ResearchGate

See discussions, stats, and author profiles for this publication at:

A formal method for rule analysis and
validation in distributed data aggregation
service

ARTICLE /7 WORLD WIDE WEB - NOVEMBER 2015

Impact Factor: 1.47 - DOI: 10.1007/s11280-015-0334-4

READS
31

4 AUTHORS, INCLUDING:

ﬁ Centrum Wiskunde & Informatica g ' Polytechnic University of Bucharest

5 PUBLICATIONS 1 CITATION 156 PUBLICATIONS 381 CITATIONS

SEE PROFILE SEE PROFILE

Available from: Florin Pop
Retrieved on: 29 September 2015

http://www.researchgate.net/publication/273898568_A_formal_method_for_rule_analysis_and_validation_in_distributed_data_aggregation_service?enrichId=rgreq-b2f44cd4-0953-4510-aac1-239637aab421&enrichSource=Y292ZXJQYWdlOzI3Mzg5ODU2ODtBUzoyMTM3MDYyMDcxNzQ2NTdAMTQyNzk2MjkzODIyOA%3D%3D&el=1_x_2
http://www.researchgate.net/publication/273898568_A_formal_method_for_rule_analysis_and_validation_in_distributed_data_aggregation_service?enrichId=rgreq-b2f44cd4-0953-4510-aac1-239637aab421&enrichSource=Y292ZXJQYWdlOzI3Mzg5ODU2ODtBUzoyMTM3MDYyMDcxNzQ2NTdAMTQyNzk2MjkzODIyOA%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-b2f44cd4-0953-4510-aac1-239637aab421&enrichSource=Y292ZXJQYWdlOzI3Mzg5ODU2ODtBUzoyMTM3MDYyMDcxNzQ2NTdAMTQyNzk2MjkzODIyOA%3D%3D&el=1_x_1
http://www.researchgate.net/profile/Vlad_Serbanescu?enrichId=rgreq-b2f44cd4-0953-4510-aac1-239637aab421&enrichSource=Y292ZXJQYWdlOzI3Mzg5ODU2ODtBUzoyMTM3MDYyMDcxNzQ2NTdAMTQyNzk2MjkzODIyOA%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Vlad_Serbanescu?enrichId=rgreq-b2f44cd4-0953-4510-aac1-239637aab421&enrichSource=Y292ZXJQYWdlOzI3Mzg5ODU2ODtBUzoyMTM3MDYyMDcxNzQ2NTdAMTQyNzk2MjkzODIyOA%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Centrum_Wiskunde_Informatica?enrichId=rgreq-b2f44cd4-0953-4510-aac1-239637aab421&enrichSource=Y292ZXJQYWdlOzI3Mzg5ODU2ODtBUzoyMTM3MDYyMDcxNzQ2NTdAMTQyNzk2MjkzODIyOA%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Vlad_Serbanescu?enrichId=rgreq-b2f44cd4-0953-4510-aac1-239637aab421&enrichSource=Y292ZXJQYWdlOzI3Mzg5ODU2ODtBUzoyMTM3MDYyMDcxNzQ2NTdAMTQyNzk2MjkzODIyOA%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Florin_Pop?enrichId=rgreq-b2f44cd4-0953-4510-aac1-239637aab421&enrichSource=Y292ZXJQYWdlOzI3Mzg5ODU2ODtBUzoyMTM3MDYyMDcxNzQ2NTdAMTQyNzk2MjkzODIyOA%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Florin_Pop?enrichId=rgreq-b2f44cd4-0953-4510-aac1-239637aab421&enrichSource=Y292ZXJQYWdlOzI3Mzg5ODU2ODtBUzoyMTM3MDYyMDcxNzQ2NTdAMTQyNzk2MjkzODIyOA%3D%3D&el=1_x_5
http://www.researchgate.net/institution/Polytechnic_University_of_Bucharest?enrichId=rgreq-b2f44cd4-0953-4510-aac1-239637aab421&enrichSource=Y292ZXJQYWdlOzI3Mzg5ODU2ODtBUzoyMTM3MDYyMDcxNzQ2NTdAMTQyNzk2MjkzODIyOA%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Florin_Pop?enrichId=rgreq-b2f44cd4-0953-4510-aac1-239637aab421&enrichSource=Y292ZXJQYWdlOzI3Mzg5ODU2ODtBUzoyMTM3MDYyMDcxNzQ2NTdAMTQyNzk2MjkzODIyOA%3D%3D&el=1_x_7

World Wide Web Journal manuscript No.
(will be inserted by the editor)

A Formal Method for Rule Analysis and Validation in
Distributed Data Aggregation Service

Vlad Serbanescu - Florin Pop - Valentin
Cristea : Gabriel Antoniu

Received: date / Accepted: date

Abstract The usage of Cloud Serviced has increased rapidly in the last years.
Data management systems, behind any Cloud Service, are a major concern
when it comes to scalability, flexibility and reliability due to being imple-
mented in a distributed way. A Distributed Data Aggregation Service relying
on a storage system meets these demands and serves as a repository back-end
for complex analysis and automatic mining of any type of data. In this paper
we continue our previous work on data management in Cloud storage. We
present a formal approach to express retrieval and aggregation rules with a
compact, yet powerful tool called Rule Markup Language. Our extended so-
lution proposes a standard form to schemes and uses the tool to match the
rules to the XML form of the structured data in order to obtain the unstruc-
tured entries from BlobSeer data storage system. This allows the Distributed
Data Aggregation Service (DDAS) to bypass several steps when processing a
retrieval request. Our new architecture is more loosely-coupled with a sepa-
rate module, the new tool, used for transforming the XML entries to standard
XML files which represent the final result. We model the dynamic behavior
of the system using this new standard to ensure a simpler and efficient rep-
resentation of the operations performed by the client while maintaining the

Vlad Serbanescu - Principal Author
PhD Student, Formal Methods Department, Centrum Wiskunde & Informatica, Amster-
dam, Netherlands, E-mail: vlad.serbanescu@cwi.nl

Florin Pop - Corresponding Author
Associate Professor, Computer Science Department, Faculty of Automatic Control and Com-
puters, University Politehnica of Bucharest, Romania, E-mail: florin.pop@cs.pub.ro

Valentin Cristea
Professor, Computer Science Department, Faculty of Automatic Control and Computers,
University Politehnica of Bucharest, Romania, E-mail: valentin.cristea@cs.pub.ro

Gabriel Antoniu
Professor, INRIA Rennes-Bretagne Atlantique, France, E-mail: gabriel.antoniu@inria.fr

2 Vlad Serbanescu et al.

constraints imposed by a distributed system running in the Cloud. Further-
more we prove that this method correctly performs the translation between the
storage model’s unstructured view of data and the client’s structured objects.

