new likelihood function for parameter
inference, and outlines a method for predictive simulation.
The methodology is applied in section 3 to estimate param-
eter and predictive uncertainty of a spatially lumped rainfall‐
runoff model, using synthetic and real data from a humid
and a semiarid basin. Following Thyer et al. [2009], we assess
effects of assumptions in the error model on parameter and
prediction uncertainty. Section 4 discusses and summarizes
our findings.

2. Formal Likelihood Uncertainty Estimation

2.1. Model Formulation

[9] Our analysis is based on an additive nonlinear regres-
sion model of the form,

Y ¼ Eþ e; ð1Þ

where Y is a vector of n streamflow observations; E is a
corresponding vector of expected values; and e is a vector of
zero‐mean random errors or residuals, including measure-
ment, model input, and model structural errors.
[10] Expected values are modeled using a mass balance‐

based hydrologic model h, yielding simulated values Yh as
a function of an observed input X and a vector of model
parameters hh. Since errors in observations Y, model input
X, and model structure may lead to systematic deviations
or bias in hydrologic model predictions, multiplicative bias
factors are introduced,

Et ¼ Yh;t Xjhhð Þ�t; ð2Þ

where mean flow Et , hydrologically simulated flow Yh,t ,
and bias factor mt all vary as a function of time t. The bias
factor may be treated as a stochastic variable, similar to the
rainfall multiplier approach introduced by Kavetski et al.
[2006a, 2006b] to account for model input errors, or the
time‐variable model parameter approach of Kuczera et al.
[2006] to account for model structural errors. A simpler
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approach is attempted here by parameterizing bias factors as
a function of simulated flow Yh,t,

�t ¼ exp �hYh;t
� �

ð3Þ

where mh is a bias parameter to be inferred from the data.
Equation (3) provides a simple way of amplifying the non-
linearity of the expected rainfall‐runoff response. Other
approaches, such as parameterizing mt as a function of
(time‐lagged) precipitation, could also be used.
[11] Residual errors e are characterized by a joint proba-

bility density function (pdf) and a vector of parameters he. A
common approach is to assume that errors are independent
and identically distributed (i.i.d.) according to a Gaussian
density N(0, s2). However, in hydrologic applications,
residual errors usually violate these assumptions, as they
exhibit temporal correlation, nonconstant variance (hetero-
scedasticity) and nonnormality. To deal with these nonideal
situations, we propose the following model for the residual
errors et,

Fp Bð Þet ¼ �tat with at � SEP 0; 1; �; �ð Þ; ð4Þ

where Fp(B) = 1 −
P

p

i¼1

�iB
i is an autoregressive polynomial

with p autoregressive parameters �i, B is the backshift
operator (Biet = et−i), st is standard deviation at time t, and at
is an i.i.d. random error with zero mean and unit standard
deviation, described by a skew exponential power (SEP) den-
sity, to be defined below, with parameters x and b to account
for nonnormality.
[12] The pth order autoregressive model, AR( p), in

equation (4) accounts for dependence and correlation between
errors. The model could be further extended to more gen-
eral autoregressive, moving average (ARMA) models, as was
done by Kuczera [1983]. However, published literature and
experience with simulating residual errors of rainfall‐runoff
models suggests that autoregressive (AR) models typically
suffice. Furthermore, Bates and Campbell [2001] point out
that approximation of ARMA models by higher‐order AR
models avoids problems with multiple local optima in ARMA
models. Hence, for practical purposes we limit our presen-
tation to AR models, but if necessary, the approach could
be easily adapted to include ARMA models.

[13] Heteroscedasticity is explicitly accounted for by
assuming that error standard deviation st increases linearly
with mean flow Et,

�t ¼ �0 þ �1Et; ð5Þ

where s0 and s1 are parameters to be inferred from the data.
Error standard deviations typically increase as a function of
flow, i.e., s1 > 0, for example, due to increasing uncertainty in
the stage‐discharge relationship at higher flows [Sorooshian
and Dracup, 1980; Di Baldassarre and Montanari, 2009]. A
similar heteroscedastic model was used by Thyer et al.
[2009], although in their study, it was used as a streamflow
measurement error model, with the s0 and s1 parameters
estimated using rating curve data and fixed before hydrologic
model calibration. Here equation (5) is used to represent
heteroscedasticity of the total model residuals (including
observation, input, and structural errors), and the s0 and s1
parameters are inferred simultaneously with the hydrologic
model parameters.
[14] Finally, the SEP(0, 1, x, b) density in equation (4)

accounts for nonnormality of model residuals, with pdf
expressed as (see Appendix A for details),

p at j�; �ð Þ ¼
2��

� þ ��1
!� exp �c� a�;t

�

�

�

�

2= 1þ�ð Þ
n o

; ð6Þ

where ax,t = x−sign(mx+sxat) (mx + sxat), and values for mx,
sx, cb, wb are computed as a function of skewness param-
eter x and kurtosis parameter b, as detailed in Appendix A.
Kurtosis parameter b takes on values between −1 and + 1
and determines the peakedness of the pdf, while skewness
parameter x affects asymmetry (x > 0), as illustrated in
Figure 1. The density is symmetric for x = 1 and positively
(negatively) skewed for x > 1 (x < 1). In the case of a sym-
metric density, a uniform distribution results when b = −1, a
Gaussian distribution when b = 0, and a Laplace or double‐
exponential distribution when b = 1. Hence, parameters x
and b allow us to relax the assumption of Gaussian errors.
In particular, values for b > 0 result in more peaked den-
sities with heavier tails compared to a Gaussian pdf, which
is useful for making parameter inference robust against
outliers.

