

 University of Groningen

A Formal Model for Compliance Verification of Service Compositions
Groefsema, Heerko; van Beest, Nick; Aiello, Marco

Published in:
Ieee transactions on services computing

DOI:
10.1109/TSC.2016.2579621

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Groefsema, H., van Beest, N., & Aiello, M. (2018). A Formal Model for Compliance Verification of Service
Compositions. Ieee transactions on services computing, 11(3), 466-479.
https://doi.org/10.1109/TSC.2016.2579621

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-08-2022

https://doi.org/10.1109/TSC.2016.2579621
https://research.rug.nl/en/publications/261afdb8-cc8f-4509-bfcc-54315323a2ff
https://doi.org/10.1109/TSC.2016.2579621

A Formal Model for Compliance Verification
of Service Compositions

Heerko Groefsema, Nick R. T. P. van Beest , and Marco Aiello, Senior Member, IEEE

Abstract—Business processes design and execution environments increasingly need support from modular services in service

compositions to offer the flexibility required by rapidly changing requirements. With each evolution, however, the service composition

must continue to adhere to laws and regulations, resulting in a demand for automated compliance checking. Existing approaches, if at

all, either offer only verification after the fact or linearize models to such an extent that parallel information is lost. We propose a

mapping of service compositions to Kripke structures by using colored Petri nets. The resulting model allows preventative compliance

verification using well-known temporal logics and model checking techniques while providing full insight into parallel executing

branches and the local next invocation. Furthermore, the mapping causes limited state explosion, and allows for significant further

model reduction. The approach is validated on a case study from a telecom company in Australia and evaluated with respect to

performance and expressiveness. We demonstrate that the proposed mapping has increased expressiveness while being less

vulnerable to state explosion than existing approaches, and show that even large service compositions can be verified preventatively

with existing model checking techniques.

Index Terms—Service composition, business process, compliance, verification, temporal logic, colored Petri net, Kripke structure

Ç

1 INTRODUCTION

CHANGING laws and regulations affect the way organiza-
tions conduct business, forcing them to achieve higher

flexibility and business agility. Consequently, the information
systems supporting these business processes are increasingly
composed in a modular, service-oriented way. Due to the
increasing number of business processes and their continuous
evolution, it becomes significantly more complicated to con-
tinuously ensure the compliance of these business processes
and the resulting new service compositions. For this reason,
automated compliance checking of service compositions is an
emerging field that inmany cases has become a necessity.

Compliance verification aims to prove or disprove
whether a service composition adheres to a set of rules that
has been imposed on it through, for example, laws, regula-
tions, or business policies. Where soundness verification
aims at the verification of a limited set of requirements to
verify reachability, termination, and possibly proper com-
pletion [1]—compliance verification requires verification of
a broad set of specifications.

Existing techniques perform compliance verification at
different stages of the business process lifecycle, during
process design, enactment of its composition, or diagnosis.
Monitoring techniques are deployed during process enact-
ment, utilizing the runtime trace of a service composition to

check if a model is executing correctly. Auditing techniques
are deployed during the diagnosis phase and adopt, for
example, process mining to verify if a service composition
has been executed correctly.

Naturally, monitoring and auditing techniques are after the
fact techniques, meaning that issues will only ever be detected
after they already have occurred.As a result, expensive rollbacks
are required to undo any erroneous execution before the applica-
tion of sanctions. Instead, we propose a preventative approach.
Preventative approaches are deployed during design-time, and
aim toprevent large issues fromever occurring.

However, existing preventative approaches invent new
or extended, unsupported, logics in order to maintain the
different branching constructs implemented by service
compositions [2], [3], generate transition systems with large
amounts of overhead (e.g., [4]), or lose information on
concurrency and local next invocations in the model due to
linearization [5], [6], [7].

We present a novel approach allowing preventative com-
pliance checking that supports the different branching and
merging constructs allowed by business process models and
their service compositions, while significantly reducing the
complexity of the analysis compared to other approaches. In
addition, our approach does not require new or extended log-
ics. As a result, well-known model checking techniques and
tools can be applied during verification. An initial version of
the approach was presented in [8]. An overview is given in
Fig. 1. In order to provide a design and implementation inde-
pendent formalized model, a service composition is first
formulated as a colored Petri net [9] (CPN) through the appli-
cation of workflow patterns [10]. The CPN is then translated
into a Kripke structure [11] using a novel model conversion
which maintains both parallelization information as well as
information on the next local service invocation within

� H. Groefsema and M. Aiello are with the Johann Bernoulli Institute, Faculty
of Mathematics and Natural Sciences, University of Groningen 9746, The
Netherlands. E-mail: {h.groefsema, m.aiello}@rug.nl.

� N. R.T.P. van Beest is with Data61, CSIRO, Brisbane, Australia.
E-mail: nick.vanbeest@data61.csiro.au.

Manuscript received 16 Dec. 2015; revised 12 Apr. 2016; accepted 4 June
2016. Date of publication 9 June 2016; date of current version 8 June 2018.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2016.2579621

466 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 3, MAY/JUNE 2018

1939-1374� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3199-1604
https://orcid.org/0000-0003-3199-1604
https://orcid.org/0000-0003-3199-1604
https://orcid.org/0000-0003-3199-1604
https://orcid.org/0000-0003-3199-1604
mailto:
mailto:

individual parallel branches or processes (i.e., the local next).
Since Kripke structures are transition systems used to inter-
pret temporal logics, the model allows verification of control
flow specifications over service invocations within service
compositions. Furthermore, the resulting Kripke structure
can be reduced before verification. Finally, the results of veri-
fication are interpreted on the possible CPN executions. The
resulting approach 1) is process design and implementation inde-
pendent, 2) allows for correct interpretation of temporal logic specifi-
cations, 3) provides full insight into possible parallel service
invocations, 4) provides insight into the next local service invoca-
tion, 5) supports arbitrary cycles, 6) causes limited state explosion
compared to other approaches, and 7) allows further model reduc-
tion through equivalence with respect to stuttering.

This paper extends the work reported in [8] in the follow-
ing ways: (i) it provides an extended reduction of the Kripke
structure, allowing for a significant performance improve-
ment in case of multiple complex formulas, (ii) it allows the
application of CTL instead of CTL-X, (iii) it provides a real-
life case study for validation, showing the feasibility in com-
plex scenarios in practice, (iv) it provides an evaluation on
expressive power when compared with existing conversion
approaches and, as such, shows that our approach provides
a more precise representation of process constructs, and (v)
it provides a more extensive performance evaluation.