Keywords Data Aggregation - Data Management - Cloud Storage -
Intelligent Cloud Services - Distributed Services - Formal Methods - Rule
Markup Language

PACS Distribution theory, 02.50.Ng
Mathematics Subject Classification (2000) 68M20 - 68M14 - 68U20

1 Introduction

As applications work with a continuously growing volume of data they re-
quire storage that can achieve high scalability and performance. With cloud
computing technology evolving at a very fast rate, many IT solutions tend to
operate completely or partially in the cloud allowing full usage of its features.
Distributed systems have now reached Exascale dimension [21] processing very
large amounts of data on a regular basis. Cloud storage provides manageability
(the ability to manage a system with minimal resources), a great number of
access methods (protocols through which cloud storage is exposed) and multi-
tenancy (support for multiple users). At the same time this ensures scalability
(ability to scale to meet higher demands or load in an efficient manner), data
availability (a measure of a system’s uptime) with data being replicated over
several systems and storage efficiency (measure of how efficiently the raw stor-
age is used) [3]. Furthermore cloud storage has yielded excellent results for
system control (configuring for cost, performance, or other characteristics)
and measure of the cost of the storage.

In this paper we extend our proposed Distributed Data Aggregation Service
(DDAS) [16] using a formal method for representing queries and aggregation
operations. As the volume of data stored in Cloud environments grows, we con-
sider that there is a need for formal methods and techniques for QoS analysis
and ensuring consistency. With the development of private Clouds authenti-
cation, portability and interaction with the Cloud are becoming significant
issues that we aim to tackle by adding formality to the user’s operations. The
motivation of this paper resulted from the heterogeneity of data present in Big
Data applications (digital libraries, e-Health applications, Smart Cities Apps,
multimedia applications) and the need to have a standard of representing data
in an expressive and analyzable format suitable for various tools and services.

Continuing with our approach to represent the structure of objects in XML
format along with expanding their attributes, we want to define a standard
form for selecting, filtering and aggregating objects using a Rule Markup Lan-
guage (RML) tool [10,18]. RML was designed for ease of use to write patterns
that match certain elements in an XML file and apply transformation rules to
the file to produce a desired output. The tool has been tested and validated,

Title Suppressed Due to Excessive Length 3

therefore we can maintain the fast and reliable data access shown in our pre-
vious work without correctness issues as we show in this paper. The analysis
of the data elements is done using this formal method by pre-processing data
in the RML standard. Queries are defined as XML rules and expansion and
aggregation schemes now have a standard format to fit as input for the RML
tool. The integration of the tool and its performance impact is based on ex-
perimental results.

The scope of our problem now covers a broader area, not only in terms of
high requirements for performance, cost, availability, reliability and enabling
access to a large volume of resources by a large number of clients, but also
in terms of computer-human interaction and ease of programming. RML is
designed to be very usable and interoperable such that programmers can learn
to use it in a short amount of time without a lot of background or experience
in programming. This tool does not add any new technology that needs to be
assimilated by clients, with only knowledge in XML and defining rules in RML
needed to use the previous Distributed Data Aggregation Service.

As the volume of data and storage devices continues to grow, data manage-
ment and aggregation has become a critical requirement in a wide spectrum of
research domains, ranging from data-mining, monitoring repositories and dig-
ital libraries to high-energy physics [1], climate simulations or matrix equation
solving. All these domains have a different view of data and by introducing
formal techniques and rules to define objects we can maintain a consistent
and, at the same time, correct representation of operations when selecting and
filtering data regardless of the application [8].

Our new solution continues to rely on BlobSeer for an efficient storage
system that offers a scalable architecture, data location transparency, high
throughput under concurrent accesses, the storage of massive data with fine
grain access and has to cope with common problems of large scale distributed
systems such as the integration of diverse technologies used in different parts
of the distributed systems, tolerance to faults, ensuring confidentiality and
protection, efficient use of resources. However we introduce on top a general-
purpose method for XML transformations and apply it to the objects repre-
sented in XML form. With this approach it is easy to avoid the complexity
and difficulty of configuring the system for diverse structures of data.

Our main objective is to extend the proposed model with rules for rep-
resenting the aggregation of data. We want to provide a formal analysis and
validation of those new rules in order to prove correctness and efficiency in
processing data. We aim to use the RML tool to handle the application of
the rules to objects represented in XML form and obtain the output required
by the DDAS and BlobSeer thereafter to read to objects from the cloud and
provide the expected results to the client. Furthermore we want to keep the
characteristics validated this far in our solution while providing the user with
an easy to understand interface with out system. More specifically we seek to
ensure the transparency of the transformations by integrating our RML tool
as a separate module in the control flow of operations.

4 Vlad Serbanescu et al.

The development of DDAS relies on a distributed data management sys-
tem, namely BlobSeer. The service is designed to respect all the requirements
and constraints imposed by data-intensive applications and utilizes multiple
features of BlobSeer [14] such as data stripping, distributed metadata man-
agement and versioning-based concurrency control. The DDAS is designed to
ensure scalability, fault tolerance and data retrieval performance [16].

Another significant issue we tackled was the way we volatile data was stored
while the system was running. First we had to store a mapping between the
objects’ identifiers and the metadata pointing to the location in BlobSeer; then
we had to maintain a metadata catalogue for each expansion and aggregation
scheme that maps to a list of all matching object identifiers generating a data
explosion when adding new schemes. We had to both distribute the metadata
catalogue over several machines and even checkpoint the metadata catalogue
itself to BlobSeer to reduce the overhead of the program main memory. As
we shall see in Section 3, we now create aggregation schemes on the fly and
discard them after the RML tool does the matching process.

This paper has the following research and scientific contributions:

— A formal method for requests made by clients;
— A standard XML format for expansion and aggregation schemes;
— The integration of this standard and formal method into the DDAS.

The rest of this paper is structured as follows. Section 2 presents a critical
overview of the existing solutions for data storage, aggregation and retrieval
in Large Scale Distributed Systems. The Rule Markup Language solution is
also presented in this section. The model for the Distributed Data Aggregation
Service together with the formal model for translating between the two views
described in Section 3. The architectural model of the entire system analyzing
with each layer and component of the solution is analyzed in section 4. Sec-
tion 5 shows the implementation of the system and the a real use-case scenario
for the solution: Application for aggregating scientific data. Section 6 draws
the conclusions of the work done so far and proposes the future work.

