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Abstract

This paper presents and illustrates a formal logic for the abduction of singular hypotheses. The logic
has a semantics and a dynamic proof theory that is sound and complete with respect to the semantics.
The logic presupposes that, with respect to a specific application, the set of explananda and the set
of possible explanantia are disjoint (but not necessarily exhaustive). Where an explanandum can be
explained by different explanantia, the logic allows only for the abduction of their disjunction.
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1 Introduction

Many logicians display disinterest or even suspicion with respect to abduction. The
reason is twofold. The first is that abductive steps are of the form

B(β), (∀α)(A(α) ⊃ B(α)) / A(β), (1.1)

a fallacy known as Affirming the Consequent (combined with Universal Instantiation).
The second is that many examples of purportedly sound abductions seem to rely on a
hidden non-formal reasoning: the only sensible formal rule behind them seems to lead
inevitably to a set of unsound and even inconsistent conclusions. For instance, from
the explananda Qa and Ra and the generalizations (∀x)(Px ⊃ Qx) and (∀x)(¬Px ⊃
Rx), (1.1) enables one to generate both Pa and ¬Pa.1

In this paper, we shall present a logic for the abduction of singular hypotheses,
LAr. We were only able to forge this logic by introducing a restriction, and not a
very original one. Where W is the set of closed formulas of the standard predicative
language, we introduce two sets of truth functions of closed primitive formulas,2 We

and Wa, requiring that no primitive formula occurs in a member of We as well as
in a member of Wa. The sets may but need not be combinatorially closed, in other
words, they need not contain all subformulas of their members or all truth-functions
of these subformulas.

1Outside the domain of formal logic, logic-based approaches to abduction are quite popular at the moment.

In the domain of Artificial Intelligence, for instance, they recently led to an impressive number of systems for a

wide variety of application contexts (such as diagnostic reasoning, text understanding, case-based reasoning, and

planning)—see [19] for an overview. But also in the domain of cognitive science and philosophy of science they

proved very fruitful. Examples are Hintikka’s analysis of abduction in terms of the interrogative model of inquiry

(see especially [15]), Aliseda’s approach to abduction in terms of semantic tableaux (see [1]), Magnani’s integration

of results on diagnostic reasoning and scientific reasoning (see [16] and [17]), and Thagard’s reconstruction of several

important discoveries in the history of science and in the history of medicine (see, for instance, [20] and [21]). A

reconstruction of these logic-based approaches in terms of ampliative adaptive logics is presented in [18].
2Primitive formulas are those that contain no logical symbols, except possibly for identity.

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–17 0000 c© Oxford University Press
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Intuitively, We is the set of explananda, formulas that are considered as requiring
an explanation, whereas Wa is the set of explanantia, formulas that, if they can be
abduced, form potential explanations for the explananda. The requirement that no
primitive formula occurs in members of both sets can be easily justified with respect
to applications. If one tries to abduce an explanation, one has in mind a phenomenon
for which an explanation is sought, and the explanation should be logically indepen-
dent of the explained phenomenon—everyone rejects (even partial) self-explanations.
Similarly, one often looks for an explanation of a set of phenomena, for example the
symptoms displayed by a patient. Here too the sought explanations will be in terms of
diseases, or in terms of the past history of the patient, but not in terms of symptoms.

The sets We and Wa are seen as application dependent. After abducing Ra ∧ Sa
in order to explain Pa ∨ Qa, nothing prevents one from seeking an explanation for
Ra. So where Ra ∧ Sa belonged to Wa for the first application, Ra belongs to We

for the second application. Remark that we do not have to require that abducted
knowledge has a lower degree of certainty than the original premises. The premises
may be closed under LAr with respect to a couple 〈We,Wa〉, and the resulting set
may be closed under LAr with respect to another such couple.

Some will claim that the reference to We and Wa turns LAr into a non-formal
logic, for example because uniformity (as standardly defined) fails. We consider such
objections as mainly verbal. Consider the expression

〈Γ,We,Wa〉 `LAr A .

If this expression is true, then so is the expression obtained by systematically replacing
in the expression one schematic letter by a letter of the same sort (a sentential letter,
a predicate of a certain rank, an individual constant or an individual variable) that
does not occur in the original expression. The operation may be repeated on the
result, etc. Put differently, if an expression as the above one is true, then so is every
expression that shares all logical forms with it. This is as good a criterion for formality
as any other.

Incidentally, for many application contexts, Wa may be taken to be a function of
We, viz. the set of all formulas that do not contain any primitive formula that occurs
inWe. As the reader will see, the premise set may then be written as 〈Γ,We〉, and the
requirement that the abduced conclusions belong to the so defined Wa may be pushed
into the logic itself (because it now became a purely formal matter). And 〈Γ,We〉 may
be interpreted as a set of declarative premises, Γ, together with a set of explanation
questions, viz. why questions about the members of We that are CL-derivable from
Γ.

As one would expect, LAr has some non-standard properties (it is non-monotonic,
for instance). We shall also show that it adequately captures the main characteristics
of abductive reasoning processes.

One such characteristic is that abductive steps are combined with deductive steps.
Partly because of this combination, abductive reasoning processes are dynamical. For
instance, a conclusion reached on the basis of an abductive step may be withdrawn
when its negation is derived by deductive means.

An important property of LAr is that it not only nicely integrates deductive and
abductive steps, but that it moreover has a decent proof theory. This proof theory is
dynamical, but warrants that the conclusions derived at a given stage are justified in
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view of the insight in the premises at that stage. Another advantage of the presented
logic is that, as compared to other existing systems for abductive reasoning, it is very
close to natural reasoning.