Figure 1. Densities of the skew exponential power (SEP) distribution with zero‐mean and unit standard
deviation for various values of the kurtosis (b) and skewness (x) parameters.
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2.2. Parameter Uncertainty

[15] The model formulated in the previous section contains
a number of parameters h = {hh, he}, including parameters
of the hydrologic model hh and the residual error model he.
Parameter uncertainty after observing data Y can be expressed
by a posterior parameter pdf [Box and Tiao, 1992],

p hjYð Þ / ‘ hjYð Þp hð Þ; ð7Þ

where p(h) is the prior pdf of the parameters, reflecting
knowledge of the parameters before data Y are available,
and ‘(h∣Y) is the likelihood function. In Appendix B, an
expression for the likelihood function is derived based on
the error model defined in equations (4)–(6). The resulting
expression for the log‐likelihood function is,

L h Yjð Þ ¼ n log
2��!�

� þ ��1
�
X

n

t¼1

log �t � c�
X

n

t¼1

a�;t
�

�

�

�

2= 1þ�ð Þ
; ð8Þ

where errors ax,t and values for st, sx, cb, wb are computed
as outlined in the previous section. The log‐likelihood func-
tion in equation (8) relaxes common assumptions about
residual errors and is therefore anticipated to be more appli-
cable in hydrologic studies. This will be investigated in
section 3, where the performance of the generalized log‐
likelihood function (“GL”) in equation (8) will be compared
to the common standard least squares (“SLS”) approach. As
discussed in Appendix B, equation (8) is a conditional log‐
likelihood function, valid for moderate to large sample sizes
n typically available in rainfall‐runoff applications. For exam-
ple, Sorooshian and Dracup [1980] compared exact and con-
ditional likelihood functions for the special case of an AR(1)
error model with Gaussian innovations and found them to be
in close agreement.
[16] Table 1 summarizes several previously used formal

likelihood functions in rainfall‐runoff modeling applications
and shows how the log‐likelihood function in equation (8)
can be reduced to these by making specific assumptions
about the residual errors. For example, for Gaussian errors
(x = 1, b = 0) that are homoscedastic (s1 = 0) and inde-
pendent (�i = 0), equation (8) reduces to the SLS approach.
Other previously used likelihood functions are also listed.
Sorooshian and Dracup [1980] introduced a multivariate
Gaussian error model and derived likelihood functions for
cases of either heteroscedastic, i.e., nonconstant variance,

or first‐order, auto‐correlated errors. Their approach was
generalized by Kuczera [1983], who considered a general
ARMA model for the errors, in combination with a Box‐
Cox transformation of observed and simulated streamflow
to account for heteroscedastic and skewed errors. A similar
approach was adopted by Bates and Campbell [2001] but
using AR rather than ARMA models to account for corre-
lation. Finally, Thiemann et al. [2001] neglected error cor-
relation but proposed the exponential power distribution
[Box and Tiao, 1992] to model kurtosis, while using a log‐
transformation to account for heteroscedasticity and skew-
ness. It should be clear from Table 1 that the log‐likelihood
function in equation (8) generalizes previous approaches and
introduces additional flexibility to simultaneously account
for correlated, heteroscedastic, and non‐Gaussian residuals.
[17] With the specification of a prior parameter pdf,

equation (8) can be used to calculate posterior parameter
uncertainty using equation (7), e.g., by repeated Monte Carlo
sampling of parameter sets from the prior parameter space.
This is efficiently done using Monte Carlo Markov chain
(MCMC) simulation [Bates and Campbell, 2001; Vrugt et al.,
2003; Engeland et al., 2005; Vrugt et al., 2006; Kuczera and
Parent, 1998; Smith and Marshall, 2008]. The MCMC algo-
rithm used in this paper is called DREAM‐ZS (DiffeRential
Evolution Adaptive Metropolis algorithm) and was developed
by Vrugt et al. [2009]. DREAM‐ZS is based on the original
DREAM algorithm [Vrugt et al., 2009] but uses sampling
from an archive of past states to generate candidate points in
each individual chain. Sampling from the past circumvents
the need for a large number of parallel chains, designed to
accelerate convergence for high‐dimensional problems.
Experience with DREAM‐ZS suggests that only three
parallel chains are needed to appropriately explore the
posterior pdf, reducing time required for burn‐in. Moreover,
DREAM‐ZS does not require outlier detection and removal,
maintaining detailed balance at every single step in each of
the parallel chains. Finally, DREAM‐ZS contains a snooker
update to generate jumps beyond parallel direction updates
[ter Braak and Vrugt, 2008] and increase diversity of can-
didate points.

2.3. Predictive Uncertainty

[18] In addition to parameter uncertainty, we are also
interested in predictive uncertainty of the model. Predic-

Table 1. Several Likelihood Functions Used in the Hydrologic Literature, Their Assumptions, and Relation to Equation (8) in This

Papera

Likelihood Reference Correlation Heteroscedasticity Noise Distribution Implementation Using Equation (8)

Standard Least Squares (SLS) Independent Homoscedastic Gaussian �i = 0
s1 = 0
x = 1, b = 0

Sorooshian and Dracup
[1980, equation (26)]

Independent Heteroscedastic Gaussian �i = 0
x = 1, b = 0

Sorooshian and Dracup
[1980, equation (20)]

AR(1) Homoscedastic Gaussian �i = 0 (i > 1)
s1 = 0
x = 1, b = 0

Kuczera [1983] ARMA( p, q) Homoscedastic after Box‐Cox
transformation

Gaussian after Box‐Cox
transformation

b = 0

Bates and Campbell [2001] AR( p) Homoscedastic after Box‐Cox
transformation

Gaussian after Box‐Cox
transformation

b = 0

Thiemann et al. [2001] Independent Homoscedastic after
log‐transformation

Exponential power after
log‐transformation

�i = 0

aBias is never included, i.e., m1 = 0 in equation (3).
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tive percentiles Ya, corresponding to a specified exceed-
ance probability 1 − a, are obtained from the following
relation,