The paper is structured as follows. First, Section 2 dis-
cusses related work. Next, Section 3 discusses a customer
support case study from the Australian telecom industry.
Section 4 introduces CPN and its formal properties. Section 5
proceeds to present the model and specification used for
verification, the translation from CPN to the verifiable
model, and further model reduction. Subsequently, Section 6
continues and presents a proof of concept of the resulting
model in the modeling language of the NuXMV model
checker. Finally, Section 7 presents an evaluation of the pro-
posed approach with respect to its expressive power and
performance, before the work is concluded in Section 8.

2 RELATED WORK

Existing preventative approaches include both formal and
informal approaches. Formal approaches utilize both a for-
mal representation of the used model and a formal specifi-
cation. Informal approaches are those that lack either a
formal representation of the used model, a formal specifica-
tion, or both. For example, [12] directly verifies temporal
logic based specifications on a service composition, without
the proper support for different branching options through
gateways, [6] takes an algorithmic approach, and [13] uti-
lizes a reduction technique which results in an incomplete
model. Instead, we propose a formal model upon which
well-known temporal logics can be applied, and a reduction

technique which only discards information on the global
immediate next invocation.

Other approaches introduce new or newly extended formal
specifications. For example, [2], and [14] both introduce new
deontics logics to formulate compliance specifications, [3] pro-
poses Temporal Process Logics (TPL), a modal propositional
logic that is able to reason about possible process executions,
[15] proposes a CTL based language, while [16] proposes a
first-order extension of LTL to verify all possible process exe-
cutions of artifact-centric systems. However, by introducing
new or extended logics the power of accomplished logics as
well as their supportingmodel checkers can not be exploited.

In order to simplify the challenge of formal preventative
compliance verification, techniques often limit their applica-
tion to acyclic models, i.e., models that do not include arbi-
trary cycles or loops. Acyclic compliance techniques include,
for example, [17], [18], [19], and [20]. Arbitrary cycles are
very powerful feature of process specifications and their ser-
vice implementations which can not simply be overlooked.
We propose an implementation where the notion of fairness
is used to allow correct verification over cycles.

Further approaches encode service composition in such a
way that a large amount of overhead is included within the
state space of the model. This effect can often be traced to
the decision of directly encoding service compositions into
the modeling language of a model checker without careful
analysis of the effect of the encoding on the internal state
machine of the model checker. Approaches include [4], [21],
[22], [23], [24], [25], [26], and [27]. For example, in [4], it is
reported that the mapping causes a simple process of five
activities and four transitions to be mapped to 201 states
and 586 transitions.

Formal preventative compliance verification is generally
achieved by obtaining a formalmodel (e.g., a Kripke structure)
from the service composition. Parallel branching constructs
are then supported by interleaving concurrently executing
branches. Some approaches, however, disregard parallel infor-
mation entirely. Such approaches include, for example, [7].

Other approaches do interleave parallel branches cor-
rectly, but interleave to such an extent that concurrent exe-
cutions are linearized entirely, parallel information is lost,
and duplicate states, with accompanying state explosion,
are introduced. Such approaches include [28], and [29]. Par-
allelism is an important aspect in any service composition
and, therefore, information towards possible parallel execu-
tion can be of particular importance to compliance verifica-
tion. We propose a model which has been designed to
minimize the state space while maintaining all temporal
relations between service invocations, including concurrent
ones. Furthermore, we show that the model can be signifi-
cantly reduced due to this interleaving.

In [22], a translation from Petri nets to Kripke structures
is proposed. By introducing intermediate states to the
Kripke structure for each transition, the approach is able to
define fairness conditions concerning the firing of transi-
tions. However, we propose a smaller and simplified map-
ping from transitions and places to states in the Kripke
structure, which provides the required domain specific
occurrence information.

Finally, [30] proposes an approach towards Petri net veri-
fication based upon net unfolding. However, the approach

Fig. 1. Overview of the approach.

GROEFSEMA ET AL.: A FORMAL MODEL FOR COMPLIANCE VERIFICATION OF SERVICE COMPOSITIONS 467

bases its verification upon the marking of the net (i.e.,
tokens at places). Instead, we are interested in the firing of
transitions. Although the enabling of transitions can be
obtained from the marking of a net, it introduces the issue
that a transition may be enabled without ever actually
occurring. Although this could be solved by simply allow-
ing only a single transition as output per place, and silent
transitions otherwise, this produces significant overhead.
As we are aiming to minimize overhead, a stronger sense of
transition enabling is required.

3 CASE STUDY: CUSTOMER SUPPORT

We present a case study from the telecom sector in Aus-
tralia, which will be used throughout this paper. First, the
business process is described. Subsequently, the rules to
which the process should comply are presented.

In order to illustrate the methodology presented in this
paper, a real case-study is used showing a customer support
process in a telecom company in Australia, as illustrated in
Fig. 2. The process is started when a complaint from a cus-
tomer is received. The complaint is registered in the system
and the customer is called back immediately or later,
depending on the urgency of the complaint. If no further
contact can be established with the customer, the complaint
is closed in the CRM system and, if it concerns a

Telecommunications Industry Ombudsman (TIO) com-
plaint, the complaint is reported.

If contact is established with the customer, the issue is
confirmed and the complaint is recorded. In case of a billing
dispute, the credit management is suspended. If the issue
can be easily resolved, the customer is informed of an offer
to resolve the issue. The customer can accept or decline. In
case the customer does not accept the offer, a new offer
can be provided if available, or the customer can escalate
the issue.

If the complaint is more complicated to resolve, the cus-
tomer is advised about the timeframes required to resolve
the issue and possible available times of the customer are
discussed. Subsequently, non-technical issues are investi-
gated and technical issues are forwarded to Level 2 (L2)
support. When a solution is available, it is presented to the
customer to be accepted or declined. If there is a possible
delay, the customer is notified.

In order to ensure good service and fair outcomes for all
consumers of telecommunications products in Australia, all
service providers whom supply telecommunications prod-
ucts to customers in Australia are required to comply to the
Telecommunications Consumer Protections (TCP) code of
conduct. The code is registered by the Australian Commu-
nications and Media Authority (ACMA), which has appro-
priate powers of enforcement. As a result, the customer
support process as described above has to comply with a
number of rules in order to meet the code of conduct. A
small number of those rules are enumerated below and
used to evaluate our methodology in Section 7.

1) Resolutions to complaints should always be checked
for acceptance with the customer, unless there is no
contact with the customer.

2) Offers are either accepted or the customer is advised
to escalate.

3) A complaint that is confirmed is recorded immed-
iately.

4) Once a complaint has been confirmed, its outcome is
always recorded.

5) Once a complaint has been confirmed, possible delays
are recorded and communicated to the customer.

6) All issues are covered prior to formulating a
resolution.