2 Related Work

Our starting point for the research work is the Distributed Data Aggregation
Service we proposed for manipulation of large volumes of data. In this section
we look at some of the issues we had with our proposed model, including testing
difficulties, metadata space management and communication. Nonetheless, we
continue to make full use of the characteristics proven in our work which
include minimized access and computation costs, high levels of fault tolerance
and data consistency as well as data persistence and replication, as a good
solution to improve QoS in different networks [11,22]. We study how the RML
solution fits our model and mitigates some of the problems that arose in our
previous work. We also illustrate the proofs of correctness of the aggregation
rules that this new tool supports.

Title Suppressed Due to Excessive Length 5

2.1 Data Storage and Aggregation Solution

The Distributed Data Aggregation Service was built to complement BlobSeer’s
features which maintain data in circulation unstructured, ensuring scalability
via metadata which specifies an object’s location, application-level parallelism
using snapshots of an object’s location, support for multi-tenancy and vari-
ous types of objects. However, we needed to have a clear and simple method
of processing objects based on an application’s actual representation. We did
this by mapping objects to a so-called scheme, a representation in XML for-
mat with a minimal number of elements. Each element was a key-value pair
that together identified an application’s view of its objects. To ease the inter-
action with BlobSeer, we imposed the constraint that each object needed to
have a unique identifier element and an entry element with the actual stream
representation of the object as its value. For example, for an application that
processes publications all objects must have four properties: a key, a format,
a digital library from which it comes and the entry containing the actual pub-
lication, and a value associated to each of them. Furthermore the application
and the service both could expand the entry element to more specific elements
in the same XML key - value format. A really big difficulty came whenever
we had to create a new scheme for an aggregation operation as we had several
steps to perform:

— A lookup on all objects and entry expansions for those that did not have
the required scheme mapped to their key.

— A match between each expansion scheme and the required scheme.

— Storing the matching objects in our metadata catalogue with the new
scheme as the key.

Therefore we considered that our system was ideal for performing a large
number of read operations on already created schemes compared to write and
new aggregation operations. In our current extension this assumption is no
longer necessary as we modify our algorithm to use RML to define the new
scheme and the tool to handle the matching described in Section 3.

Another significant issue we tackled was the way we volatile data was stored
while the system was running. First we had to store a mapping between the
objects’ identifiers and the metadata pointing to the location in BlobSeer; then
we had to maintain a metadata catalogue for each expansion and aggregation
scheme that maps to a list of all matching object identifiers generating a data
explosion when adding new schemes. We had to both distribute the metadata
catalogue over several machines and even checkpoint the metadata catalogue
itself to BlobSeer to reduce the overhead of the program main memory. As
we shall see in Section 3, we now create aggregation schemes on the fly and
discard them after the RML tool does the matching process.

The first solution studied is in [4] which proposes a robust and flexible
super peered Distributed Hash Table (DHT). The solution provides a simple
technique applicable to the majority of existing DHT systems that involves
hiding a subset of the nodes that make up the DHT, from the overlay. This

6 Vlad Serbanescu et al.

enables the use of super-peers in DHT-based networks, while avoiding the
deficiencies of a classical DHT which assume that all nodes that make up the
DHT can perform all the lookup operations supported at an equal performance
level. Additionally it overcomes the high maintenance overhead and single
point of failure that improved super-peer DHT has. However this solution
comes at the cost of placing high loads of data on the nodes that are visible in
the overlay, which may cause very high latencies if these nodes to do not have
great computing capabilities.

Another storage system is proposed in [6] and it’s main purpose is to handle
large amounts of structured data while taking into consideration the varying
data size and latency requirements. The model used is that of a a sparse,
distributed persistent multi-dimensional sorted map containing uninterpreted
array of bytes. It also maintains a versioning system of the data indexed by
timestamps. On one hand the main advantages of this solution are that it
provides high performance lookup, scalability, high availability of data and it is
used in many real applications. On the other hand the it also has disadvantages
due to its implementation which requires difficult configurations of the clusters
and also places a heavy load on the master server of the solution.

The S3 storage system proposed by Amazon [15] aims to provide storage
as a low-cost, highly available service, with a simple ’pay-as-you-go’ charging
model. The positive aspects of this model are the high-level access control
and the global availability of the system. It does however have many negative
aspects such as not having any form of Service Level Agreement (SLA) to
maintain stored data and also having the possibility of losing all the stored
data if something as simple as your email account is compromised.

We also look at the solution presented in [12] where the data storage envi-
ronment is implemented to handle a very high write throughput and also scale
with the number of users. Although the system has many advantages such as
the ability to scale incrementally, using replication to ensure high availability
and durability and failure detection, Cassandra also has to deal with certain
issues such as non-uniform data and load distribution.

Finally we analyze the data storage solution provided by BlobSeer [14]. This
solution represents data as BLOBS taking into consideration that most data
in circulation is unstructured. This gives the possibility of ensuring scalability
using the same BLOB to store large amounts of data by only maintaining the
offset of the BLOB. Along with these features BlobSeer also provides the user
with a versioning-oriented access interface for manipulating blobs, therefore
allowing application-level parallelism as an older version can be read while a
newer version is generated. To interact with BlobSeer all that is required is
a handle that points to a specific BLOB from which data is extracted or to
which data is stored. Minimizing the number of handles that will be created
during a request was a major priority in our implementation.

Title Suppressed Due to Excessive Length 7

2.2 Rule Markup Language (RML)

The main focus of the proposed solution is to establish a standard model for
representing aggregation and expansion operations. For this we looked to have
a formal approach in parsing the XML descriptions of objects, instead of doing
the parsing inside the program. We required something simple that did not
introduce new programming techniques for the user, but was sufficient to solve
the issues presented in the previous subsection.

The RML that we studied provided the best solution for this. The un-
derlying idea of this tool is to specify transformations in XML documents by
means of rules which are formulated in a problem domain XML vocabulary
of choice. These rules consist of a mix of XML from the problem domain and
the Rule Markup Language. The output produced by this tool remains in the
same XML format that we intend to use for the aggregation operation. The
RML approach re-uses the problem domain XML as much as possible, with
a “programming by example” technique. With this ruleaASbased approach it
becomes possible to define transformations in a much simpler way than for
example XSLT the official W3C Recommendation for XML transformations.

Another solutions refer to the rules implicitly embedded in Web pages [13]
or a single general rule language (REWERSE 11 Rule Markup Language -
R2ML), which processes everything in a uniform manner.

Our purpose is to add a set of XML constructs to our XML vocabulary
that represents an application’s objects and define define RML rules for that
XML vocabulary. Specific RML tools can execute these rules, to transform the
input XML according to the rule definition.

2.3 Aggregation Solutions

When applied to the web, aggregation finds applications in meta-searching,
search engine comparison, spam fighting and word association techniques [2],
and reduces communication overhead [24].