P Y � Y�jXð Þ ¼ P Yh Xjhhð Þmþ e heð Þ½ �1...J � Y�

�

�X
� �

¼ �; ð9Þ

where J parameter sets h = {hh, he} are randomly sampled
from the posterior parameter pdf obtained with the MCMC
algorithm and are used to generate J time series for model
output Yh and errors e. These J time series correspond to
J model predictions at each time step, from which we can
compute prediction percentiles Ya for each time step (e.g.,
taking a = 0.975 and a = 0.025 yields time series of the
97.5% and 2.5% prediction percentiles, which together con-
stitute the 95% prediction uncertainty bands). For e = 0,
we obtain prediction percentiles Ya due to uncertainty in
the hydrologic model parameter values. Estimation of total
predictive uncertainty requires computing errors e, which
involves generating independent samples from a SEP distri-
bution. This is done using the following algorithm based on
the studies by Johnson [1979] and Würtz and Chalabi [2009]:
[19] 1. Generate a sample gt from the g distribution with

shape parameter (1 + b)/2 and scale parameter 1.
[20] 2. Generate a random sign st (+1 or −1) with equal

probability.
[21] 3. Compute EPt = st∣gt∣

(1+b)/2 G
1=2 1þ �ð Þ=2½ �

G
1=2 3 1þ �ð Þ=2½ �

,

which is a sample from the exponential power distribution,
EP(0, 1, b).
[22] 4. Generate a random sign wt (+1 or −1) with prob-

abilities 1 −
�

� þ ��1
and

�

� þ ��1
.

[23] 5. Compute SEPt = −wt∣EPt∣x
wt, which is a sample from

the skew exponential power distribution, SEP(mx, sx, x, b),
with mx and sx given by (A5) and (A6).
[24] 6. Normalize: at = (SEPt − mx)/sx
[25] The algorithm is repeated n times (t = 1…n) to obtain

n independent samples at from the skew exponential power
density SEP(0, 1, x, b). Corresponding heteroscedastic
and correlated errors et are obtained using equation (4). A
MATLAB function that implements this simulation algo-
rithm, as well as the generalized log‐likelihood function

of equation (8), is available upon request from the first
author.

3. Application to Rainfall‐Runoff Modeling

[26] We use daily data of mean areal precipitation, mean
areal potential evaporation, and streamflow from two US
basins, namely, the French Broad River basin at Asheville,
NC, and the Guadalupe River basin at Spring Branch,
TX. These are, respectively, the wettest and driest of the
12 MOPEX basins described in the study by Duan et al.
[2006]. Daily records of precipitation and potential evapo-
ration are input into a lumped conceptual rainfall‐runoff
model [Schoups et al., 2010] based on the FLEX modeling
system [Fenicia et al., 2007] to simulate daily streamflow.
The model considers interception, throughfall, evaporation,
runoff generation, percolation, and surface and subsurface
routing of water to the basin outlet. Runoff generation is
assumed to be dominated by saturated overland flow and is
simulated as a function of basin water storage without an
explicit dependence on rainfall intensity. This assumption is
typically valid for temperate climates but may be violated in
the semiarid Guadalupe River basin. Snow accumulation
and snowmelt are also not accounted for, although these
processes occur in the French Broad River basin. The
severity of these model structural errors will be evaluated in
the case studies below. Model structure and hydrologic
process parameterizations are shown in Figure 2. Note that
our approach is similar to commonly used conceptual rain-
fall‐runoff model structures: The nonlinear soil‐moisture
accounting store combined with parallel reservoirs for slow
and fast hydrologic response was advocated by Jakeman
and Hornberger [1993] and has been used in many other
studies as well. The model includes a total of seven
hydrologic parameters that need to be estimated, as sum-
marized in Table 2. We assume the residuals to be described
by a first‐order auto‐regressive error model, equation (4),
with correlation coefficient �1. This AR(1) model will be
extended to higher‐order AR models if dictated by the data.
[27] Table 2 summarizes all hydrologic and error model

parameters and their prior uncertainty ranges. We assume
uniform priors for all parameters, which is deemed accept-
able here due to the large number of data points used (n =

Figure 2. Model structure and hydrologic process param-
eterizations. Boxes represent water balance units with indi-
cated water fluxes simulated as follows: evaporation EI =
min(Ep, SI,0), effective precipitation Pe = P − (Imax − SI,0),
evaporation Ea = (Ep − EI) f (Sr∣aE), runoff Qrunoff = Pe f
(Sr∣aF), percolation Qperc = Qsmax f (Sr∣aS), fast streamflow
QF = KFSF, and base flow QS = KSSS. The functional rela-
tion between fluxes from and storage in the unsaturated res-
ervoir is parameterized as f (Sr∣a) =

1�e��Sr

1�e�� , where a is a
process‐specific parameter. All parameters are listed and
explained in Table 2.

Table 2. Prior Uncertainty Ranges of Hydrologic and Error Model

Parametersa

Parameter Symbol Minimum Maximum Units

Maximum interception Imax 0 10 mm
Soil water storage capacity Smax 10 1000 mm
Maximum percolation rate Qsmax 0 100 mm/d
Evaporation parameter aE 0 100 ‐

Runoff parameter aF −10 10 ‐

Time constant, fast reservoir KF 0 10 days
Time constant, slow reservoir KS 0 150 days

Heteroscedasticity intercept s0 0 1 mm/d
Heteroscedasticity slope s1 0 1 ‐

Autocorrelation coefficient �1 0 1 ‐

Kurtosis parameter b −1 1 ‐

Skewness parameter x 0.1 10 ‐

Bias parameter mh 0 100 (mm/d)−1

aPercolation parameter aS is set to zero (i.e., percolation is assumed to be
a linear function of soil storage, see Figure 2).
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1825). With smaller sample size, more attention should be
paid to selection of priors and their effect on the posterior. In
addition to the hydrologic parameters, a maximum of five
error model parameters need to be estimated from measured
discharge data. However, as will be discussed in the case
studies below, the number of error model parameters varies
depending on each case as dictated by the data. Discussion
of the results in the following sections will focus on param-
eter and predictive uncertainty estimated using the general-
ized formal likelihood function derived in equation (8).
Hereafter, these results are referred to as “GL” (generalized
likelihood). To benchmark our results, we will include com-
parison against a traditional standard least squares approach
(“SLS”) assuming independent, homoscedastic, Gaussian
error residuals.