The logic presented in this paper will be based on Classical Logic—henceforth CL.
So, all references to causality, laws of nature, and similar non-extensional concepts
will be out of the picture. We do not doubt that more interesting results may be
obtained from intensional logics. However, we want to keep the discussion as simple
and transparant as possible. Moreover, that we are able to phrase an interesting
abductive logic within an extensional context is rather fascinating in itself.

The results in the present paper are an outcome of the adaptive logic programme.
Adaptive logics are a family of non-standard logics that are especially suited to study,
in a formally exact way, reasoning processes that are non-monotonic and/or dynami-
cal.3 The first logic in this family was designed around 1980 (see [2]) and was meant to
interpret (possibly) inconsistent theories as consistently as possible.4 Later the notion
of an adaptive logic was generalized in different ways (for instance, to capture am-
pliative forms of reasoning) and a whole variety of adaptive logics was designed—see
[4] and [13] for a survey.

2 Preliminaries for a Logic of Abduction

As a first approximation, a logic may be called abductive if and only if it is obtained
by extending CL with a suitably restricted version of rule (1.1). The restrictions will
distinguish between sound and unsound applications of the rule. A first restriction is
obviously that B(β) ∈ We and A(β) ∈ Wa. We also have to require that (∀α)(A(α) ⊃
B(α)) is not a CL-theorem. In view of the first restriction, this rules out cases in which
A(β) is a contradiction or B(β) is a tautology—nobody wants to seek an explanation
for a tautology and nobody will accept an explanation by ex falso quodlibet.

There are some more restrictions. Given the formal character of CL, the claim that
there are formal abductive logics commits one to the following statement:

If some application of (1.1) is sound and some other application of it is not,
then there should be a formal difference between the two.

Although this statement is correct, it is not free of ambiguity. Rules of logic are
applied against the background of some set of premises, say Γ.5 The formal character
of a logic does not derive from the fact that there is a formal link between the premises
of the application of some rule and its conclusion, but from the fact that there is a
formal link between (a subset of) Γ and the last step in a proof (respectively, the
semantic consequence). In the case of monotonic logics, the formal character of the
logic warrants the formal character of the rules. In the case of non-monotonic logics,
it does not. Here, the soundness of an application of a rule may depend on the
set of premises. So the formal character of an abductive logic depends on whether
there is a formal difference between sound and unsound applications of the following

3A reasoning pattern is called dynamical if the mere analysis of the premises may lead to the withdrawal of

previously drawn conclusions. Not all dynamical reasoning patterns are non-monotonic. In [5], for instance, it is

shown that the pure logic of relevant implication can be characterized by a dynamic proof theory.
4Logics that satisfy this property are referred to as inconsistency-adaptive logics.
5In order to keep the discussion as simple as possible, we comply with the usual supposition that all relevant

knowledge about some domain may be considered as a set of premises Γ.
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reformulation of (1.1):

If Γ `CL B(β), Γ `CL (∀α)(A(α) ⊃ B(α)), B(β) ∈ We, A(β) ∈ Wa,
and 0CL (∀α)(A(α) ⊃ B(α)), then 〈Γ,We,Wa〉 `LAr A(β) (2.1)

A reasonable further requirement on an abductive logic is that it consistently ex-
tends the CL-consequences of Γ. This requirement has some immediate consequences
for our abductive logic.

Suppose that Γ `CL Pa and Γ `CL (∀x)(Qx ⊃ Px) and that we want an explana-
tory hypothesis for Pa. Suppose further that We consists of all singular formulas
that contain no other predicates than P and R, and that Wa comprises all remaining
singular formulas. Applying (2.1) delivers Qa. But, quite obviously, we do not want
to draw this conclusion from the above premises if ¬Qa is CL-derivable from Γ.

What if ¬Qa is abductively derivable from the Γ from the previous paragraph? The
simplest case is where also (∀x)(¬Qx ⊃ Px) ∈ Γ. In this case, Γ `CL (∀x)Px, and
hence Γ `CL (∀x)(A(x) ⊃ Px) for any A(x). So (given our extensional framework),
it does not seem to make sense to abductively derive any explanation for Pa. In a
slightly more complicated case, an attempt to explain Pa might lead to ¬Qa by a
series of applications of (2.1)—first to S1a, from there to S2a, . . ., and from Sna to
¬Qa. However, this is only possible if Γ `CL (∀x)(¬Qa ⊃ Px), which brings us back
to the previous situation.

A further complication is where, 〈Γ,We,Wa〉 being as two paragraphs ago, Γ `CL

Ra and Γ `CL (∀x)(¬Qx ⊃ Rx). If we look for an explanatory hypothesis for both Pa
and Ra, (2.1) will enable us to arrive at both Qa and ¬Qa. Both Qa and ¬Qa might be
considered as sensible conclusions. Even if we do so, this does not force us to consider,
say, Sa as a sensible conclusion. Nevertheless, at least one of the conclusions has to be
rejected in view of the above requirement that abduction should lead to a consistent
consequence set. As, in the present case, there is no formal difference between the
applications of (2.1) that lead to Qa and ¬Qa respectively, both applications have to
be rejected in view of the requirement that our abductive logic be formal.

Things become more difficult once we consider more complex formulas. Where We

and Wa are as before, consider a Γ such that:

Γ `CL Pa (2.2)
Γ `CL (∀x)((Qx ∧ Sx) ⊃ Px) (2.3)

Applying (2.1) delivers Qa ∧ Sa, but is this a sound abduction? To see that it not
always is, suppose that Γ `CL (∀x)(Qx ⊃ Px). In this case, Γ `CL (∀x)((Qx ∧
A(x)) ⊃ Px) for any A(x). So, (2.2) and (2.3) cannot warrant that Qa ∧ Sa is
abductively derivable from Γ—if they did, the set of abductive consequences would
be trivial. As we shall see below, also this case is adequately handled by the logic
LAr.