In the first solution in [9] a method for aggregating web-service data is
presented. This framework employs a set of interconnected aggregation nodes,
which cooperate with each other to execute client requests. This aggregation
solution provides great response times and high throughput when requests
involve a large number of aggregation nodes with each one handling a low
number of requests. However if the request load is not distributed uniformly
and a low number of aggregation nodes are used the throughput and perfor-
mance are very low.

The second solution [23] evaluates the interfaces and implementations for
user-defined aggregation in several state of the art distributed computing sys-
tems. The User-defined aggregation in Hadoop implementations make user
responsible for understanding the defined types and using casts or access func-
tions to fill in the required fields. This apparently adds a lot of complexity to
trivial computation, however for more complicated aggregation functions the

8 Vlad Serbanescu et al.

overhead of casting between system types is less noticeable, and the benefits of
having access to a full-featured high-level language, in this case Java, will be
more apparent. The interfaces of User-defined aggregation in a database show
the benefits that built-in database functions have when writing an aggregation
method, but also the limits of database languages when user-defined functions
and types are more complex.

Another solution [7] presents the collective operations implemented in MPI.
These operations process data over several processors using functions like
MPI-Bcast, MPI-Scatter or MPI-Gather and even aggregate data using MPI-
Reduce. These collective functions can also be used to work on a shared object
such as a file using MPT collective I/O. The main advantage of these opera-
tions is that processes can return from an aggregating call without waiting
for the completion of other processes. However,to ensure good response times
several request scheduling algorithms have to be tested for a specific problem
that uses MPI collective 1/0.

Using BlobSeer for an aggregation solution allows the convenient placing
of objects to train the DDAS for future operations. The system organizes data
in BLOBS, marking each storage operation with a new version, it can prove
very effective in the complex aggregation process. With a model that collects
objects that match common attributes, our service will send data to BlobSeer
such that all retrieval and aggregation operations for a specific pattern will be
reduced to reading data from the right location in BlobSeer.

3 Distributed Data Aggregation Service Model

In this section we present the application of a formal method to our expansion
and aggregation schemes using the Rule Markup Language. As in our previous
work, the main schemes remain the identical like the following XML format
with a small modification because RML work on attributes and their names
so all values of elements have to be attribute names:

<?xml version = "1.0" 7>
<root>

<key value ="2082445" />
<type value = "bib" />
<dl name = "acm" />

<entry value = "
@inproceedings{2082445,
author = {Potlog, Alina-Diana and Xhafa, Fatos and
Pop, Florin and Cristea, Valentin},
title = {Evaluation of Optimistic Replication Techniques for
Dynamic Files in P2P Systems},
booktitle = {3PGCIC’11: Proceedings of the 2011 Int.
Conference on P2P, Parallel, Grid, Cloud and
Internet Computing},
year = {2011},

Title Suppressed Due to Excessive Length 9

pages = {259--265},
publisher = {IEEE Computer Society},
address = {Washington, DC, USA},
} n
/>

</root>

The first simplification comes with expansion schemes. As attributes are
expanded from the entry, they are added with the same expansion scheme
instead of creating separate schemes for different attributes.

The main focus of the application is now the attributes it needs to ag-
gregate on, making it easier for a client to associate future aggregation rules
with existing aggregation schemes. For example the previous scheme with the
"author" and "publisher" added would look like the following:

<?xml version = "1.0" 7>
<root>
<key value = "2082445" />
<type value = "bib" />

<dl name = "acm" />

<author name = "Potlog, Alina-Diana" />

<author name = "Xhafa, Fatos"/>

<author name = "Pop, Florin" />

<author name = "Cristea, Valentin" />

<publisher name = IEEE Computer Society />
</root>

There will be no separate expansion schemes for just the "author" attribute
or just the "publisher" attribute. The second enhancement of the system comes
in the definition of rules for aggregation schemes. A former selection scheme
looked like this:

<?xml version = "1.0" 7>
<root>
<select>
<author name ="Pop, Florin" />
<publisher name=IEEE Computer Society />
</select>
</root>

For this simple scheme we had to expand all entries to match it or not.
Even the already expanded scheme would not actually match and an expansion
from the main scheme was required.

Furthermore, for each attribute value a separate scheme needed to be cre-
ated. With the RML tool all that is needed is to define 2 simple rules to match
the attributes "author" and "publisher" and bind the key of the object such
that it can be output if it matches.

10 Vlad Serbanescu et al.

<div class = "rule">
<div class = "antecedent">
<root>
<key value = "rml-A">

<author name ="Pop, Florin" />
<publisher name=IEEE Computer Society />

</root>
</div>
<div class = "consequence'">
<key value = "rml-A">
</div>

</div>

This approach only constrains the application to have an agreement on the
representation of both expansion schemes and subsequent aggregation schemes
while allowing as many attributes as the user wants in the same expansion
scheme regardless of the amount of selections, exclusions and aggregation that
may be requested subsequently. This significantly reduces lookup time as all
objects are ran through the same tool on the fly, as well as main memory space
as the number of expansion schemes is reduced and the aggregation schemes
are discarded as soon as the output is generated.

In this section we present the proposed model for the Distributed Data
Aggregation Service that is implemented based on BlobSeer’s features. We de-
scribe the view that our service has on the objects that it handles. Moreover we
show how application specific objects with a certain structure are serialized in
order to interact with the storage system while at the same time maintaining
a view of their structures for all the basic and complex aggregation operations.
Also we follow the steps taken by the DDAS to process each storage and re-
trieval request. The structured objects view, object storage model and request
processing model were presented in [16].

3.1 Structured Objects View

As was presented in our related work section, we already know that BlobSeer
stores data as unstructured blobs. This feature allows our service to handle
objects of any type, however we require a method through which applications
can describe their objects before they are processed and stored by the DDAS.
The main idea is to map each object to one scheme. A scheme is represented
by a set of key-value pairs that are the properties of the object. In addition,
a scheme can have one or more reduce functions. The main scheme of an
object must contain a key that uniquely identifies the object, an entry that
is a stream that represents the object and all the properties that the objects
have in common. For example, for an application that processes publications
all objects must have four properties: a key, a format, a digital library from
which it comes and the entry containing the actual publication, and a value
associated to each of them. Therefore all objects stored in the DDAS must

Title Suppressed Due to Excessive Length 11

be mapped to this scheme. Each storing operation can also map the object
to a scheme that expands its entry property to more key-value pairs that
identify particular properties of the object.

All retrieval operations imply an input scheme which the DDAS uses to
identify all of the objects requested. This is known as an aggregation scheme
and requires a lookup on all the objects stored the first time this operation is
called on the DDAS.