7) Escalated complaints are immediately recorded.
The following rules are not part of the TCP code, but can

be inferred to verify a number of control-flow requirements.

8) When both technical and non-technical issues are
involved in a complaint, they must be solved in
parallel.

9) After the complaint category is determined, a resolu-
tion must always be provided to the customer.

4 PETRI NETS

Service compositions can be modeled using many different
notations. Often these notations require further formaliza-
tion before formal verification can be applied. Colored Petri
Nets are a popular modeling language used to formalize
compositions. A CPN is a directed graph representing a
process. CPNs consist of places, transitions, and arcs

Fig. 2. The customer support process in BPMN notation.

468 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 3, MAY/JUNE 2018

between transition and place pairs. Transitions in CPNs rep-
resent service invocations in the service compositions, and
places, that can hold tokens, represent the state between
transitions. The previous transitions with an arc to that
place have finished execution and a next transition with an
arc from that place has been enabled. A CPN is defined as
follows [9]:

Definition 1 (Colored Petri Net). A Colored Petri Net is a
9-tuple CPN ¼ ðS; P; T;A;N;C;G;E;M0Þ, where:

� S is a finite set of non-empty types, called color sets,
� P is a finite set of places,
� T is a finite set of transitions,
� A is a finite set of arcs such that

P \ T ¼ P \A ¼ T \A ¼ ;,
� N is a node function defined from A over P�

T [T � P ,
� C is a color function defined from P into S,
� G is a guard function defined from T into expressions

such that 8t 2 T : ½TypeðGðtÞÞ ¼ Bool ^ TypeðVar
ðGðtÞÞÞ � S�,

� E is an arc expression function defined from A into
expressions such that 8a 2 A : ½TypeðEðaÞÞ ¼ Cðp
ðaÞÞMS ^ TypeðVarðEðaÞÞÞ � S� where pðaÞ is the
place of NðaÞ,

� M0, the initial marking, is a function defined on P ,
such thatMðpÞ 2 ½CðpÞ ! N�f for all p 2 P .

The CPN state, often referred to as the marking of CPN, is
a function M defined on P , such that MðpÞ 2 ½CðpÞ ! N�f
for all p 2 P . Let p be a place and t a transition. Elements of
CðpÞ are called colors. p is an input place (output place) for t iff
ðp; tÞ 2 Nððt; pÞ 2 NÞ [9]. Every CPN is paired with an initial
marking M0. Transitions of a CPN may occur in order to
change the marking of the CPN per the firing rule [9]. Places
containing tokens in a marking enable possible binding ele-
ments ðt; bÞ, consisting of a transition t and a binding b of
variables of t. A binding element is enabled if and only if
enough tokens of the correct color are present at the input
places of transition t and its guard evaluates true. More for-
mally, iff 8p 2 P : Eðp; tÞhbi � MðpÞ. An enabled binding
element may occur, changing the marking, by removing
tokens from the input places of t and adding tokens to the
output places of t as dictated by the arc evaluation function.
Then, a multiset Y of binding elements ðt; bÞ, or a step, is
enabled iff 8p 2 P :

P

ðt;bÞ2Y Eðp; tÞhbi � MðpÞ, or if the sum

of the binding elements is enabled. The occurrence of a step
Y at a marking Mi produces a new marking Mj as denoted

by Mi
Y
!Mj. All possible states of a CPN can be obtained

from the initial marking through the firing rule. Utilizing
CPNs as an intermediary form comes with the advantage
that the marking (i.e., the distribution of tokens over places)
can be seen as the process state, allowing a mapping of the
state of the composition to the system model, instead of a
mapping using the services of the composition (i.e., the tran-
sitions of the CPN).

Definition 2 (Reachability Graph). The reachability graph
(RG) of a CPN with markings M0; . . . ;Mn is a rooted directed
graph G ¼ ðV;E; v0Þ, where:

� V ¼ fM0; . . . ;Mng is the set of vertices
� v0 ¼ M0 is the root node
� E ¼ fðMi; ðt; bÞ;MjÞ jMi 2 V ^Mi

ðt; bÞ
��!Mjg is the

set of edges, where each edge represents the firing of a
binding element ðt; bÞ at a marking Mi such that a
markingMj is produced.

The general approach for converting CPNs into transition
systems is used when generating the reachability graph of
the CPN (Definition 2) [31]. Starting from the initial marking
M0, states are created for each encountered marking while
enabled binding elements occur to generate new markings.
In this case, the occurrence of transitions can not be con-
cluded from the states of the transition system but only from
its relations. A discussion of the issues with respect to the
expressive power provided by the reachability graph while
applying temporal logics, and how the presented model sol-
ves those issues, is included in the evaluation section.

The customer support case is modeled using the BPMN
Business Process Diagram standard [32]. Several methods to
convert a BPMN diagram to Petri net exist, including [33].
However, in order to convert the customer support diagram
depicted in Fig. 2 to a CPN, we use a mapping based directly
upon the workflow patterns described in [10]. Patterns
within service compositions can be easily identified by its
description, motivation, context, and CPN overview. Pat-
terns are then applied together using their CPN overviews to
form the CPN of a composition. Although the graphs pre-
sented throughout this paper can, in theory, become infinite,
we assume the correct application of workflow patterns to
form sound service compositions with finite graphs. Other
modeling standards (e.g., WS-BPEL) can be used and simi-
larly converted, making the approach design and implemen-
tation specification independent. Fig. 3 depicts the CPN of
the customer support process.

5 DESIGN TIME BUSINESS PROCESS VERIFICATION

Before service compositions can be verified using model
checking, they are translated from a formal CPN into a veri-
fiable system model. The models and specifications
required for verification are labeled transition systems and
temporal logics.

5.1 Model and Specification

As the CPN state can be captured based on its marking, a
state-based labeled transition system is used as the system
model for model checking. A state-based labeled transition
system is a transition system with a labeling function over
its states, instead of (or in addition to) a labeling function
over its flow relations. A Kripke structure is such a state-
based labeled transition system [34].

Definition 3 (Kripke structure). Let AP be a set of atomic
propositions. A Kripke structure K over AP is a quadruple
K ¼ ðS; S0; R; LÞ, where:

� S is a finite set of states.
� S0 � S is a set of initial states.
� R � S � S is a transition relation such that it is left-

total, meaning that for each s 2 S there exists a state
s0 2 S such that ðs; s0Þ 2 R.

GROEFSEMA ET AL.: A FORMAL MODEL FOR COMPLIANCE VERIFICATION OF SERVICE COMPOSITIONS 469

� L : S ! 2AP is a labeling function with the set of
atomic propositions that are true in that state.