3.1. Synthetic Data: Verification of Estimation
and Simulation Algorithm

[28] Before presenting our findings using measured
streamflow data, the methodology is first tested using arti-
ficial discharge data. Time series of daily streamflow data
were generated with the seven‐parameter hydrologic model
using observed daily precipitation and potential evapora-
tion from the French Broad River basin. This synthetic
discharge record was subsequently corrupted with artificial
errors mathematically defined in equation (4) using the algo-
rithm described in section 2.3. Hydrologic and error model
parameters were inferred from the corrupted, synthetic stream-
flow data using the log‐likelihood of equation (8) and the
MCMC algorithm in section 2.2.

[29] Table 3 presents results for different cases, including
heteroscedastic, correlated, and non‐Gaussian errors. Our
method is able to infer the underlying error structure and
hydrologic model parameter values for all cases presented,
with deviations between true and maximum‐likelihood param-
eter values that are small compared to the 95% parameter
uncertainty intervals obtained in each case. From the results
in Table 3, it is therefore concluded that the MCMC algo-
rithm is able to simultaneously infer the correct hydrologic
and error model parameters. These results confirm that both
the inference method in section 2.2, based on the error model
of equation (4) and corresponding log‐likelihood function
of equation (8), and the simulation method in section 2.3,
are correctly implemented. In the following sections we inves-
tigate whether the error model defined in equation (4) provides
an accurate representation of residual errors encountered in
rainfall‐runoff applications.

3.2. First Case Study: French Broad Basin

3.2.1. Evaluation of Error Models
[30] Five years of observed daily forcing (precipitation,

potential evaporation) and observed daily streamflow were
used to identify hydrologic and error model parameters.
Figure 3 shows results for the fitted model using SLS with
seven hydrologic parameters and one error parameter (con-
stant error variance). Note that the model mimics the data
quite well, reproducing most minor and major flow events.
Nevertheless, closer inspection of the model residuals in
Figure 3 reveals that the SLS assumptions do not hold:
(1) the error variance increases as a function of simulated
flow, suggesting heteroscedasticity; (2) the error histogram is

Figure 3. SLS calibration for the French Broad River basin: (a) time series of maximum‐likelihood
streamflow predictions (solid line) and observations (dots), (b) residuals at as a function of simulated
flow, (c) assumed (solid line) and actual (crosses) pdf of residuals at, and (d) partial autocorrelation coef-
ficients of residuals at with 95% significance levels.
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more peaked than the assumed Gaussian pdf, and (3) errors
are significantly correlated at a lag of one, violating the
independence assumption of SLS. Such violations have
been reported in other rainfall‐runoff studies as well [e.g.,
Kuczera, 1983; Feyen et al., 2007; Thyer et al., 2009].
These errors may be due to a combination of measurement,
model input, and model structural errors. For example,
neglecting snow accumulation and melt processes may be
one reason for correlation in residual errors, especially
during winter and spring, but eventually throughout the year
as parameter values partially compensate for structural
errors during calibration.
[31] To account for deviations from SLS assumptions, a

second calibration was performed in which heteroscedasticity,
nonnormality, and error correlations were explicitly accounted
for using the generalized likelihood function (“GL”) of
equation (8). The hydrologic parameters are now augmented
with two variance parameters (s1 and s0), one shape param-
eter (b), and a first‐order autocorrelation coefficient (�1).

This results in a model that again fits the data quite well,
albeit with a mean‐square‐error (MSE) that is twice as large
as under SLS (Figure 4). One explanation is that GL puts
less emphasis on fitting peak flows because of hetero-
scedastic errors. Moreover, since SLS minimizes the MSE,
it will always yield smaller MSE values than other methods.
Comparing models based on MSE assumes that errors sat-
isfy SLS assumptions. As is clear from Figure 3, these
assumptions do not hold here. A better way of evaluating the
appropriateness of the GL error model relative to the SLS
error model is to compare their respective maximum log‐
likelihood values (or posterior densities). For the 5 year
calibration data set, we find that the GL error model has a
much larger log‐likelihood than the SLS error model, i.e.,
540 versus −1690. This is perhaps not that surprising as the
GL error model contains three additional parameters for data
fitting. However, corresponding maximum log‐likelihood
values during an independent 20 year evaluation period
(1970 for GL versus −6140 for SLS), as well as values

Figure 5. Posterior histograms of error model parameters using GL on the French Broad River basin.