3.2 Object Storage

With a model for retaining each object’s structure, the DDAS can store the
main scheme of an object into BlobSeer. The DDAS is now responsible for
mapping the key of the object to the meta information that points the the
object’s main scheme in BlobSeer and maintains a catalogue for all these map-
pings known as the object catalogue. Furthermore it maintains a catalogue
of all recurring aggregation schemes that are each mapped to a list of object
meta information that expand to that scheme. This catalogue is known as the
metadata catalogue.

Finally we attempt to spread objects into blobs as evenly as possible by
storing objects that map to a new scheme in a new BLOB, unless the object has
already been stored and already fits an existing scheme. This means that when
a retrieval operation is requested based on an aggregation scheme, most objects
that fit the scheme in the metadata catalogue is stored in the same BLOB.
For applications that process very large objects in size but not in numbers, the
object catalogue would not become a bottleneck due to the low number of keys,
however this catalogue is stored in a distributed manner, taking advantage of
BlobSeer’s features, for applications that deal with a growing number of small
objects that are frequently accessed and modified.

3.3 Request Processing Model

The main purpose of the DDAS is to maximize BlobSeer’s features without per-
forming extensive lookup throughout an application’s entire collection when re-
trieving data. Therefore aside from when a retrieval on an aggregation scheme
that does not exist inside the meta-catalogue, all other operations involve only
reading and writing in particular blobs of the storage system.

When a request to store new data is made, the new object is stored inside
the object catalogue. The model for processing retrieval operations simply
involves either retrieving the list inside the metadata catalogue for the scheme
requested or an entire lookup on all objects if the scheme does not exist.
Therefore the process of aggregation is continuous whenever a write operation
is completed, allowing very efficient data retrieval operations.

12 Vlad Serbanescu et al.

4 Proposed Model

The newly designed flow model (see Figure 1) undergoes several modifications
that integrate the RML tool in the system as a separate loosely coupled com-
ponent. We also supress the role of Collect Gate as parsing of XML files and
expanding them is no longer necessary, completely reducing the overhead of
this step in the aggregation process. Like all other components in the system
the RML tool will have to handle a large number of XML files to apply the
transformation, therefore we need to efficiently isolate it’s function when it
comes to input and output. The only learning mechanism that the DDAS will
now need to have is to map recurring rules to a list of unique identifiers such
that common aggregation operation won’t even need to go through the tool.

4.1 Data Back-end Storage System

The Data Backend Storage System is represented by BlobSeer, which was stud-
ied and motivated in our previous work for its excellent storage capabilities.
It stores the "entry" field of an XML file and interacts only with the DDAS
through standard read and write requests. For a read operation it accepts as
input the serialized form of the "entry" field and returns the metadata (BLOB
id, BLOB version, page, offset and size) associated to the storage location. For
a write request, it accepts the metadata pointing to the object requested and
outputs the serialized form of the object.

4.2 DDAS Overview

This component is the main result of our previous work. It represents the
mediator component between BlobSeer and all other data-management appli-
cations that require fast and reliable storage and retrieval of data; moreover it
also mediates communication with the RML tool. Its main role is to translate
between BlobSeer unstructured view of data and the XML formatted objects
that each application handles and our new tool processes. It is divided into
two layers: the metadata management layer and the extended BlobSeer client.

Regardless of the type of request or application, the upper layer uses the
RML tool to transform the schemes of the objects using the defined rule and
obtain the identifiers of the objects that match. Its role is to use these iden-
tifiers to retrieve the metadata necessary for BlobSeer. Interaction with the
RML tool is no longer required when performing a store operation.

The extension of the BlobSeer client writes data into BLOBS specified by
the information in the metadata catalogue. Each scheme is assigned a BLOB to
which new objects that fit the scheme will be stored. If an object fits more than
one scheme then all schemes will simply point to the same meta-information
and the object will only be stored in one BLOB. For an input aggregation
scheme, the DDAS either identifies it in the metadata catalogue or if it does

Title Suppressed Due to Excessive Length 13

Storage Application
on the Internet
(e.g. Digital Library)

1
1
I (1) Crawling Process
3

= = = = Flow of storage operation

Crawler Application — Flow of retrieval operation

1
I (2) Generate Set

— RML Tool
H 3] Apply
ObJeCt_SEt Transformations
XML Files
[2] Run tool
| (3) Store Request With rules and
I Object set
s bssnsssssssssssssssssss Rossssssssssssssssssssssssssssssasns .
r——_——— > Distributed Data Aggregation Service
1
1 : :
|
1
1 [5] Read [4] Read [6] Payload [1] Aggregation
I Response Request Request using rules
: (4) Write Request /
| (B)write Reply Data Backend
------- = Storage System Client
(BlobSeer)

Fig. 1 Rule Analysis and Validation Flow for DDAS.

not exist, it will request from the RML tool the list of object keys that fit the
aggregation scheme and then discard it, unless it recurrs past a threshold which
will cause the DDAS to cache it. Using the keys or the existing aggregation
scheme the service will send to the extended client the meta-information based
on which the retrieval of data from BlobSeer will be made.

4.3 RML Tool used for Validation in DDAS

This is the novel addition to the architecture that mainly simplifies the ag-
gregation process and surpresses the role of CollectGate. Because RML works
with XML formats there is no need to parse the input anymore and the tool

14 Vlad Serbanescu et al.

directly proceeds with the tranfsormation whose output will always be XML
files containing the identifiers of the objects whose input files match the given
rule. The role of this component is to perform quick searches and selections
based on a few properties and offer a standard for defining rules and object
properties that are easy to understand and follow. RML was designed to per-
form pattern matching in XML and therefore can do all aggregation operations
on the fly without the need to do any matching when new objects are stored.

4.4 Rule Analysis and Validation Flow for DDAS

We now explain how objects are handled and flow through each of the com-
ponents in Figure 1 during a request made by an application to store data
or a client to retrieve a set of objects based on an aggregation scheme. When
an application (i.e a crawler) wants to store objects it first collects a massive
amount of data from various sources. Then the application makes a storage
request to the DDAS with a large set of objects as input. Each new object can
be stored with an expansion scheme with all attributed that the application
considers significant (without the need to create more than one) and directly
written into BlobSeer. The expansion scheme in XML format, the object’s
unique identifier and its BlobSeer metadata are stored in the DDAS. These
operations will no longer be as costly despite the large amount of data being
handled, as there is no interaction with ant other component of the system.

An aggregation operation requires a client to input a rule defined in RML.
Upon receiving this rule, the DDAS looks for the rule in its cache to possbily
skip invoking the RML tool at all. If the rule is found then the list of matching
identifiers is searchedin the object catalogue to find each object’s metadata.
The extended BlobSeer client will then read the objects based on this meta
information. However, if the rule is not cached the it will be passed along with
all the expansion schemes of the objects set stored to be processed by the RML
tool. The tool will provide a list of XML files containing the identifiers of the
objects that mtch the rule and based on these identifiers the interaction with
BlobSeer will take place as previously stated. At the end of the request the
read objects from BlobSeer will be provided to the user.