Kripke structures are often used to interpret temporal
logics. Temporal logics are formalisms that are able to rea-
son over linear- or branching-time execution paths within
system models. Linear-time temporal logics specify events
over sequences of states known as paths. A path p is an infi-
nite sequence of states p ¼ s0; s1; . . ., such that the relation
ðsi; siþ1Þ exists for every i � 0. Branching-time temporal log-
ics specify events over future states on branching paths, or
tree-like structures, where each branch represents a possible
execution path. One of the most notable branching-time

temporal logics is Computation Tree Logic (CTL) [11]. Often
used with formal verification, CTL is especially useful when
considering the different branching constructs available to
compositions.

Definition 4 (CTL syntax). The language of well-formed CTL
formulas is generated by the following grammar, assuming
p 2 AP .

f ::¼> j ? j p j ð:fÞ j ðf ^ fÞ j ðf _ fÞ j f) f j f , f j

AXf j EXf j AGf j EGf j

AFf j EFf j A½f U f� j E½f U f� j

Fig. 3. The customer support process as CPN.

470 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 3, MAY/JUNE 2018

CTL is equipped with four temporal operators:

– Xf Nexttime: f has to hold at the next state.
– Gf Globally: f has to hold on every state on

the entire subsequent path.
– Ff Future: f eventually has to hold in a future

state.
– ½f U f0� Until: f has to hold until f0, which holds

at a state on the path from the current
state or the current state itself.

Each temporal operator c in CTL is paired with an oper-
ator f over paths. Operators over paths specify whether
some or all branches possess properties starting at the cur-
rent state. CTL defines the following operators over paths:

– Ac All: c holds on all paths flowing from the
current state.

– Ec Exists: c holds on at least one path flowing
from the current state.

The semantics of CTL are defined on a Kripke structure,
which is shown formally in Appendix A. These definitions are
required to present a correct model translation from CPN to
Kripke structures, such that temporal logic formulas expressed
usingCTL can be verified upon theKripke structure.

5.2 Verifiable Model of a Colored Petri Net

Since transitions in CPN relate directly to services when
describing service compositions, a common technique for
converting CPN into transition systems entails the inclusion
of transitions as states in the transition system upon their
occurrence. While traversing the CPN from its initial mark-
ing M0, transitions are continuously added as states while
they occur. A major drawback of this technique occurs
when transitions are encountered multiple times during, for
example, the interleaving of parallel paths. In such cases,
the approach causes the inclusion of multiple copies of the
same state. Due to this, an enormous amount of duplicate
states are created. Instead, we define a verifiable model that
only includes states for each marking and each set of bind-
ing elements that are not just enabled, but will occur at that
marking. This set of parallel enabled binding elements at a
marking is formalized in Definition 5.

Definition 5 (Parallel Enabled Binding Elements). The
set of all possible parallel enabled binding elements YxðMÞ at a
marking M is the set YxðMÞ ¼ fY jY 2 YpðMÞ ^8Y 0 2
YpðMÞ : Y 6� Y 0 ^ Y 6¼ ;g, with:

� YpðMÞ ¼ fY jY 2 PðYeÞ ^8p 2 P :
P

ðt;bÞ2Y Eðp; tÞ
hbi � MðpÞg as the enabled steps of the powerset P of
YeðMÞ, and

� YeðMÞ ¼ fðt; bÞ j 8p 2 P : Eðp; tÞhbi � MðpÞg as the
set of binding elements enabled at a markingM.

In order to obtain a verifiable systemmodel from themark-
ings of a CPN, we first specify what the places containing
tokens in a marking represent. Places containing tokens at a
marking M allow binding elements to be enabled. Enabled
binding elements may occur. The enabled powerset YpðMÞ of
the enabled binding elements represents the set of possible
parallel occurrences. Then, by taking those sets that are not a
subset of other sets of the enabled powerset, we find the

different sets YxM of binding elements that may occur at that
marking. Once a binding element of such a set occurs, the
other elements of that set will occur in the future. This set,
YxðMÞ, is used in upcoming definitions to determine the dif-
ferent labelings when multiple sets of binding occurrences
can occur simultaneously at a marking while advancing
between states.

Using these conventions, we convert a colored Petri net
CPN into a Kripke structure K by creating states at each
marking Mi for each set of binding elements that can occur
concurrently at a markingMi, and then having each binding
element occur individually to find possible next states.
Although binding elements could occur simultaneously,
allowing these would only provide for additional relations,
creating shorter paths between existing states when inter-
leaving. Even though CPN could theoretically reach an infi-
nite number of markings, the use of the sound and safe
workflow patterns restrict the CPN in such a way that it
always produces a number of markings that is finite. The
verifiable system model of a business process model, called
the transition graph, is formalized in Definition 6.

Definition 6 (Transition Graph). Let AP be a set of atomic
propositions. The transition graph of a CPN with markings
M0; . . . ;Mn is a Kripke structure K ¼ ðS; S0; R; LÞ over AP ,
with:

� AP ¼ fM0; . . . ;Mng [fðt; bÞ 2 Y jY 2 fYxðM0Þ
[. . . [YxðMnÞgg

� S ¼ fsYi jY 2 YxðMiÞg
� S0 ¼ fsY

0
jY 2 YxðM0Þg

� LðsYi Þ ¼ fMig [fðt; bÞ j ðt; bÞ 2 Y g
� R ¼ fðsi; sjÞ j ðt; bÞ 2 LðsiÞ ^Mi 2 LðsiÞ ^Mj 2 LðsjÞ

^Mi

ðt; bÞ
��!Mjg

1

Definition 6 introduces a novel conversion from the
marking of the CPN where a state, which is labeled with a
binding element, can be interpreted as that binding element
currently occurring. Binding elements, however, can be
found as occurring over multiple states. A binding element
has only occurred (i.e., finished occurring) when it is occur-
ring at one state and not occurring at a next state. Binding
elements occur concurrently during interleaving of parallel
branches. In such cases, states are labeled with multiple
binding elements. Although the transition graph is a graph
containing states with labels over the markings M0; . . . ;Mn

and steps ðt; bÞ, only the steps ðt; bÞ are used as verification
propositions. When b is understood, we simply write t

(such as is the case with business process models translated
from workflow patterns where only one functional binding
b ¼ hci is used). Fig. 4 depicts the transition graph resulting
from this conversion process on the customer support CPN
depicted in Fig. 3. Although bindings are abstracted away
in the examples to increase readability, they formally do
exist in the models. As such, any information included
within the model within complex bindings, such as data, is
maintained within the transition graph (though, possibly, at
the cost of model size and performance).

1. Although Definition 6 uses elements from the definition itself to
define R (i.e., the labeling function L), this is merely done to produce a
more concise and readable definition.