Figure 4. GL calibration for the French Broad River basin: (a) time series of maximum‐likelihood
streamflow predictions (solid line) and observations (dots), (b) residuals at as a function of simulated
flow, (c) assumed (solid line) and actual (crosses) pdf of residuals at, and (d) partial autocorrelation coef-
ficients of residuals at with 95% significance levels.
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for the Bayesian Information Criterion (to be minimized)
[Marshall et al., 2005] (−997 for GL versus 3440 for SLS)
both confirm superiority of the GL error model.
[32] In addition, parameter inference using GL is consis-

tent with the a priori assumptions, as shown by the diag-
nostic plots in Figure 4. Heteroscedasticity and correlation
between errors have been removed, and the inferred error
distribution closely matches the empirical distribution of the
model residuals. The corresponding posterior histograms of
the error parameters are shown in Figure 5, indicating that
all four parameters are well identified. Note that kurtosis
parameter b approaches a value of 1, which means that the
errors follow a Laplace or double‐exponential distribution.
As shown in Figure 4, the Laplace distribution is more
peaked than the Gaussian distribution, and also has heavier
tails, which makes it robust against outliers. Our results
show strong evidence for heavy‐tailed errors.
3.2.2. Parameter Uncertainty
[33] So far, the results indicate that residual errors are

better represented by an error model that explicitly accounts
for heteroscedasticity, correlation, and nonnormality, com-
pared to the simplifying assumptions inherent in SLS. The
next question we wish to address is what effect violation of
SLS assumptions has on estimates of hydrologic parameter
and predictive uncertainty.
[34] Figure 6 presents posterior parameter histograms for

all seven hydrologic parameters based on SLS and GL
inference strategies. Two important findings can be deduced
from these plots. First, parameter inference based on invalid
error assumptions (SLS) yields parameter estimates that
deviate significantly from those obtained with a more appro-
priate error model (GL). This is most notably the case for
parameter Smax, the soil water storage capacity, which is a
key parameter in the model for separating effective rainfall

into runoff, evaporation, and percolation. Parameter esti-
mates under SLS may even lead to nonphysical values, as is
the case for parameter Imax, which represents vegetation
interception capacity. Using SLS, this parameter sits at its
upper bound of 10 mm, whereas under GL more realistic
values around 2 mm are obtained [Breuer et al., 2003].
[35] The second finding in Figure 6 is that parameter

uncertainty, as measured by the width or spread of the pos-
terior parameter histograms, is underestimated by SLS
compared to GL. This is, for example, clearly the case for
parameters Qsmax and aF. Greater uncertainty under GL
results from a combination of factors (1) accounting for
error correlation reduces the information content of the
data, (2) the heteroscedastic error model assigns greater
uncertainty to peak flows, and (3) the inferred Laplace
distribution has heavier tails than the Gaussian distribution.
Underestimation of parameter uncertainty using SLS was
also found by Thyer et al. [2009].
[36] Further evaluation and comparison of parameter

estimates by SLS and GL was done by using 5 year cali-
bration periods with different starting points. Each calibra-
tion period was shifted by 1 year, such that subsequent
periods have 4 years of data in common. Ten different cali-
bration periods were considered, and for each data set,
parameters were inferred using both SLS and GL. Experi-
ence suggests that 5 years of daily streamflow data contains
enough information about the parameters of conceptual
rainfall‐runoff models, and therefore, no significant varia-
tions in parameter estimates between calibration data sets
are anticipated. Resulting estimates of parameter uncertainty
for each of the seven hydrologic parameters are shown in
Figure 7. Parameter robustness was quantified by comput-
ing the variance of the posterior parameter means, divided
by total variance of the MCMC posterior samples over all

Figure 6. Posterior histograms of hydrologic model parameters using SLS (black) and GL (gray) on the
French Broad River basin.
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calibration periods. For each parameter, this ratio was smaller
for GL (range, 0.04–0.84) than for SLS (range, 0.22–0.99).
Together with Figure 7, these results indicate that GL param-
eter estimates are consistent between calibration data sets,
whereas SLS parameter estimates are more sensitive to var-
iations in the calibration data. The latter confirms results
reported by Thyer et al. [2009]. Robustness of the GL infer-
ence results can be attributed to three factors: (1) by
accounting for heteroscedasticity less weight is given to high
flows, making the inference less sensitive to large flow
events in different calibration data sets; (2) long tails of
the Laplace distribution allow for a larger number of large
errors, which again induces robustness against outliers and
random variations in large flow events; (3) accounting for
autocorrelation in the residual errors filters out measure-
ment, model input, and model structural errors, resulting in
less biased and more consistent parameter estimates [Vrugt
et al., 2005].
3.2.3. Predictive Uncertainty
[37] In addition to parameter uncertainty, it is expected

that assumptions about the residual errors have direct

consequences for estimates of prediction uncertainty.
Figure 8 shows time series and quantile‐quantile (QQ) plots
for flow predictions using SLS assumptions. It is obvious
from these results that SLS yields inadequate streamflow
predictions. The problem with ignoring heteroscedasticity
is clearly visible in the time series plots: use of a constant
(average) error variance results in an overestimation of pre-
diction uncertainty for low flows and an underestimation
for high flows. As the streamflow record is dominated by
low flows, interspersed with high‐flow events, the domi-
nating feature of the calibration and validation QQ plots
is their S‐shaped curvature, indicative of overestimation
of prediction uncertainty [Thyer et al., 2009]. Such over-
estimation may even lead to prediction uncertainty bands
that become negative, as evident in the time series plot of
Figure 8.
[38] By contrast, predictive uncertainty computed without

making simplifying assumptions of SLS results in uncer-
tainty bands that, although not perfect, are more realistic
(Figure 9). Now, prediction bands at low flows are narrower
and more closely bracket observed flows. In addition, larger
uncertainty for high flows is accounted for through the use
of an error variance that increases as a function of simulated
streamflow. The QQ plots in Figure 9 confirm that predic-
tions under GL better represent observed flows, as QQ plots
approach the 1:1 line, especially for the validation data set,
whereas some systematic over‐prediction is apparent for the
calibration data set.