Having introduced some general restrictions on (1.1), we turn to the purposes that
an application of abduction may serve. There are at least two rather different ones.
Consider the case of a patient a displaying some symptom P who consults a physician
to get cured. Suppose that the physician’s theoretical knowledge contains (∀x)(Qx ⊃
Px) and (∀x)(Rx ⊃ Px), and no other (sensible) candidates for an abductive step.
It would be rather stupid of the physician to conclude to Qa and to act accordingly.
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This would be stupid because, if Ra is the case, rather than Qa, the patient would
not be cured. So, the appropriate behaviour for the physician would be to draw the
conclusion Qa ∨Ra and to test whether Qa, Ra or both are true, or to act in such a
way that the patient gets cured in either case.

Compare this situation to one in which a ‘theoretician’ has the same knowledge
(or a set of knowledge of the same logical form), but is merely interested in finding
and testing explanatory hypotheses for Pa. In this case, there would be no harm if
the theoretician derived, say, Qa and tested it. If it turns out true, an explanation is
produced. If it turns out false, Ra might be the next hypothesis derived.

In this paper, we shall concentrate on the type of situation in which we have to
act on the abducted conclusion and hence better take all possibilities into account.
In line with this, our logic of abduction will lead to a set of explanatory hypotheses
that are not only jointly compatible with the premises but also as weak as possible
in view of them.

3 Illustration of the Logic

The general idea behind LAr is extremely simple: it is allowed that (2.1) is applied
“as much as possible”. For the moment, this ambiguous phrase may be interpreted
as “unless and until (∀α)(A(α) ⊃ B(α)) ∧ (B(β) ∧ ¬A(β)) turns out to be CL-
derivable from Γ”. So, whenever it is CL-derivable from Γ that, for some general rule
(∀α)(A(α) ⊃ B(α) and some explanandum B(β), (2.1) cannot be applied consistently
(because, ¬A(β) is CL-derivable from Γ), the application of (2.1) is overruled. In view
of what we have seen in the previous section, this is exactly what we want.

To save space, expressions of the form (∀α)(A(α) ⊃ B(α))∧ (B(β)∧¬A(β)) will be
abbreviated as ~B(β),¬A(β)� and, in line with what is common for adaptive logics,
~B(β),¬A(β)� will be called an “ abnormality”.6 As we will see below, it is possible
that a disjunction of abnormalities is CL-derivable from a set of premises Γ without
any of its disjuncts being derivable from it. This fact will prove crucial to obtain an
adequate logic for abduction.

We shall devote the sequel of this section to an illustration of the proof theory that
we shall spell out in Section 4. We shall present a simple example, not worrying too
much about technicalities, but concentrating on the way in which the requirements
from the previous section are met. Suppose that our set of premises Γ consists of the
following generalizations

(∀x)(Px ⊃ Rx), (∀x)(Px ⊃ Sx), (∀x)(Qx ⊃ Sx), (∀x)(Qx ⊃ Tx),
(∀x)(¬Px ⊃ Tx)

and the following data

Ra, Rb, ¬Sb, Sc, Sd, ¬Td, Re, Te.

Let We be the set of all singular formulas that are truth-functions of primitive
formulas containing the predicates R, S and T , andWa the set of all singular formulas
that do not contain these predicates.

One way to start a LAr-proof from Γ is by entering all the premises:
6The term “abnormality” refers to formulas that overrule the application of some desired inference rule—in our

case the abduction scheme (1.1).
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1 (∀x)(Px ⊃ Rx) – PREM ∅
2 (∀x)(Px ⊃ Sx) – PREM ∅
3 (∀x)(Qx ⊃ Sx) – PREM ∅
4 (∀x)(Qx ⊃ Tx) – PREM ∅
5 (∀x)(¬Px ⊃ Tx) – PREM ∅
6 Ra – PREM ∅
7 Rb – PREM ∅
8 ¬Sb – PREM ∅
9 Sc – PREM ∅
10 Sd – PREM ∅
11 ¬Td – PREM ∅
12 Re – PREM ∅
13 Te – PREM ∅
For each of these lines, the third and fourth element form the “justification” for the
formula that constitutes the second element. The third element contains the line
numbers of the formulas from which the formula is derived (obviously empty in the
case of premises); the fourth element contains the name of the rule by means of which
the formula is derived (in the above case the premise rule PREM). The empty sets at
the end of each line can be ignored for the moment.

For reasons of transparency, we shall from now on represent the proof (as much as
possible) in a diagrammatic way:

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

R

P

S

Q

T

¬P↙ ↘ ↙ ↘ ↙1 2 3 4 5

P Q R S T

a + 6

b + 7 − 8

c + 9

d + 10 − 11

e + 12 + 13

The node-and-arrow-structure represents the generalizations (for instance, the first
arrow stands for (∀x)(Px ⊃ Rx)) and the array represents the data (the “+” in the
first row stands for Ra, the “−” in the second row for ¬Sb). The numbers in the
diagram refer to the stage at which the corresponding formula is entered in the proof.