GROEFSEMA ET AL.: A FORMAL MODEL FOR COMPLIANCE VERIFICATION OF SERVICE COMPOSITIONS 471

Even though states are labeled with markings M0; ;Mn,
these should not be used as propositions when verifying by
means of the transition graph. The markings are only
included in the transition graph in order to obtain a correct
model (i.e., to detect the difference between a marking
where a step ðt; bÞ is enabled without additional tokens at
places and a similar marking with additional tokens unre-
lated to ðt; bÞ). When verifying over markings, using the
well-known reachability graph is preferred. The reachabil-
ity graph can equally be obtained from the transition graph.

Definition 7 (Reachability Graph of a Transition
Graph). Let AP be a set of atomic propositions. The reachabil-
ity graph of the Transition Graph K ¼ ðS; S0; R; LÞ over AP
is a rooted directed graph G ¼ ðV;E; v0Þ, with:

� V ¼ fMi j si 2 S : Mi 2 LðsiÞg is the set of vertices
� v0 ¼ M0 j s0 2 S0 : M0 2 Lðs0Þ is the root node
� E ¼ fðMi; ðt; bÞ;MjÞ j ðsi; sjÞ 2 R ^Mi 2 LðsiÞ^

Mj 2 LðsjÞ ^ ðt; bÞ ¼ LðsiÞ n LðsjÞ nMig is the set
of edges.

Definition 7 completes the cycle of model conversions as
depicted in Fig. 5. Together with earlier definitions, Defini-
tion 7 allows a CPN to be transformed into a transition
graph, which then can be transformed back into CPN execu-
tions as described by the reachability graph.

CTL specifications can be interpreted on service compo-
sitions as depicted in Fig. 6. Compositions defined using
CPN can be simulated to obtain a transition graph upon
which the branching time temporal logic CTL can be inter-
preted. This interpretation can be understood upon the pos-
sible executions of the CPN as expressed by its reachability
graph. A formal definition of the semantics of CTL, defined
upon the reachability graph of a CPN, is provided in
Appendix B, along with the formal proof that the semantics
are sound and complete.

5.3 Model Reduction

The transition graph can be reduced before the model is ver-
ified by model checking. As model checking techniques ver-
ify models with given specifications in an exhaustive
fashion, any reduction of the model benefits performance.

Model reduction can be achieved through the removal of
unused atomic propositions and model equivalence under
the absence of the nexttime operator, otherwise known as
equivalence with respect to stuttering [35]. Equivalence
with respect to stuttering is a useful notion when consider-
ing concurrent systems– or, in our case, concurrently exe-
cuting branches. In such cases it may be dangerous to
evaluate the nexttime operator, X, as it refers to the next
global state (i.e., the typical interleaved execution of concur-
rent programs or branches) and not the next local state (i.e.,
the execution of one such program or branch) [36]. Instead,
when one considers the nexttime operator, one actually
means to describe that something occurs before other local
occurrences, which, in turn, can be specified easily using
the other operators. For example, the until operator can be
used on the transition graph to specify the next local occur-
rence (e.g., AGðt20) A½t20Ut21�Þ can be used to specify
that t20 is followed by t21 in every execution branch of the
compliant process depicted in Fig. 4). In order to offer a par-
allel interleaving safe evaluation of the nexttime operator,
any nexttime operator is parsed into an until operator. As
an additional benefit, without having to evaluate the next-
time operator, the model can be significantly reduced before
verification through the notion of equivalence with respect
to stuttering [35].

A finite Kripke structure K can be uniquely identified by
a single CTL formula FK [35]. As a result, FK can be used to
evaluate the equivalence of other Kripke structures K0 to K.
When considering FK without nexttime operators, the
equivalence of K0 can be evaluated with respect to stutter-
ing [35]. Two Kripke structures K and K0 are equivalent
with respect to stuttering if all paths from the initial states
s0 2 S0 of K are stutter equivalent with the paths from the
initial states s0

0
2 S0

0
ofK0 and vice versa. Two paths are stut-

ter equivalent, as denoted by p 	st p
0, if both paths can be

partitioned into blocks of states p ¼ k0; k1; . . . and
p0 ¼ k0

0
; k0

1
; :: such that 8s 2 ki; 8s

0 2 k0i : LðsÞ ¼ Lðs0Þ for
i � 0 [37].

To reduce the model, first those atomic propositions not
used by specifications, with the exception of those relating
to events, are removed. Then, the atomic propositions
related to markings are removed from the labels of all states
and the set AP such that Mi 62 AP and 8s 2 S : Mi 62 LðsÞ
for 0 � i � n. Finally, a stutter equivalent model with
respect to the used atomic propositions is obtained.

Fig. 4. The customer support process as a Kripke structure.

Fig. 5. Model conversion.

Fig. 6. Specification interpretation.

472 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 3, MAY/JUNE 2018

Although the removed labels are needed during the conver-
sion process to ensure unique states to be generated, they
can be removed at this point because they are not used by
specifications or because specifications should only be
expressed using bindings on activities or events of the busi-
ness process (i.e., transitions) and not its progression infor-
mation (i.e., marking). Note that the reduction is only
possible after the removal of the progression information.
Because of this, reduction can only be accomplished after
obtaining the transition graph.

Fig. 7 depicts the stutter equivalent model of the Kripke
structure depicted in Fig. 4 after the removal of the unused
atomic propositions. Note that several unlabeled states
remain. These can not be removed, as it would affect the
evaluation of formulas (e.g., AGðt19) A½ðt19 _ t21 _ t22Þ
U t23�Þwould incorrectly evaluate true).

6 PROOF OF CONCEPT IMPLEMENTATION

Model checkers verify systems defined in the modeling lan-
guage of the model checker. These modeling languages
range from forms of programming code, which are then
translated to transition systems, to simple transition systems
themselves. In order to provide a proof of concept and pro-
vide verification results using the presented models, the
Kripke structure is automatically translated into the model-
ing language of a well-known model checker and its related
specifications subsequently verified.

NuXMV [38] is a symbolic model checker supporting
both CTL and LTL based formulas. The modeling language
of NuXMV allows the user to specify a state-based labeled
transition system for verification directly, which is highly
preferred when implementing a Kripke structure.