3.3. Second Case Study: Guadalupe River Basin

[39] In the second case study, we study a much drier
basin. Streamflow is characterized by extended periods of
near‐zero flows, alternated with strongly nonlinear peak
flows following rainfall events. It is expected that the simple
rainfall‐runoff model used here may not account for all
relevant processes in this basin, such as infiltration‐excess
runoff generation and flash‐flooding [Clark et al., 2008].
Therefore, residual errors are anticipated to be more com-
plex than in the first case study, thereby representing a
greater challenge to a formal uncertainty analysis. We fol-
low a similar approach as in the first case study, in that we
gradually increase complexity of the error model, starting
from the simplest model, namely SLS, until satisfactory
results are obtained by posterior checks and analysis of
predictive uncertainty bands.
[40] Model predictions and corresponding diagnostic plots

using SLS are shown in Figure 10. As before, SLS assump-
tions of constant variance and normally distributed residuals
are clearly violated. In addition, residuals are slightly cor-
related at small lags but less so than in the first case study.
Results in Figure 10 show that the SLS error model yields
unrealistic prediction uncertainty bands. The situation is
especially problematic in this case with near‐zero flows,
where SLS results in negative lower prediction bounds for
most of the flow record.
[41] Next, the analysis was repeated with additional error

parameters for heteroscedasticity, autocorrelation, and non-
normality (kurtosis), following the same approach as in the
first case study. Results (not shown) revealed that, although
error assumptions are fulfilled, prediction uncertainty bands
are large and meaningless. This is caused by the large
inferred value for the autocorrelation coefficient, which is

Figure 7. Maximum‐likelihood parameter values (black)
and 95% uncertainty bands (gray) using SLS and GL on
the French Broad River basin.
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close to 1 in this case. A value for �1 near 1 amounts to a
random walk, resulting in large random errors. A possible
explanation for this result is that the residual errors are too
severe to be accounted for by a simple AR(1) model. There-
fore, higher‐order AR models were also considered, specifi-
cally AR(2) and AR(4). However, this resulted in similarly
unrealistic error bounds as the ones for an AR(1) model.
[42] As an alternative to accounting for error correlations,

improvements in prediction of expected streamflow values
were sought by introducing time‐variable model bias factors
mt, as in equation (2), to compensate for large residual
errors. Therefore, bias parameter mh in equation (3) was
inferred together with the hydrologic model parameters and
error model parameters for heteroscedasticity (s0, s1) and
kurtosis (b). Magnitude of the bias factors in equation (2)
was limited to a value of 10. While improving the results,
prediction uncertainty bands and diagnostic plots in this case
(not shown) indicated the need for two additional correc-
tions. First, significant correlation remained between resid-
ual errors at lag 1, suggesting the need to include an AR
model. Second, lower‐prediction uncertainty bands became

negative, because of the general low flows in this basin,
combined with the use of a symmetric distribution for the
residual errors. Therefore, a final run included the following
error model parameters: bias parameter mh, parameters for
heteroscedasticity (s0, s1), kurtosis (b), and skew (x), and a
first‐order autocorrelation coefficient �1. To avoid problems
described above, the correlation coefficient was not auto-
matically inferred but was instead fixed to a value of 0.4,
based on inspection of diagnostic plots.
[43] Figure 11 shows resulting diagnostic plots and flow

predictions using the GL approach. Compared to the SLS
results in Figure 10, prediction uncertainty bands are much
improved, providing a better description of observed values
and remaining positive throughout the flow record. In addi-
tion, the inferred error distribution more closely matches the
assumed distribution. The inferred value for skewness
parameter x in this case is about 1.3 (Figure 12), indicating a
positively skewed error distribution, as can also be noted in
Figure 11c. Diagnostic plots in Figure 11 further indicate
that the GL error model removed residual heteroscedasticity
and first‐order correlation, with some minor correlation

Figure 8. Predictive uncertainty using SLS on the French Broad River basin: (a) time series of observa-
tions (dots) and 95% total prediction uncertainty bands (solid lines); (b and c) QQ plots for calibration and
validation periods.
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remaining at greater lags. Figure 12 summarizes posterior
histograms for all hydrologic model and error model para-
meters using the GL approach. Most parameters are fairly
well identified, except for two parameters (Smax and KS) that
reach their upper bound, indicating that even larger values
for these parameters are preferred. A physical interpretation
could be that these large inferred values for Smax and KS are
indicative of relatively dry and deep vadose zones in
semiarid basins, resulting in large storage effects and slow
response times for subsurface flow. Finally, Table 4 shows
somewhat elevated posterior correlations around 0.9 between
parameters Qsmax and both aE and aF, suggesting that one of
these could be fixed in this semiarid basin.

4. Discussion and Conclusions

[44] Results for both case studies confirm previous work
[e.g., Kuczera, 1983; Vrugt et al., 2008a; Thyer et al., 2009]
that accurate estimation of parameter and prediction uncer-
tainty depends on an adequate statistical representation of
the residual errors. In both case studies, traditional SLS
assumptions of residual independence, homoscedasticity,

and normality were clearly violated. Our approach relaxes
these assumptions and relies on a statistical residual error
model, with corresponding likelihood function, which explic-
itly accounts for correlation, heteroscedasticity, and non-
normality of model residual errors.
[45] Application of the approach to rainfall‐runoff mod-

eling in the wet basin (French Broad River) resulted in
encouraging results. The error model appears to be sufficiently
flexible to describe the errors in this case. A first‐order auto-
regressive model, combined with a linear heteroscedasticity
model and a Laplace distribution for the residual errors,
worked quite well, as revealed by posterior error diagnostic
plots. In addition, this error model, and corresponding like-
lihood function, generated parameter estimates that are robust
to the specific data record used for inference, and yielded
improved estimates of predictive uncertainty compared to
SLS. Nonrobustness of SLS was also exposed by the work
of Thyer et al. [2009]. Parameter robustness using GL is
attributed to the use of a more accurate residual error model.
[46] For the semiarid basin, residual errors are more com-

plex and multiplicative bias factors were introduced to
compensate for some of the larger residual errors. These