5 Experimental Methodology and Results

This section describes how the modules in the architecture are implemented
and the test cases used to validate our solution. We consider the data struc-
tures used to minimize the lookup overhead introduced by the DDAS, the
mechanisms used to handle concurrent requests and how a client or applica-
tion sends requests using the schemes described in our model. We will describe
two real environment applications that will be tested on the DDAS and present
the results obtained for the first test scenario.

Title Suppressed Due to Excessive Length 15

5.1 Data Structures and Concurrency Control

A priority for data management is to handle numerous requests from multiple
clients all over the cloud, therefore our DDAS has to maintain a consistent
metadata catalogue and object catalogue. Furthermore we need to ensure fast
lookup of meta-information, especially for an existing aggregation scheme that
does not require Collect Gate’s function. Taking this into consideration we im-
plemented the DDAS using JAVA Collections designed specifically for these
requirements. The object catalogue is represented by a ConcurrentHashMap
with the object unique identifiers as keys and the meta-information of the
objects (as retrieved by the extended client) as values. Additionally, the meta-
data catalogue is represented by the same structure that maps schemes with
lists of meta-information that represent the objects which fit the scheme.

5.2 DDAS Interaction

In order for a client application to interact with the DDAS we need to provide
a formal description of the format of the input and output of schemes and
objects. We do this through the means of XML files. The main scheme that
represents an object is made up of a root tag and inner tags which represent the
object’s properties with their values as text content. All objects, independent of
the application, must have the "key" and "entry" tags. Similarly, the expansion
scheme has the same XML format, however we assert that it is significantly
smaller in size as it does not contain a tag with the entire object. These two
types of XML files are input whenever a storage operation is required with
the main object scheme as a compulsory argument and the expansion scheme
optional. The following is an example of an XML file with the scheme for a
BibTex object used in our first test scenario.

<?xml version = "1.0" 7>
<root>
<key> 2082445 </key>
<type> bib </type>
<d1> acm </d1>
<entry>
@inproceedings{2082445,
author = {Potlog, Alina-Diana and Xhafa, Fatos and
Pop, Florin and Cristea, Valentin},
title = {Evaluation of Optimistic Replication Techniques for
Dynamic Files in P2P Systems},
booktitle = {3PGCIC’11: Proceedings of the 2011 Int.
Conference on P2P, Parallel, Grid, Cloud and
Internet Computing},
year = {2011},
pages = {259--265},
publisher = {IEEE Computer Society},

16 Vlad Serbanescu et al.

address = {Washington, DC, USA},
}
</entry>
</root>

The aggregation scheme is the argument required by the retrieval request
and its XML format contains a root tag with several inner tags with explicit
names. First, the "select" tag contains inner tags with properties and val-
ues that objects must match. Second, the "exclude" tag has inner tags that
represent the values for properties that objects must not have in order to
be retrieved. Finally, the aggregation scheme can contain multiple "function"
tags which in turn have inner tags describing the property on which the func-
tion is applied, the type of the property, the number of operands on which
the function works and the result type. The function must also have a name
which is the path to one of the DDAS predefined functions. An example of an
aggregation scheme is the following:

<?xml version = "1.0" 7>
<root>
<select>
<atributel> vl </atributel>
<atribute2> v2 </atribute2>
</select>
<exclude>
<atributel> vl </atributel>
<atribute2> v2 </atribute2>
</exclude>
<function name="sum">
<property> property_name </property>
<propertyType> Int </propertyType>
<operands> 2 </operands>
<result> Integer </result>
</function>
</root>

We tested DDAS with an aggregation scenario of objects with a large size
domain ranging from 4KB to 1MB. We set the BlobSeer page size for all
operation to 1KB as to minimize the amount of padded data that will be
added to the BLOB. We obtained the results in Figure 5 for the transfer rate
of the system. We can observe that regardless of the high number of objects,
as long as the entry size is small there is no overhead in the processing of
the aggregation rules, the only spikes resulting from network communication.
The only overhead introduced in the system appears when object sizes grow
past a threshold (256KB) and this is due to the page size being too small and
implying a large number of reads and writes to BlobSeer, reducing the transfer
rate proportionally to the increasing object size.

Title Suppressed Due to Excessive Length 17

5.3 Test Scenarios and Evaluation

As we described in the previous section the DDAS is implemented on top of
BlobSeer’s meta-data management scheme and storage system. Therefore we
first needed to analyze a series of configurations involving the page size of a
BLOB in which data is stored and how varying sizes of data affect the overhead
of read and write operations. We performed tests by deploying BlobSeer on
the Grid’5000 scientific instrument [5] across 20 virtual machines located at
three different sites.

Figure 2 presents the performance times for aggregating objects of varying
dimensions (from 1KB to 64MB) with different setups of the DDAS, that is
a variation of the Page Size set in BlobSeer when writing and reading data.
As objects size grows it is evident that an operation becomes more costly at a
fine level of granularity. If the ratio between object and page size is large the
time taken to complete an aggregation operation exponentially grows due to
the overhead generated by a large number of requests for reading or writing
on multiple small pages.

180000 | AN A LN RN R LA LU BRI AL LN R RLEL R LR
Page Size = 1IKB —+— +
160000 + Page Size = 4KB [4
Page Size = 16KB —%— f.-'
140000 - Page Size = 64KB —=— /4
Page Size = 1024KB /
@ 120000 - /A
£ 100000 |- /
E
& 80000 [
w
c
£ 60000 -
40000
20000
0 ! |!|||!||||/L----/L-...
1 F4 4 8 16 32 64 128 256 512 1024 2045 4096 8192 16384 32766 65536

Data (KB)

Fig. 2 Performance times for aggregating objects of varying dimensions (from 1KB to
64MB) with different setups of the DDAS.

This evaluation is underlined by the transfer rate measurements shown
in Figure 3 for aggregating objects in the same size range. The results show
a significant growth for a Page Size of 1MB, therefore it is suitable when
aggregating large objects.