We are now in a position to make inferences from the premises. Let us first concen-
trate on the explanandum Ra. As is easily observed, the generalization represented
by the first arrow can be used to ‘abduce’ an explanatory hypothesis for Ra. In an
LAr-proof from Γ, this is done by applying the rule RC:

µ´
¶³

µ´
¶³

R

P↙1 P Q R S T

a + 6

14 Pa 1, 6 RC {~Ra,¬Pa�}
RC is a conditional rule: it allows one to add abductive hypotheses to the proof, but
only on a certain condition. This condition is represented by the fifth element of the
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line. Intuitively, line 14 can be read as: Pa is derivable from the formulas on lines 1
and 6, unless and until it can no longer be assumed (consistently) that ~Ra,¬Pa� is
false.

Given our present insights in the premises (represented by the formulas that are
explicitly written down in the proof), there is no reason to believe that ¬Pa is true,
and hence, it is consistent to assume that ~Ra,¬Pa� is false. This is why, at this
stage of the proof,7 Pa is considered to be derivable from the premises (in view of line
14). If, at a later stage of the proof, it would turn out that the condition of line 14 is
no longer satisfied, then this line will be ‘marked’ and the formula that occurs on it
will no longer be considered to be derived. (The marking of lines will be illustrated
below.)

In view of the formula on line 14, the generalization represented by the second
arrow allows one to infer the prediction Sa; this is done by means of the rule RU:

µ´
¶³

µ´
¶³

P

S

↘2 P Q R S T

a + 14

15 Sa 2, 14 RU {~Ra,¬Pa�}
RU is a generic rule that allows one to infer all CL-consequences: whenever some
formula A is CL-derivable from a number of formulas B1, . . . , Bn that are considered
to be derived in the proof at some stage, then, at that stage, A can be added to the
proof by means of RU. Note that RU is an unconditional rule: unlike RC, it does not
lead to the introduction of new conditions. If, however, some of the Bi to which RU
is applied are themselves derived on a non-empty condition, then these conditions are
conjoined for the conclusion. Thus, as the formula of line 14 is used to derive the
formula on line 15, the condition of the former is ‘carried over’ to the latter. This is
obviously as it should be: if, at a later stage in the proof, the conclusion of line 14 is
withdrawn because its condition is no longer satisfied, then all formulas that rely on
it should also be withdrawn.

Let us now turn to the explanandum Rb. As in the previous case, the rule RC
enables us to abduce an explanatory hypothesis for Rb (see line 16 below). However,
this time, we are also able to infer, by means of RU, the negation of our explanatory
hypothesis:

µ´
¶³

µ´
¶³

µ´
¶³

R

P

S

↙ ↘1 2 P Q R S T

b + 7 − 8

16 Pb 1, 7 RC {~Rb,¬Pb�}
17 ¬Pb 2, 8 RU ∅

Hence, we are able to infer the following abnormality:

7Remember that the proof theory of LAr is dynamical: formulas that are considered to be derived at some stage

in the proof, may no longer be considered as derived at a later stage of the proof. The dynamics will be illustrated

below.
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µ´
¶³

µ´
¶³

R

P↙1 P Q R S T

b + 16 ‖ − 17 + 7

18 ~Rb,¬Pb� 1, 7, 17 RU ∅
At this stage in the proof, the condition of line 16 is no longer satisfied. As a

consequence, the conclusion of line 16 is withdrawn from the proof. The withdrawal
of a conclusion from the proof is recorded by marking the line on which the formula
occurs. This is how the proof looks like at stage 18 (lines 1 to 15 are as before):

. . .

16 Pb 1, 7 RC {~Rb,¬Pb�} X18

17 ¬Pb 2, 8 RU ∅
18 ~Rb,¬Pb� 1, 7, 17 RU ∅

We shall now show what happens when more than one explanatory hypothesis can
be abduced for the same explanandum. Have a look at Sc:

µ´
¶³

µ´
¶³

µ´
¶³

P

S

Q

↘ ↙2 3 P Q R S T

c + 9

In view of the relevant generalizations, the proof can be extended as follows:

19 Pc 2, 9 RC {~Sc,¬Pc�}
20 Qc 3, 9 RC {~Sc,¬Qc�}
However, as the reader can verify, the following disjunctions of abnormalities are
CL-derivable from the premises:

21 ~Sc,¬Pc� ∨ ~Sc,¬(Qc ∧ ¬Pc)� 2, 3, 9 RU ∅
22 ~Sc,¬Qc� ∨ ~Sc,¬(Pc ∧ ¬Qc)� 2, 3, 9 RU ∅
The formula on line 21 expresses that ~Sc,¬Pc� or ~Sc,¬(Qc∧¬Pc)� is true. Hence,
it cannot be assumed that both disjuncts are false.

In view of such a disjunction of abnormalities, different strategies are possible. The
one followed by LAr is very cautious. As (at this stage of the proof) it is unclear
which one of the two disjuncts is true, both disjuncts are (at this stage of the proof)
considered as ‘unreliable’. As a result, all formulas that are derived on the assumption
that one of these disjuncts is false, are withdrawn. Thus, in our case, the formula on
line 19 is withdrawn in view of the formula on line 21. By an analogous reasoning,
the formula on line 20 is withdrawn in view of the formula on line 22:

. . .
19 Pc 2, 9 RC {~Sc,¬Pc�} X21

20 Qc 3, 9 RC {~Sc,¬Qc�} X22

21 ~Sc,¬Pc� ∨ ~Sc,¬(Qc ∧ ¬Pc)� 2, 3, 9 RU ∅
22 ~Sc,¬Qc� ∨ ~Sc,¬(Pc ∧ ¬Qc)� 2, 3, 9 RU ∅
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A mark may be removed at a later stage. Suppose, for example, that ~Sc,¬(Qc ∧
¬Pc)� is CL-derivable from the premises, and is actually derived in the proof. So it
would be clear which of the two disjuncts of the formula of line 21 is true, viz. the
second one. As a result, line 19 would not be marked any more (unless ~Sc,¬Pc� is
a disjunct of another disjunction of abnormalities).