Figure 9. Predictive uncertainty using GL on the French Broad River basin: (a) time series of observa-
tions (dots), and 95% total prediction uncertainty bands (solid lines); (b and c) QQ plots for calibration
and validation periods.
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errors are caused by a combination of measurement errors,
rainfall volume/timing errors, and model structural errors.
For example, it could be hypothesized that runoff in this
basin is dominated by the infiltration‐excess mechanism
(Hortonian overland flow). This would imply that the runoff

coefficient not only depends on soil wetness, as accounted
for in our hydrologic model, but also on rainfall intensity.
As rainfall intensities are expected to vary quite significantly
throughout a single day, daily average rainfall rates used in
this study cannot capture these dynamics. Hence, a switch to

Figure 10. Predictive uncertainty and diagnostic plots using SLS on the Guadalupe river basin: (a) time
series of observations (dots) and 95% total prediction uncertainty bands (solid lines), (b) residuals at as a
function of simulated flow, (c) assumed (solid line) and actual (crosses) pdf of residuals at, and (d) partial
autocorrelation coefficients of residuals at with 95% significance levels.

Figure 11. Predictive uncertainty and diagnostic plots using GL on the Guadalupe river basin: (a) time
series of observations (dots) and 95% total prediction uncertainty bands (solid lines), (b) residuals at as a
function of simulated flow, (c) assumed (solid line) and actual (crosses) pdf of residuals at, and (d) partial
autocorrelation coefficients of residuals at with 95% significance levels.
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hourly rainfall data and addition of a Hortonian overland
flow mechanism to the model may be required to adequately
simulate streamflow dynamics in the semiarid basin. Here
multiplicative bias factors were used to account for some of
these deficiencies. Although not perfect, this approach yields a
simple and parsimonious method (one extra parameter) to
account for model bias. Results for the semiarid basin also
highlight the importance of accounting for skewness. Use
of a skewed distribution yields more realistic prediction
uncertainty bands, in the sense that negative lower predic-
tion bounds, as obtained with a symmetric distribution, are
avoided.
[47] We further note that both basins provided strong

evidence in favor of a Laplace distribution (symmetric or
skewed) for the residuals. The Laplace distribution may
prove to be a good choice in many other cases as well, as
heavy tailed residuals have been reported in several other
studies [e.g., Bates and Campbell, 2001; Schaefli et al.,

2007; Yang et al., 2007]. Inference with an additive Laplacian
error model amounts to median or L1 regression, which
has long been advocated for its robustness against outliers
[Koenker and Bassett, 1978].
[48] The modeling and inference approach presented here

deviates from previous methods that have mostly relied on
Box‐Cox transformations to handle heteroscedastic and
non‐Gaussian residuals in hydrologic modeling (Table 1).
Although we do not provide a rigorous comparison, we can
still point out two advantages of our method. First, Box‐Cox
transformations are useful for removing heteroscedasticity
and skewness; however, they typically do not account for
heavy‐tailed residuals, as shown by the case studies of Bates
and Campbell [2001] and Yang et al. [2007]. Heavy‐tailed
residuals appear to be quite common in hydrologic model-
ing and are accounted for using our approach. Second,
explicit modeling of the statistical error distribution as done
here is more intuitive than the transformation method, in that

Figure 12. Posterior histograms of hydrologic and error model parameters using GL on the Guadalupe
river basin.

Table 4. Posterior Parameter Correlation Coefficient Matrix of the Hydrologic and Error Model Parameters Using GL on the Guadalupe

River Basina

Imax Smax Qsmax aE aF KF KS s0 s1 b x mh

Imax 1.00 −0.05 0.18 −0.10 0.38 0.01 −0.12 0.21 −0.21 −0.05 0.25 −0.27
Smax 1.00 0.57 0.56 0.47 0.11 −0.03 −0.01 0.06 −0.05 0.16 0.16
Qsmax 1.00 0:91 0:87 −0.16 0.09 −0.20 0.08 −0.03 −0.09 −0.57
aE 1.00 0:69 −0.20 0.25 −0.31 0.16 0.01 −0.22 −0.32
aF 1.00 0.11 0.04 −0.16 0.01 −0.09 −0.18 �0:71
KF 1.00 −0.03 0.10 −0.06 0.02 0.03 0.05
KS 1.00 −0.40 0.26 0.16 −0.45 0.05
s0 1.00 �0:79 −0.01 0.57 0.19
s1 1.00 −0.05 −0.38 −0.01
b 1.00 −0.03 0.06
x 1.00 0.33
mh 1.00

aCorrelations greater than 0.6 are underlined.

SCHOUPS AND VRUGT: LIKELIHOOD FUNCTION FOR PARAMETER AND PREDICTIVE INFERENCE W10531W10531

14 of 17



error model parameters have a direct relation to observable
error statistics. This is illustrated by diagnostic plots in
Figure 3 which suggest reasonable values for the error model
parameters. In contrast, Box‐Cox transformation parameter
values cannot be easily deduced from such diagnostic plots.
[49] Our approach also deviates from other studies that

have focused on separating the various error contributions
that make up the model residuals, including measurement,
model input, and model structural errors [e.g., Kuczera
et al., 2006; Reichert and Mieleitner, 2009; Renard et al.,
2010]. Such studies are important for testing hypotheses
about possible causes for deviations between model pre-
dictions and data. However, complete disentangling of the
various error sources, especially separation of rainfall and
model structural errors, can be quite challenging, as pointed
out by a recent study of Renard et al. [2010]. Our approach
is less ambitious and focuses instead on a correct statis-
tical description of the data and the total model residuals,
without separating out various error sources. This results in
a pragmatic method for estimating parameter and prediction
uncertainty of hydrologic models without the need for explicit
assumptions about various error contributions.
[50] In conclusion, the methodology proposed in this paper

provides increased flexibility for describing residual errors in
rainfall‐runoff applications using a formal statistical approach.
This flexibility translates into improved estimates of param-
eter and total prediction uncertainty, compared to traditional
approaches that rely on unrealistic assumptions of indepen-
dent, homoscedastic, and normally distributed model residuals.
Although our application focused on streamflow simula-
tion, the presented methodology is entirely general and may
be useful for dealing with complex error residuals in other
hydrologic regression models as well.