A more detailed comparison of Page Sizes is shown in Figure 4. We observe
that the transfer rate for a Page Size set at 1KB stops growing significantly
when objects go over 256KB. Similarly, for a Page Size set at 4KB the transfer

18 Vlad Serbanescu et al.

Page Size = 1KB ——
100000 ~ Page Size = 4KB .
Page Size = 16KB —%—
Page Size = 64KB —=—
80000 | Page Size = 1024KB

w
o
=3
L 60000 -
1+
4
b
[H]
£
2 40000 |- -
©
|_
A
20000 | = -
P
= g
B8 —8—a— 2 —x”j
o+— i P TP P P A i § i
1 2 4 8 16 32 &4 128 256 512 1024 2048 4006 B192 16384 32T6E 65536

Data (KB)

Fig. 3 Transfer rate for aggregating objects.

rate peaks around 2MB and 4MB, at which point it begins to decrease. Taking
into account network anomalies we can generalize that for a ratio of up to
512 between Page Size and Object Size the fine granularity does not affect
performance. After this peak in the ratio the Page Size inside BlobSeer must
be dynamically adjusted to suit the objects sizes.

1200 L S I AR L AL RN RLALIN REEL RS LLALE RARS REEAE RARE R
Page Size = 1KB ——
Page Size = 4KB
1000 ~ =
£ 800 - =
=3
3
€ 600 - i
b
2
w
c
e 400 _
|_
—
200 - /_/—4—_.,4}*— i
1l
0 | c b b e by B v b b b v b v b v b v s b v b v b sl
L 2 4 & 1E 32 &4 125 256 S1Z 1024 2045 4006 E192 16384 32TEE 65536

Data (KB)

Fig. 4 Comparison of transfer rate for different values of Page Sizes.

Title Suppressed Due to Excessive Length 19

These two measurements were performed in parallel, but we also wanted
to investigate what happens when varying the objects size only slightly with
the whole network dedicated to a client performing operations on a very fine
granularity (Page Size = 1KB). The results in Figure 5 show that aside from
a few errors due to the network the transfer rate is affected as soon as objects
grow past 256KB, even when size grows at a minimal rate.

T T T
Page Size = 1KB ——

200

150

100

Transfer Rate (KB/s)

50

0 I I I I I 1 I 1 I
0 100 200 300 400 500 600 700 800 900 1000

Data (KB)

Fig. 5 Transfer rate evolution for Page Size = 1KB. The transfer rate is affected as soon
as objects grow past 256KB.

After making a thorough analysis of the previous results we decided to
investigate how consistent the object:page ratio is and determine the range of
object sizes for which a certain page size is suitable. The results are presented
in Figure 6. For example a Page Size of 1KB is suitable for objects up to 64KB.
For objects between 64KB and 512KB a Page Size between 4 and 16 KB yields
good performance times, while a Page Size of 64KB is suitable for objects up
to 4MB. Finally we can conclude that for very large objects a Page Size of
1MB is the best setup in BlobSeer. A very important observation is that it is
not sufficient to select a large Page Size regardless of the object size due to
the fact that the Page Size determines the minimum amount of memory that
will be used by one aggregation operation.

We varied both the actual data size and the page size of the blobs and
obtained the results in Figure 6. Clearly, a large page size outputs better
response times for large size data, however an issue appears as most of the
data stored such as documents does not not pass a few KB size, therefore
a large page size would not be necessary and would be a large overhead for
numerous small objects. We established that a page size of about 4-16KB

20 Vlad Serbanescu et al.

9000 L N LR RS LA RANE LU LR RS LL T T T T
Page Size = 1KB —— +
8000 Page Size = 4KB .“I _
Page Size = 16KB —*— i
7000 |- Page Size = 64KB —&— f 4
Page Size = 1024KB {
W - .
E 6000
[n]
g 5000 | /A
% 4000 -
=
£ 3000 - =
2000 -
1000 .
0 - =t e TR TR AT T AP e
L 3 4 & 18 32 B4 128 56 512 1024 2045 4006 E192 16384 3ZTEE E5536
Data (KB)

Fig. 6 Determination the range of object sizes for which a certain page size is suitable.

would yield the best results for a large number of objects with a size up to
32KB that will be presented in the first test scenario.

5.4 Application for aggregating scientific data

Most scientific documents such as articles, books and journals has used un-
til now mostly databases to store, retrieve and aggregate data. The use of
databases allowed the maintenance of structured data in relation with at-
tributes and fast searches using indexes [17]. However this data is continu-
ously growing and has finer granularity therefore this model uses disk space
inefficiently and creates large additional data through indexes. Our tests on
the DDAS for aggregating scientific data evaluate the specific characteristics
of this applications such as the granularity for read and write operations, the
manageability of large volumes of data and how the documents remain persis-
tent over long periods of time. The results of read/write experiment presented
in Table 1 allow to establish an upper bound for data size to 10MB for 1KB
page-size blob. Additionally we look at how this specific application support
data faults using BlobSeer’s data replication scheme and how efficiently can a
large number of clients retrieve and aggregate data.

The overhead of generating new schemes on the fly is minimal while elimi-
nating the need to store schemes in temporary or permanent memory. There-
fore the RML tool needs to be replicated only to maintain reliability of the
service, and does not need to be scaled in terms of resource provisioning. Fur-
thermore, because the schemes and rules now have a standard XML format,
the DDAS is suitable for working in a federated cloud environment. The ag-

Title Suppressed Due to Excessive Length

21

Table 1 Performance times of DDAS operations

Number of concurrent requests | Read requests times | Write requests times
for 100K objects (ms) (ms)

1 26 91

10 110 137

100 831 917

1000 7521 7550

10000 93046 97165

gregation schemes output by the RML tool and sent as queries to the storage
layer can easily be formatted as context variables when requesting data from
a resource deployed on a different cloud. The RML tool is now the top layer
of the DDAS and is responsible for handling the input rules and generating
the keys which are bound to those rules and passing them to the metadata
management layer. This layer matches the keys with the metadata used for
identifying the objects in BlobSeer. Finally the BlobSeer layer retrieves the
serialized data from the physical layer.

6 Conclusions

As data management and aggregation continues to evolve in a wide spectrum
of research domains and requirements become more specific and complex, the
need for high performance solutions for data intensive applications in Large
Scale Distributed Systems grows significantly. At the same time validation of
results that can also reach Exascale dimension is required In this paper we
proposed an extension to the Distributed Data Aggregation Service (DDAS)
previously proposed using a formal method for analysing and validating the
aggregation process. We presented the new model of the DDAS in order to
ensure a high level of performance in all aspects of a data storage and aggre-
gation as well as representation of object properties. Also we emphasized again
on how several features of BlobSeer will match the constraints of our solution.

The future work will focus on testing the solution and improving the times
obtained by implementing the data structures of the DDAS in a distributed
manner. Additionally we will evaluate our solution using the second data-
intensive application described in section 5 and finally we plan to run more
tests to determine the best BlobSeer deployment configuration for a specific
data aggregation pattern.