We shall see that, apart from derivability at a stage, one can define a stable notion
of derivability, viz. final derivability. Intuitively, a formula is finally derived on line i
of a proof iff it is possible to extend the proof in such a way that line i is unmarked
and remains unmarked in every further extension of the proof.

In view of the present premises, lines 19 and 20 will remain marked in any extension
of the proof, whence neither Pc nor Qc is finally derivable from the premises. However,
their disjunction Pc ∨ Qc is. This can be seen from the following extension of the
proof:

µ´
¶³

µ´
¶³

µ´
¶³

P

S

Q

↘ ↙2 3 P Q R S T

c + 9

23 (∀x)((Px ∨Qx) ⊃ Sx) 2, 3 RU ∅
24 Pc ∨Qc 9, 23 RU {~Sc,¬(Pc ∨Qc)�}
As no minimal disjunction of abnormalities is derivable that has ~Sc,¬(Pc∨Qc)� as
one of its disjuncts, the formula on line 24 is finally derivable from the premises.8

Also for the explanandum Sd the rule RC enables one to derive a disjunction of
explanatory hypotheses:

µ´
¶³

µ´
¶³

µ´
¶³

P

S

Q

↘ ↙2 3 P Q R S T

d + 10

25 Pd ∨Qd 2, 3, 10 RC {~Sd,¬(Pd ∨Qd)�}
This time, however, one of the disjuncts can be eliminated by pure deductive means:

µ´
¶³

µ´
¶³

Q

T

↘4 P Q R S T

d − 11

26 ¬Qd 4, 11 RU ∅
27 Pd 25, 26 RU {~Sd,¬(Pd ∨Qd)�}
This nicely illustrates how LAr allows for the integration of deductive and abductive
steps.9

Let us finally turn to the situation where different explanatory hypotheses are
mutually incompatible with the premises. As may be seen from the following extension

8Every disjunction of abnormalities can be seen as
W

(∆) in which ∆ is a finite set of abnormalities and
W

(∆) is

their disjunction.
W

(∆) is a minimal disjunction of abnormalities that is derivable from the premises if and only ifW
(∆) is derivable from the premises and there is no ∆′ ⊂ ∆ such that

W
(∆′) is derivable from the premises.

9The attentive reader will have observed that Pd is also derivable on the condition {~Sd,¬Pd�}.
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of the proof, this is the case for the explanatory hypotheses that are abducible for Re
and Te:

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

R

P

T

¬P↙ ↙1 5 P Q R S T

e + 12 + 13

28 Pe 1, 12 RC {~Re,¬Pe�}
29 ¬Pe 5, 13 RC {~Te, Pe�}

Although both these hypotheses may be entered at some stage in the proof, neither
of them is finally derivable from the premises. This is warranted by the following
CL-derivable disjunction of abnormalities:

30 ~Re,¬Pe� ∨ ~Te, Pe� 1, 5, 12, 13 RU ∅

As soon as the formula on line 30 is added to the proof, lines 28 and 29 are marked—
they remain marked in any extension of the proof.

Note that this mechanism also comes into play when the antecedent of some gener-
alization is arbitrarily strengthened. Suppose, for instance, that the proof is extended
in the following way:

31 (∀x)((Px ∧ Ux) ⊃ Rx) 1 RU ∅
32 (∀x)((Px ∧ ¬Ux) ⊃ Rx) 1 RU ∅
33 Pa ∧ Ua 6, 31 RC {~Ra,¬(Pa ∧ Ua)�}
34 Pa ∧ ¬Ua 6, 32 RC {~Ra,¬(Pa ∧ ¬Ua)�}

If the formulas on lines 33 and 34 would be finally derivable from the premises, one
would not only obtain explanatory hypotheses that are partly irrelevant, but even
triviality:

35 Ua 33 RU {~Ra,¬(Pa ∧ Ua)�}
36 ¬Ua 34 RU {~Ra,¬(Pa ∧ ¬Ua)�}
37 p 35, 36 RU {~Ra,¬(Pa ∧ Ua)�, ~Ra,¬(Pa ∧ ¬Ua)�}

However, the following disjunction of abnormalities is CL-derivable:10

38 ~Ra,¬(Pa ∧ Ua)� ∨ ~Ra,¬(Pa ∧ ¬Ua)� 1, 6 RU ∅

As soon as this line is added to the proof, lines 33–37 are marked.11 It is moreover
easily observed that these lines will remain marked in any further extension of the
proof, and hence, that the formulas on these lines are not finally derivable.

The example discussed was rather simple. As we have no room to multiply exam-
ples, let us at least remark that there is no problem for LAr to abduce from a theory
an explanation for a complex statement, for example Pa ∧Qa.

10Actually, the fact that the formulas on lines 33 and 34 are jointly incompatible with the premises warrants that

the disjunction of the union of their conditions is CL-derivable from the premises.
11Even if 32, 34, 36 and 37 had not been derived, 38 would be derivable and would cause line 31 to be marked.
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4 Precise Description of the Logic

We shall restrict the discussion to unary predicates (predicates expressing properties).
It is very well possible that our result may be generalized, but we have no proof, at
this moment, that it can.

LAr can be formulated in the standard format from [6] and [9], which greatly
simplifies the technical stuff. An adaptive logic AL is in standard format if it is char-
acterized as a triple consisting of three elements: (i) LLL, a compact and monotonic
lower limit logic, (ii) Ω, a set of abnormalities that all have the same logical form,
and (iii) an adaptive strategy.