For the purpose of implementing a Kripke structure, the
modeling language of NuXMV consists of a module with
four distinct blocks. The first, VAR, defines the states of the
transition system. The second, DEFINE, specifies each vari-
able and assigns them to the states in which they are true.
The third, ASSIGN, first defines the set of initial states and
then specifies next states using the next function. In the final
block, a set of temporal logic formulas and fairness

conditions is listed. In case of the implementation of a
Kripke structure M ¼ ðS; I; R; LÞ with atomic propositions
AP , the VAR block specifies all states s 2 S, the DEFINE
block specifies each variable v 2 AP and assigns it to states
s 2 S for which v 2 LðsÞ. The ASSIGN block lists the initial
states s 2 I and then specifies each relation ðs; s0Þ 2 R as
next(s) := s’. Finally, a list of temporal logic formulas and
fairness conditions is included. In order to avoid issues
with loops, a justice fairness condition is included. Justice
conditions are considered to be true infinitely many times
in fair paths. As such, infinite loops are omitted using justice
conditions which state that loops may not repeat an infinite
number of times.

Next, the customer support process, as presented in Sec-
tion 3, will be verified on compliance with respect to the
defined compliance rules. First, the informal rules specified
in Section 3 are formulated as CTL specifications as follows:

1) !E[!(t11 _ t3) U end] ^ AF(end)

2) AG(t10) AF(t13 _ t14))

3) AG(t5) A[t5 U t6])

4) AG(t5) AF(t14))

5) AG(t5) EF(t24))

6) !EF(t21 ^ t23) ^ !EF(t22 ^ t23)

7) AG(t13) A[t13 U t14])

8) EF(t21 ^ t22)

9) AG(t19) EF(t23))

Below, the customer support process is presented as a
Kripke structure within the NuXMVmodeling language.
MODULE main

VAR

state:{S0, S1, S2, S4, S5, S6, S7, S9, S10,

S11,S16,S17,

S18,S19,S20,S21,S22,S26,S28,S30,

S31,S35,S37,S43};

DEFINE

start := (state = S0);

t0 := (state = S1);

t3 := (state = S4);

t5 := (state = S9);

t6 := (state = S10);

t10 := (state = S43);

t11 := (state = S18);

t13 := (state = S20);

t14 := (state = S21);

t19 := (state = S16);

t21 := (state = S31) | (state = S37);

t22 := (state = S28) | (state = S35)

| (state = S37);

t23 := (state = S17);

t24 := (state = S26);

end := (state = S5);

loop := (state = S18) | (state = S19);

ASSIGN

init(state) := {S0};

next(state) :=

case

state = S0 : {S1};

state = S1 : {S2};

Fig. 7. The customer support process as a reduced Kripke structure w.r.t
the atomic propositions required by the compliance specifications.

GROEFSEMA ET AL.: A FORMAL MODEL FOR COMPLIANCE VERIFICATION OF SERVICE COMPOSITIONS 473

state = S2 : {S4,S9};

state = S4 : {S5,S7};

state = S5 : {S6};

state = S6 : {S6};

state = S7 : {S5};

state = S9 : {S10};

state = S10 : {S11};

state = S11 : {S16,S43};

state = S16 : {S17,S28,S30,S35};

state = S17 : {S18,S26};

state = S18 : {S19,S21};

state = S19 : {S18,S20};

state = S20 : {S21};

state = S21 : {S22};

state = S22 : {S5};

state = S26 : {S18};

state = S28 : {S17};

state = S30 : {S31};

state = S31 : {S17};

state = S35 : {S30,S37};

state = S37 : {S28,S31};

state = S43 : {S18};

esac;

FAIRNESS !loop;

CTLSPEC !E[!(t11 | t3) U end] & AF(end);

CTLSPEC AG(t10 -> AF(t13 | t14));

CTLSPEC AG(t5 -> A[t5 U t6]);

CTLSPEC AG(t5 -> AF(t14));

CTLSPEC AG(t5 -> EF(t24));

CTLSPEC !EF(t21 & t23) & !EF(t22 & t23);

CTLSPEC AG(t13 -> A[t13 U t14]);

CTLSPEC EF(t21 & t22);

CTLSPEC AG(t19 -> EF(t23));

The resulting model is subsequently offered to NuXMV
in order to automatically verify its compliance with the
rules specified in Section 3. The first two specifications
returned false, signifying compliance issues. These two
rules state that a complaint can result in multiple successive
offers and that complaints should always result in an offer
unless there is no contact with the complaining party. When
inspecting the process, it is indeed clear that offers only take
place in certain branches of the process where there has
been contact with the customer. Additionally, it is true that
the customer is informed of an offer only once, and that
when this offer is rejected customer acceptance is sought
multiple times for this offer without any possibility of revi-
sion of the offer.

7 EVALUATION

In order to demonstrate that the transition graph approach
is not only able to return valuable compliance results, but
also allows greater insight into concurrently executing
branches while limiting model size and time to generate,
the expressive power and performance of the approach are
analyzed. First, the expressive power is discussed by com-
paring the transition graph with other graphs when verify-
ing CTL formulas on different control-flow constructs.
Subsequently, the performance and complexity of the

conversion and reduction processes and the resulting model
sizes are discussed.

7.1 Expressive Power

The expressive power of the transition graph while
using CTL is evaluated through its application on four
workflow patterns [10] and compared to relevant related
work, i.e., formal cyclic preventative approaches. The
approaches are categorized into three types of graphs: the
reachability graph [31], the transition occurrence graph
similar to the approaches of [28] and [29], and a version
of the reachability graph where states are labeled with
enabled transitions (i.e., the enabled graph), similar in
effect to [30]. The control-flow constructs used for com-
parison are deferred choice, exclusive choice, parallel
split, and interleaved routing.

Fig. 8 depicts the deferred choice and exclusive choice
construct together with their representations using the
four different graphs. Although the deferred and exclusive
choice are different constructs, both fulfill a similar role; a
choice of paths depending on some event or condition.

Fig. 8. Graph comparison of the deferred and exclusive choice
constructs.

474 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 3, MAY/JUNE 2018

After the occurrence of transition a, either transition b or c
occurs. This functionality can indeed be seen in both the
transition and occurrence graphs. The enabled graph,
however, poses a problem when representing the deferred
choice. After transition a is enabled, both b and c are
enabled simultaneously. Without a way to foresee which
of these two transitions actually occurs, verification of any
logic formula on this graph can only guarantee the enabled
state of transitions and never its occurrence. Although the
reachability graph, in principle, produces correct graphs
where after the occurrence of transition a either b or c
occurs, its representation of the exclusive choice pattern
does introduce issues with verification of branching time
temporal logics. For example, the response formula
AGða) EFbÞ (a is eventually followed by b in some path)
would evaluate to false because the occurrence of a on the
lower branch which is followed only by c. While the for-
mula would evaluate true for the upper branch, it would
evaluate false in its entirety due to the false result of the
lower branch. This undesired behavior is introduced
because the reachability graph is treating the occurrence of
transition a with the boolean p evaluating true as a differ-
ent occurrence of transition a with p evaluating false. In
reality, when looking at the pattern, it is not the transition
that differs, but the conditions on the outward arcs. The
occurring transition executes the same with different val-
ues of p. Indeed, when mapping this pattern to a BPMN
model, activity a would precede the exclusive choice gate
which then splits into two paths leading to either activity
b or c. A functionality which the reachability graph clearly
does not represent correctly.