Appendix A

[51] The appendix shows how the standardized Skew
Exponential Power (SEP) pdf in equation (6) can be obtained
from the exponential power (EP) pdf of Box and Tiao
[1992] using the method of Fernandez and Steel [1998].
Our development follows Würtz and Chalabi [2009], who
implemented the SEP as part of the fGarch package in R.
The standardized EP pdf with zero mean and unit standard
deviation can be expressed as,

f aj�ð Þ ¼ !� exp �c� aj j2= 1þ�ð Þ
n o

; ðA1Þ

where b is a kurtosis parameter (−1 < b ≤ 1), and wb and cb
are given by [Box and Tiao, 1992; p. 157],

!� ¼
G
1=2 3 1þ �ð Þ=2½ �

1þ �ð ÞG3=2 1þ �ð Þ=2½ �
; ðA2Þ

c� ¼
G 3 1þ �ð Þ=2½ �

G 1þ �ð Þ=2½ �

� �1= 1þ�ð Þ

; ðA3Þ

where G[x] is the g function evaluated at x. Fernandez and
Steel [1998] developed a general method for introducing
skew in a symmetric density,

p "j�ð Þ ¼
2

� þ ��1
f ��sign "ð Þ"
� �

; ðA4Þ

where x is a skewness parameter (x > 0) and f denotes a
symmetric density, in our case, the standardized EP pdf
in (A1). Mean and standard deviation of " can be derived
from equation (5) in Fernandez and Steel [1998],

�� ¼ M1 � � ��1
� �

ðA5Þ

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 �M2
1

� �

�2 þ ��2ð Þ þ 2M 2
1 �M2

q

; ðA6Þ

where Mr is the rth absolute moment of the symmetric
density f,

Mr ¼ 2

Z

1

0

srf sð Þd s: ðA7Þ

[52] For the standardized EP pdf in (A1), one obtains the
following expressions for M1 and M2,

M1 ¼
G 1þ �½ �

G
1=2 3 1þ �ð Þ=2½ �G1=2 1þ �ð Þ=2½ �

ðA8Þ

M2 ¼ 1; ðA9Þ

which allows us to compute mean mx and standard devia-
tion sx in (A5) and (A6). To obtain a standardized SEP
density, with zero mean and unit standard deviation, the
pdf in (A4) is scaled by standard deviation sx and " is
replaced by mx + sxa,

p aj�ð Þ ¼
2��

� þ ��1
f ��sign ��þ��að Þ �� þ ��a

� �

� �

: ðA10Þ

Substitution of (A1) into (A10) yields the standardized SEP
density of equation (6).

Appendix B

[53] We derive the likelihood function in equation (8)
from the assumed error model in equations (4)–(6). Likeli-
hood ‘(h∣Y) of the hydrologic and error model parameters h
is defined as the joint pdf of the observations Y for given
parameters h,

‘ hjYð Þ � p Yjhð Þ ¼ p ejhð Þ; ðB1Þ

where Y = (Y1…Yn)′ and e = (e1…en)′. Splitting e into two
subsets, e1:p = (e1…ep)′ and ep+1:n = (ep+1…en)′, the joint pdf
can be written as the product of marginal and conditional
densities,

p ejhð Þ ¼ p e1:p

�

�h
� �

p epþ1:n

�

�e1:p;h
� �

: ðB2Þ

[54] The conditional pdf in (B2) can be recursively
expanded to yield,

p ejhð Þ ¼ p e1:p

�

�h
� �

Y

n

t¼pþ1

p etje1:t�1;hð Þ; ðB3Þ

which, using the error model in equation (4), results in the
following expression,

p ejhð Þ ¼ p e1:p

�

�h
� �

Y

n

t¼pþ1

��1
t p atjhð Þ ðB4Þ

with density p(at∣h) given by equation (6).
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[55] For Gaussian innovations at, the marginal pdf p(e1:p∣h)
is also Gaussian, resulting in closed‐form expressions for
the exact likelihood function (see Newbold [1974] for ARMA
models, and equation (17) in the study by Sorooshian and
Dracup [1980] for AR(1) models with Gaussian innova-
tions). However, with non‐Gaussian innovations, the mar-
ginal pdf is typically quite complicated (see, e.g., Damsleth
and El‐Shaarawi [1989] for ARMA models with Laplace
innovations). A common approach, valid for moderate to
large sample sizes n typically encountered in rainfall‐runoff
modeling, approximates the marginal pdf p(e1:p∣h) by
conditioning on unobserved residuals et (t < 1): p(e1:p∣h) ’

p(e1:p∣e1−p:0, h) =
Q

p

t¼1

st
−1p(at∣h). Inserting this approxima-

tion into (B4) yields a conditional likelihood function,

‘ hjYð Þ ’
Y

n

t¼1

��1
t p at jhð Þ; ðB5Þ

which, with equation (6), can be written as,

‘ hjYð Þ ’
Y

n

t¼1

��1
t

2��

� þ ��1
!� exp �c� a�;t

�

�

�

�

2= 1þ�ð Þ
n o

ðB6Þ

[56] Taking the log‐transform of this expression yields the
(conditional) log‐likelihood function in equation (8). In (B6)
and equation (8), unobserved residuals et (t < 1) are assumed
to be equal to zero.
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