The lower limit logic LLL determines the part of the adaptive logic AL that is
not subject to adaptation. From a proof theoretic point of view, the lower limit logic
delineates the rules of inference that hold unexceptionally. From a semantic point of
view, the adaptive models of a premise set Γ are a selection of the LLL-models of Γ.
It follows that CnLLL(Γ) ⊆ CnAL(Γ). The lower limit logic of LAr is obviously CL,
and remember that its premise set is 〈Γ,We,Wa〉.

As we have seen, abnormalities are formulas that are presupposed to be false, unless
and until proven otherwise. Ω comprises all formulas of a certain (possibly restricted)
logical form. In the case of LAr the restriction will refer to We and Wa.12

For LAr we define Ω = {(∀α)(A(α) ⊃ B(α))∧(B(β)∧(¬A(β)) | A(β) ∈ Wa; B(β) ∈
We; 0CL (∀α)(A(α) ⊃ B(α))}. In the present extensional framework, (∀α)(A(α) ⊃
B(α)) can be taken to express that A contains a (sufficient) cause for B—we write
“‘contains” because A may be itself a conjunction and some of its conjuncts may
not be required for warranting B.13 The second conjunct of an abnormality states
that the specific sufficient cause A(β) for B(β) did not occur. The requirement that
(∀α)(A(α) ⊃ B(α)) is not a CL-theorem has to be added in order to prevent that
all models would display abnormalities, as we shall see when we come to the upper
limit logic. However, as was explained in Section 2, this requirement is harmless.
An adaptive logic presupposes that abnormalities are false unless and until proven
otherwise. So, the presupposition of LAr is that, if an effect did occur, then all its
potential causes (in the weak, extensional, sense) did also occur.

The strategy will be Reliability. It is well-known that Minimal Abnormality would
deliver a few more consequences in peculiar (and somewhat weird) cases. However, as
its marking definition is rather tiresome, this would have unnecessarily complicated
the discussion of the example in Section 3.

If one adds to the lower limit logic an axiom schema excluding that abnormalities
occur, viz. an axiom schema that reduces abnormal premise sets to triviality, one
obtains the so-called upper limit logic. The upper limit logic of LAr is somewhat
unusual as it refers to the sets We and Wa. It is obtained by extending CL with
the axiom schema (∀α)(A(α) ⊃ B(α)) ⊃ (B(β) ⊃ A(β)) provided B(β) ∈ We and
A(β) ∈ Wa. It is easily seen that this comes to the requirement that, if the proviso is
met, (∀α)(A(α) ⊃ B(α)) is logically equivalent to (∀α)(A(α) ≡ B(α)). We shall not
care to give this upper limit logic a name.

12The specific restriction that will be imposed causes LAr not to be strictly in standard format. However, the

metatheoretic claims that we want to derive from the standard format still can be proved. Moreover, the logic has

a hardly different variant, in which Wa is a function of We as described in Section 1, that is in standard format.
13Every man who is too lazy to shave and wears spectacles has a beard, but the fact that the second author wears

spectacles is not part of a potential cause for his having a beard.
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In some cases, the upper limit logic for ampliative adaptive logics has no practical
application context because none of its models corresponds to the actual world—for
an example see uniform classical logic, UCL, from [10]. This does not apply to
the upper limit logic of LAr. It is useful to discuss this briefly as it clarifies the
circumstances under which abductions can be derived.

Our upper limit logic presupposes that every statement in We has a unique and
maximally specific cause in Wa. Let us consider an concrete example for a very
simple language, in which only occur the predicates P , Q and R and, say, twenty
individual constants a1, . . . , a20. Suppose moreover that We contains the twenty
formulas Pai (1 ≤ i ≤ 20), and that Wa comprises all formulas in which P does not
occur. Consider first a chaotic model, in which some elements of the domain have
properties P , Q and R, some elements have properties P and Q but not R, and so on
for all eight combinations. As this model verifies no contingent generalization of the
form (∀x)(A(x) ⊃ Px), for A(β) ∈ Wa, no abnormalities occur in it and hence it is
an upper limit model (it is a CL-model that verifies the added axiom schema).

As this model is plainly uninteresting with respect to abduction, one wonders
whether there are others, and indeed there are. Consider any model that verifies
(∀x)((Qx ∧ Rx) ≡ Px), but falsifies (∀x)(±Qx ⊃ Px) as well as (∀x)(±Rx ⊃ Px)
(in which each ± is either a negation or nothing)—hence it also falsifies (∀x)((Qx ∧
¬Rx) ⊃ Px) and so on. It is easily seen that this model verifies not a single abnor-
mality, and hence is an upper limit model. The same holds for any model that verifies
(∀x)((±Qx∧±Rx) ≡ Px), but falsifies (∀x)(±Qx ⊃ Px) as well as (∀x)(±Rx ⊃ Px).

No upper limit model verifies (∀x)(Qx ⊃ Px) unless it also verifies ¬(∃x)Px. In-
deed, if a model would verify the former formula, it would also verify (∀x)((Qx∧Rx) ⊃
Px) as well as (∀x)((Qx∧¬Rx) ⊃ Px), and hence, if some object, say a, had property
P , the model would verify ~Pa,¬(Qa ∧Ra)� ∨ ~Pa,¬(Qa ∧ ¬Ra)�.

Of course, there are LAr-models that verify (∀x)(Qx ⊃ Px) as well as Pa. All of
these will verify some abnormalities, but some do not verify a disjunction of abnormal-
ities of which ~Pa,¬Qa� is a disjunct. This is precisely what makes adaptive logics
interesting, viz. that they interpret abnormal premise sets as normally as possible.