Fig. 9 depicts the parallel split/join and interleaved
routing patterns and their representations using the four
different graphs. Although the two patterns look similar,
their behavior is different. Where the parallel split/join
pattern splits into two parallel executing branches which
only synchronize at the join, the interleaved routing per-
forms some form of synchronization during execution of
each branch such that no two transitions can occur in par-
allel, but does so without inferring an explicit occurrence
order between branches. In essence, the occurrence of the
transitions on the different branches is interleaved. The
functionality of these two patterns can indeed be seen in
the transition graph. When representing the parallel split
using the transition graph, transition b and c start occur-
ring in parallel, after which either b or c has finished
occurring (i.e., has occurred) and the other remains in an
occurring state until it also has finished occurring and
synchronizes into d. Furthermore, when representing the
interleaved routing pattern, the transition graph indeed
linearizes the occurring transitions on each branch as
specified. For the remaining graphs one immediately noti-
ces an issue of expressive power. Indeed, the remaining
graphs each represent both patterns with the exact same
graph, even through the patterns behave in very different
ways. For the enabled graph this means that the inter-
leaved routing construct is not being linearized because,
naturally, both transition b and c are enabled even though
they may not occur simultaneously. In case of both the
reachability graph and the occurrence graph, the parallel
split/join construct is linearized as well. As the occur-
rence of transitions b and c is being linearized, any
parallel occurrence information as well as local next
occurrence information is lost. Where the transition graph
can be used to verify that transitions b and c can occur in
parallel by verifying the existence of both labels at one
state (i.e., EF ðb ^ cÞ), the reachability and occurrence
graphs can only be used to verify whether transitions b
and c occur until d (i.e., AGða) A½ðb _ cÞU d�). Even
when using LTL including always and exists path mecha-
nisms, specifications can only verify that sometimes tran-
sition b occurs before transition c and vice versa (i.e.,
9Gðc) FbÞ and 9Gðb) FcÞ), a specification which could
also be satisfied by a simple loop. The same is true for the
local next occurrence, which can be verified using the
transition graph by verifying whether a label holds until
the next (i.e., AGðb) E½b U d�Þ). A specification which
correctly holds for the parallel split pattern and not for
the interleaved routing pattern when considering the
transition graph. Again, the other graphs fail to capture
the difference.

As the transition graph can be used to verify parallel
and local next occurrences, it bridges a clear gap in the
expressive power required for verification of service
compositions.

Fig. 9. Graph comparison of parallel split and interleaved routing
constructs.

TABLE 1
Conversion and Reduction Algorithm Results

of the Telecom Processes

GROEFSEMA ET AL.: A FORMAL MODEL FOR COMPLIANCE VERIFICATION OF SERVICE COMPOSITIONS 475

7.2 Performance

The performance of the approach was first evaluated by
executing an implementation of Definition 6 on the case
study. Performance tests were attained using a system with
an Intel Core I7-4771 CPU at 3.50 GHz, 32 GB of memory,
running Windows 7 x64 and Java 7. The results are shown
in Table 1.

The case consists of 33 states and 48 transitions in its orig-
inal form. After reduction with respect to the relevant AP
used in the formulas, the amount of states is reduced by 27
percent and the transitions by 29 percent. However, it is
clear from the table that the required execution time for the
proposed conversion and reduction is negligible when
applied to the real-life case. The customer support process,
although consisting of a realistic amount of services, does
not comprise excessively complex control-flow structures.
In fact, it is (like many compositions), predominantly
sequential. As such, the effect on performance remains
rather limited.

As such, in order to test the limits of the algorithm with
respect to performance under increasing concurrency
within parallel branches, the approach was subsequently
evaluated by executing an implementation of Definition 6
on artificial service compositions. These artificial composi-
tions were specifically generated for performance evalua-
tion purposes by specifying a gate type, number of
branches, and branch length. The results can be found in
Tables 2 and 3.

Table 2 displays information on the performance and
results of the conversion process. Its columns describe the
case number, the composition (containing sequence/exclu-
sive/parallel branching, the number of branches n, and
number of services per branchm), the resulting Kripke struc-
ture (number of states S, relations R, and atomic propositions
AP), and the performance of the conversion algorithm.

Test cases 1-8 demonstrate that sequential compositions
and compositions including exclusive paths are of no con-
cern to the conversion performance, as they are converted
within milliseconds. However, processes including parallel
regions introduce an increased complexity. This increased

complexity is introduced due to the interleaving of concur-
rent services on parallel branches. Although the interleaving
is highly efficient due to the lack of complete linearization, it
does produce

Qn
i¼1

ðmi þ 1Þ states, where mi is the length of
branch number i out of n branches (for equal branch lengths
the complexity is ðmþ 1Þn). This is confirmed by test cases 9-
11, which show that parallel interleavings of equal sizes to
the exclusive compositions (cases 2-4) are converted within
96 milliseconds. When increasing the length of the branches
in test cases 13-14, and 18 from 5 to 50 services, the time to
convert is increased to 102 milliseconds for two branches, 1.8
seconds for three branches, and 185 seconds for four
branches. Finally, test cases 15-17 and 19-21 demonstrate
that compositions with extremely large parallel sections of
56 to 300 services are converted in 10 to 158 seconds. How-
ever, as the number of parallel branches increases, there is a
severe limit on the length of the branches supported. This is
due to the fact that the number of branches n is the largest
factor of the complexity formula. Although extremely large
interleavings require several minutes to compute, this is neg-
ligible when verifying pre-runtime.

Next, we evaluate the model reduction algorithm. Model
reduction is achieved through the removal of atomic propo-
sitions that are not relevant to specifications and equiva-
lence with respect to stuttering. In order to evaluate the
degree of reduction, we randomly remove 50 percent of
atomic propositions of the cases listed in Table 2 before
applying the reduction algorithm. Table 3 displays informa-
tion on the resulting reduced Kripke structure (number of
states S and percentage of original, relations R and percent-
age of original, and number of remaining atomic proposi-
tions AP) and the time it took to reduce the model. Note
that reduced Kripke structure sizes may vary due to the ran-
dom removal of atomic propositions.