Acknowledgment

The research presented in this paper was supported by projects: “Side DOWN:
Smart Internet Data Downloader and Aggregator”, ID: PN-II-IN-CI-2012-1-
0324; CyberWater grant of the Romanian National Authority for Scientific
Research, CNDI-UEFISCDI, project number 47/2012; MobiWay: Mobility Be-

22 Vlad Serbanescu et al.

yond Individualism: an Integrated Platform for Intelligent Transportation Sys-
tems of Tomorrow - PN-II-PT-PCCA-2013-4-0321; clueFarm: Information sys-
tem based on cloud services accessible through mobile devices, to increase
product quality and business development farms - PN-II-PT-PCCA-2013-4-
0870.

The work was developed under the DataCloud@Work associated team be-
tween KerData and Myriads teams from INRIA Rennes - Bretagne Atlan-
tique and the Computer Science Department from Politehnica University of
Bucharest

The work is partly funded by the EU project FP7-610582 ENVISAGE:
Engineering Virtualized Services (http://www.envisage-project.eu)

We would like to thank the reviewers for their time and expertise, con-
structive comments and valuable insight.

References

1. K. Aamodt et al. The ALICE experiment at the CERN LHC. JINST, 3:508002, 2008.

2. M. M. Sufyan Beg and Nesar Ahmad. Soft computing techniques for rank aggregation
on the world wide web. World Wide Web, 6(1):5-22, March 2003.

3. Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo Sousa.
Depsky: dependable and secure storage in a cloud-of-clouds. In Proceedings of the sizth
conference on Computer systems, EuroSys ’11, pages 31-46, New York, NY, USA, 2011.
ACM.

4. Andrew Brampton, Andrew MacQuire, Idris A. Rai, Nicholas J. P. Race, and Laurent
Mathy. Stealth distributed hash table: a robust and flexible super-peered dht. In
Proceedings of the 2006 ACM CoNEXT conference, CONEXT ’06, pages 19:1-19:12,
New York, NY, USA, 2006. ACM.

5. F. Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. Primet, E. Jeannot,
S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst, B. Quetier, and O. Richard.
Grid’5000: A large scale and highly reconfigurable grid experimental testbed. In Pro-
ceedings of the 6th IEEE/ACM International Workshop on Grid Computing, GRID
’05, pages 99-106, Washington, DC, USA, 2005. IEEE Computer Society.

6. Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
distributed storage system for structured data. ACM Trans. Comput. Syst., 26:4:1—
4:26, June 2008.

7. Jin Chen, Saba Sehrish, Wei-Kang Liao, Alok Choudhary, and Karen Schuchardt. Im-
proving the average response time in collective i/o. In Recent Advances in the Message
Passing Interface, LNCS 6090, pages 71-73, 2011.

8. Tristan Glatard, Johan Montagnat, and Xavier Pennec. Efficient services composition
for grid-enabled data-intensive applications. In Proceedings of the IEEE International
Symposium on High Performance and Distributed Computing, pages 333-334, June
2006.

9. Waldemar Hummer, Philipp Leitner, and Schahram Dustdar. Ws-aggregation: dis-
tributed aggregation of web services data. In Proceedings of the 2011 ACM Symposium
on Applied Computing, SAC 11, pages 1590-1597, New York, NY, USA, 2011. ACM.

10. Joost Jacob. A rule markup language and its application to uml. In Leveraging Appli-
cations of Formal Methods, pages 26-41. Springer, 2006.

11. Elis Kulla, Evjola Spaho, Fatos Xhafa, Leonard Barolli, and Makoto Takizawa. Us-
ing data replication for improving qos in manets. In Proceedings of the 2012 Seventh
International Conference on Broadband, Wireless Computing, Communication and Ap-
plications, BWCCA ’12, pages 529-533, Washington, DC, USA, 2012. IEEE Computer
Society.

Title Suppressed Due to Excessive Length 23

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage
system. SIGOPS Oper. Syst. Rev., 44:35-40, April 2010.

Jae Kyu Lee and Mye M. Sohn. The extensible rule markup language. Commun. ACM,
46(5):59-64, May 2003.

Bogdan Nicolae, Gabriel Antoniu, Luc Bougé, Diana Moise, and Alexandra Carpen-
Amarie. Blobseer: Next-generation data management for large scale infrastructures. J.
Parallel Distrib. Comput., 71:169-184, February 2011.

Mayur R. Palankar, Adriana Iamnitchi, Matei Ripeanu, and Simson Garfinkel. Amazon
s3 for science grids: a viable solution? In Proceedings of the 2008 international workshop
on Data-aware distributed computing, DADC ’08, pages 55—64, New York, NY, USA,
2008. ACM.

Vlad Serbanescu, Florin Pop, Valentin Cristea, and Gabriel Antoniu. Architecture of
distributed data aggregation service. In Proceedings of the 2014 IEEE 28th Interna-
tional Conference on Advanced Information Networking and Applications, AINA ’14,
pages 727—734, Washington, DC, USA, 2014. IEEE Computer Society.

Shaoxu Song and Lei Chen. Indexing dataspaces with partitions. World Wide Web,
16(2):141-170, March 2013.

A. Stam, J. Jacob, F.S. de Boer, M.M. Bonsangue, and L. van der Torre. Using xml
transformations for enterprise architectures. In Tiziana Margaria and Bernhard Steffen,
editors, Leveraging Applications of Formal Methods, volume 4313 of Lecture Notes in
Computer Science, pages 42-56. Springer Berlin Heidelberg, 2006.

Dorian Gorgan, Victor Bacu, Denisa Rodila, Florin Pop, and Dana Petcu. (2010). Ex-
periments on ESIPAATEnvironment oriented satellite data processing platform. Earth
Science Informatics, 3(4), 297-308.

Florin Pop, Claudiu Gruia, and Valentin Cristea. (2007, July). Distributed algorithm for
change detection in satellite images for Grid Environments. In Parallel and Distributed
Computing, 2007. ISPDC’07. Sixth International Symposium on (pp. 41-41). IEEE.
Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramamohanarao. A taxonomy of
data grids for distributed data sharing, management, and processing. ACM Comput.
Surv., 38, June 2006.

Fatos Xhafa, Vladi Kolici, Alina-Diana Potlog, Evjola Spaho, Leonard Barolli, and
Makoto Takizawa. Data replication in p2p collaborative systems. In Proceedings of
the 2012 Seventh International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing, 3PGCIC 12, pages 49-57, Washington, DC, USA, 2012. IEEE Computer
Society.

Yuan Yu, Pradeep Kumar Gunda, and Michael Isard. Distributed aggregation for
data-parallel computing: interfaces and implementations. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, SOSP ’09, pages 247260,
New York, NY, USA, 2009. ACM.

Ji Zhang, Xiaohui Tao, and Hua Wang. Outlier detection from large distributed
databases. World Wide Web, 17(4):539-568, July 2014.