Let us now turn to the proofs. If the deduction rules are formulated in generic
format, they are identical for all adaptive logics in standard format. Where Γ contains
the (declarative) premises as before,

A ∆

abbreviates that A occurs in the proof on the condition ∆, and Dab(∆) is the dis-
junction of the members of a finite ∆ ⊂ Ω, the rules may be phrased as follows:14

14The only rule that introduces non-empty conditions is RC. In other words, before RC is applied in a proof, the

condition of every line will be ∅.
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PREM If A ∈ Γ: . . . . . .
A ∅

RU If A1, . . . , An `CL B: A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An `CL B ∨Dab(Θ) A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

There is a striking correspondence between LAr-proofs and CL-proofs. Suppose
that one transforms each line

A ∆

from the LAr-proof into
A ∨Dab(∆) ,

where “∨Dab(∅)” is defined as the empty string. It is easy enough to establish, by an
obvious induction on the length of the proof, that the resulting sequence of formulas is
a CL-proof obtained by applications of PREM and RU only. This result is extremely
useful from a metatheoretic point of view and clarifies what is going on in a dynamic
proof.

We now turn to the marking definition. We shall say that Dab(∆) is a minimal
Dab-formula at stage s of a proof if, at that stage, Dab(∆) occurs in the proof on the
empty condition and, for any ∆′ ⊂ ∆, Dab(∆′) does not occur in the proof on the
empty condition. Where Dab(∆1), . . . , Dab(∆n) are the minimal Dab-formulas at
stage s of the proof, Us(〈Γ,We,Wa〉) = ∆1∪ . . .∪∆n is the set of unreliable formulas
at stage s. The marking definition for the Reliability strategy is as follows:

Definition 4.1
Line i is marked at stage s iff, where ∆ is its condition, ∆ ∩ Us(〈Γ,We,Wa〉) 6= ∅.

If Dab(∆) is a minimal Dab-formula at stage s of the proof, then, in as far as one
knows in view of the proof at this stage, the premises require one of the abnormalities
in ∆ to be true but do not specify which one is true. The Reliability strategy considers
all of them as unreliable. So the underlying idea is: if the understanding of the
premises provided by the present stage of the proof is correct, the formulas occurring
at unmarked lines are derivable from the premises, whereas the formulas occurring at
marked lines are not.

Apart from the unstable derivability at a stage, one wants a stable kind of deriv-
ability, which is called final derivability.

Definition 4.2
A is finally derived from 〈Γ,We,Wa〉 on line i of a proof at stage s iff (i) A is the
second element of line i, (ii) line i is not marked at stage s, and (iii) any extension of
the proof in which line i is marked may be further extended in such a way that line i
is unmarked.
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Definition 4.3
〈Γ,We,Wa〉 `LAr A (A is finally LAr-derivable from Γ) iff A is finally derived on a
line of a LAr-proof from 〈Γ,We,Wa〉.

Remark that these are definitions, and that they are not intended to have a direct
computational use.

The semantics of all adaptive logics is defined in the same way in terms of the lower
limit logic, here CL, the set of abnormalities Ω and the strategy. M |= A will denote
that M assigns a designated value to A, in other words that M verifies A. M |= Γ
will denote that M verifies all members of Γ.

The abnormal part of a CL-model M will be defined as follows:

Definition 4.4
Ab(M) = {A ∈ Ω | M |= A}

Where Dab(∆1), Dab(∆2), . . . are the minimal Dab-consequences of 〈Γ,We,Wa〉,15
U(〈Γ,We,Wa〉) = ∆1∪∆2∪ . . . is the set of formulas that are unreliable with respect
to 〈Γ,We,Wa〉.16

Definition 4.5
A CL-model M of 〈Γ,We,Wa〉 is reliable iff Ab(M) ⊆ U(〈Γ,We,Wa〉).

Intuitively, U(〈Γ,We,Wa〉) comprises the abnormalities that, in view of the Relia-
bility strategy, cannot be avoided if all members of Γ are supposed to be true. A reli-
able model of 〈Γ,We,Wa〉 is one that verifies at most the members of U(〈Γ,We,Wa〉).
Definition 4.6
〈Γ,We,Wa〉 ²LAr A iff A is verified by all reliable models of 〈Γ,We,Wa〉.

It is provable by standard means that 〈Γ,We,Wa〉 `LAr A iff 〈Γ,We,Wa〉 ²LAr A
(that the syntax is sound and complete with respect to the semantics). Some further
desirable properties are provable as well (see [7] and especially [9]). These properties
include the essential property that CnLAr(〈Γ,We,Wa〉) is consistent. Actually this
is an easy consequence of Strict Reassurance (see [6]).

5 Concluding Remarks

The plot we had in mind is that, given a set of knowledge Γ, one abduces the (weakest)
explanation of some fact or some set of facts (the members of We that are CL-
derivable from Γ). This explanation should belong to a specific part of the language
Wa, possibly all sentences of the language that do not contain any primitive formula
that occurs in We. As we mentioned before, the abduced statements may be added
to the premises, Γ thus being extended to Γ′, and no harm results if LAr is applied
to Γ′ with respect to a different set of explanatory questions.

We have looked into the properties of Γ that contain existentially quantified ex-
plananda, as in the case where Γ contains both (∀x)(Px ⊃ Qx) and (∃x)Qx. Not
much sensible can be derived from such premise sets, and we think this is quite all

15Obviously, the minimal Dab-consequences of 〈Γ,We,Wa〉 may be semantically defined.
16In the following definition we write that “a CL-model M of 〈Γ,We,Wa〉 is Reliable” because the Reliability

of M depends on 〈Γ,We,Wa〉 and not just on Γ. That M is a CL-model of 〈Γ,We,Wa〉 obviously depends on Γ

alone.
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right. By all means, if one wants to explain the properties of some object that has no
name, one can simply give it one—even if one did not observe the object, but merely
knows that it exists.

In the sequel of this section, we shall mainly comment on some alternative logics
that can easily be obtained from LAr and look attractive. A first alternative was
already suggested before, viz. that Wa is seen as a function of We. The advantage
of introducing Wa as an independent set is that it enables the user of the logic
to restrict the explanations that may be abduced. This, however, is only a slight
advantage. Nothing prevents one to be interested only in (and to seek to derive only)
some of the statements that logically can be abduced.

There is a more different alternative for LAr that one might prefer. Suppose that
one seeks an explanation for Pa and that Qa ∨ Ra is finally LAr-derivable in view
of the presence of (∀x)(Qx ⊃ Px) and (∀x)(Rx ⊃ Px) (and the absence of certain
other generalizations). Suppose, however, that Γ contains also examples of cases
where being Q or R is not a good explanation for being P , even if no generalization
indicates which is the explanation for the P -hood of those examples. It is easy enough
to produce such premise sets, for example premise sets that contain Pc, ¬Qc and ¬Rc.
The question is whether, in such cases, one is still prepared to abduce Qa ∨Ra.

We think there are some convincing arguments for answering the preceding question
in the negative. In Section 2, we made a choice as to the purposes that an application
of abduction may serve. In view of that choice, we wanted to derive the disjunction of
all possible explanations for the explanandum, unless when some of these explanations
are known (from Γ) to be false. Quite in line with this, one might reason that one
should not abduce Qa∨Ra in the example of the previous section, because one knows
that this is not the disjunction of all possible explanations for Pa. In other words, one
will only abduce Qa ∨ Ra if one has no reason to believe that something else might
be the explanation for P -hood (and not, as in the logic LAr if one merely does not
see another possible explanation for Pa).

It is not difficult to articulate a logic which agrees with this viewpoint. All one has
to do is introduce a slight change in the definition of the set of abnormalities, viz. as
follows: Ω = {(∀α)(A(α) ⊃ B(α))∧(∃α)(B(α)∧¬A(α)) | β ∈ C; A(β) ∈ Wa; B(β) ∈
We; 0CL (∀α)(A(α) ⊃ B(α))}.

Some readers will not be convinced by the properties of LAr. It may be shown that
the set of finally derivable LAr-consequences of a premise set 〈Γ,We,Wa〉 contains
exactly the formulas that one wants to abduce (together with the CL-consequences
of the premises and the abduced statements). However, these readers will wonder,
how can one be sure to have derived the finally derivable statements? Remark indeed
that the formulas abduced at a stage of the proof may not include all formulas that
are finally derivable and may moreover include some formulas that are not finally
derivable (and will be marked at a later stage).

There are two kinds of answers to this objection. The first is that it may be justified
to act on the basis of derivability at a stage. It has been shown in [3] that, as the
dynamic proof proceeds, the insights in the premises may become better and never
become worse (and that one can determine from the extension of the proof whether
the insights in the premises did become better). This means that, at every stage of
a dynamic proof, one confronts the choice between continuing the proof in order to
improve the insights in the premises, or to act upon present insights. That there
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is such a choice is an intrinsic result of the kind of consequence relation we try to
explicate—if a logic would avoid this choice, it would be a bad explication of the
consequence relation.

The second answer is that, in the absence of a positive test,17 there is no algorithm
for establishing in general that A is finally derivable from Γ even if it is. This does
not prevent the existence of criteria that enable one to establish, for a specific A,
that it has been finally derived from the premises in a given proof. Some criteria
were presented in [3], [11] and [12], and more criteria may be derived from results
presented in those papers. Unfortunately, most of these criteria are awfully complex
and only transparent for people that are well acquainted with the dynamic proofs.
So we continued searching for something better. This was provided by recent work
on goal-directed proofs. The idea is not to formulate a specific criterion, but rather
to articulate a proof procedure that functions as a criterion. Whenever the proof
procedure stops, it establishes that A is or is not finally derivable from the premises.
Preparatory work on the propositional fragment of CL is presented in [14] and the
proof procedure is applied to a (propositional) inconsistency-adaptive logic in [8].
Meanwhile the results for the predicative version are ready and it can easily be shown
that these deliver criteria for final derivability with respect to any adaptive logic that
has Reliability as its strategy.

The last paragraph does not make the considerations from the next-to-last one use-
less. Indeed, given the properties of the explicated consequence relation, no criterion
can apply in all cases. So the reader might still feel unsatisfied. Suppose that one
applies LAr to 〈Γ,We,Wa〉—in other words that one tries to explain the members
of We in as far as they are CL-derivable from Γ. Let Γ′ be the union of Γ with the
set of statements that have been abduced at some point in time from the previous
application of LAr. Suppose next that one applies LAr to 〈Γ′,We′ ,Wa′〉. One of
the troubles that might arise, is that one obtains insights that motivate one to revise
conclusions from the first application of LAr.18 This is not a problem for LAr, and
we think this to be a very strong point. Indeed, several consecutive applications of
LAr may be combined with each other (in the same way as prioritized adaptive logics
are obtained in [6]). The combined adaptive logic enables to to revise any abduction
at any stage of the dynamic proof.

Several properties of LAr have still insufficiently been studied. One of them con-
cerns the effect of exchanging the order of consecutive applications of the logic. Still,
we hope to have shown that LAr is a sensible formal logic and that it leads to adequate
results with respect to the kinds of abduction that we described in Section 2.
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