Test cases 1-8, which contain sequential compositions and
compositions including exclusive paths, are of no concern to
the performance of the reduction algorithm either. These

TABLE 3
Reduction Algorithm Results of Compositions with n Branches

of m Activities after Reduction by 50 percent of Randomly
Chosen Atomic Propositions

TABLE 2
Conversion Algorithm Results of Compositions

with n Branches of m Activities

476 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 3, MAY/JUNE 2018

compositions are reduced within 0 to 5 milliseconds. Compo-
sitions including parallel regions display the greatest reduc-
tion results. When increasing the number of parallel
branches, reduction effects increase accordingly. Test cases 9-
11 demonstrate that parallel interleavings of average sizes are
reduced within 78 milliseconds. Increasing the length of the
branches from 5 to 50 services increases the time to reduce to
90 milliseconds, 704 milliseconds, and 37 seconds for compo-
sitionswith two, three, and four branches respectively.

The effect of model reduction displays varying results.
Because sequential compositions generate relatively simple
Kripke structures, model reduction shows limited effects
with reductions of 15 to 30 percent. For sequential composi-
tions, the worst case reduction with less than half of the AP
removed is 0 percent. Processes with parallel interleaved
paths, however, show a much larger effect with a 46 to 72
percent reduction. In this case, while the complexity of the
Kripke structures increases with additional branches, model
reduction naturally gains increased effect due to the partic-
ular applied interleaving. Because transition occurrence is
interleaved with concurrent information, and not entirely
sequentialized, reduction with regard to equivalence under
stuttering gains increased effect. With each removed atomic
proposition, a significant amount of interleaved states is
reduced. Compositions including extremely large sections
of parallel interleavings even demonstrate reductions
between 61 and 88 percent.

Although the resulting interleaving is responsible for a
state explosion, this is of little concern for compositions
with average and even large parallel areas. Normal sized
compositions are generated and ready to be verified
instantly. Extremely large parallel areas do introduce
increased complexity. However, when a limited number of
atomic propositions from these areas is used, these still can
be reduced significantly and used for verification pre-
runtime. Furthermore, when a model does turn out to be
too large for model checking, our approach allows to split
formulas into multiple sets, each resulting in a much
smaller reduced Kripke structure. Each formula set can
then be checked on its respective Kripke reduction, which
results in a significant performance gain. In this respect, the
size of the reduced model is directly related to the number
of atomic propositions used within the set of formulas.

8 CONCLUSION

A novel approach to preventative compliance checking was
presented. The presented approach goes beyond existing
approaches, which either check compliance during or after
execution, require new or extended logics unsupported by
the verification community, or directly translate to the
modeling language of a model checker causing large
amounts of overhead. Instead of requiring unsupported log-
ics to allow verification over the various branching behav-
iors of compositions, the presented approach captures the
behavior in the model itself while limiting its size, allowing
consistent and correct verification of control flow properties
over different branching constructs using well-known
branching time temporal logics.

The presented approach is independent of the design
and implementation specification. The application of CPN
and a workflow pattern mapping allows compositions

described by different specifications to be represented as
CPN. Any composition represented as a CPN through the
application of the workflow patterns can subsequently be
converted into a Kripke structure for verification through
the application of the transition graph. Note, however, that
although the transition graph represents the executions of
CPN with great effect and expressive power, it does so with
domain specific knowledge (i.e., the workflow patterns) and
may be unsuitable for use within other domains.

Evaluations on expressive power demonstrate that, other
than the generally employed transition systems, the transition
graph correctly captures well-known business process and
composition patterns. Furthermore, it maintains information
on parallel service invocations and the local next service invo-
cation: an ability which is unique to the presented approach.

Results of verification can be understood upon the possi-
ble executions of CPN, and similarly upon the possible
executions of the original compositions. Although the inter-
pretation of verification is formally presented through the
branching-time temporal logic CTL, the transition graph can
also be used in combination with the linear-time temporal
logic LTL and their superset CTL*. Definitions and proofs
regarding their semantics can be easily inferred by the reader
from those given in Appendix B for CTL. The use of CTL*
would, however, require the use of a different or updated
model checker and relatedmodeling language translation.

Evaluations on performance confirm that the conversion
algorithm performs well, even for compositions with
exceedingly large parallel regions. Moreover, very large
compositions can be significantly reduced before actual ver-
ification. Furthermore, the approach allows to split formulas
in multiple sets, each resulting in a much smaller reduced
Kripke structure. Each formula set can then be checked on
its respective Kripke reduction, which results in a signifi-
cant performance gain. As such, the size of the reduced
model is directly related to the number of atomic proposi-
tions used within the set of formulas.

The approach is particularly valuable in highly change-
able environments. Although service-oriented environ-
ments do provide the required flexibility with respect to
business process support, the automated compliance check-
ing approach presented in this paper ensures that the con-
trol flow of adapted service compositions remain compliant
with regulations.

For future work, we plan to assess the impact of the
approach, by analysing a large set of real-life compositions
and determine how often compositions are not compliant.
Furthermore, we plan to evaluate the method with domain
experts to assess the usefulness of the approach for identify-
ing and resolving compliance issues in practical scenarios.

APPENDIX A

CTL Semantics

The semantics of CTL are defined on a Kripke structure M

using the minimal set of CTL operators f:;_; EX;EG;EUg.

Definition 8 (Semantics of CTL). M; si
 f means that the
formula f holds at state si of the model M. When the model M
is understood, si
 f is written instead. The relation
 is
defined inductively as follows:

GROEFSEMA ET AL.: A FORMAL MODEL FOR COMPLIANCE VERIFICATION OF SERVICE COMPOSITIONS 477

si
 > iff si 6
 ?
si
 p iff p 2 LðsiÞ
si
 :f iff si 6
 f

si
 f _ f0 iff si
 f or si
 f0

si
 EX f iff 9ðsi; siþ1Þ 2 R j siþ1
 f

si
 EG f iff 9p ¼ si; siþ1; siþ2; . . . j
8n : ðn � 0 ^ siþn
 fÞ

si
 E½f U f0� iff 9p ¼ si; siþ1; siþ2; . . . j
9m : ðm � 0 ^ siþm
 f0

^8n : ð0 � n < m : siþn
 fÞÞ

Further CTL operators can be obtained through the fol-
lowing equivalences:

EFf � E½true U f�
AFf � :EG:f
AXf � :EX:f
AGf � :EF:f
A½f U f0� � :ðE½:f0 U :ðf _ f0Þ� _ EG:f0Þ

APPENDIX B

CTL Interpretation

The results of verification using CTL can be interpreted
upon the possible executions of the composition as
described by the CPN. The semantics of CTL on the possible
executions of a CPN (i.e., its reachability graph) using the
minimal set of CTL operators f:;_; EX;EG;EUg is defined
as follows:

Definition 9 (CTL semantics on Reachability Graph).
G; yi
 f means that the formula f holds at yi 2 YxðMiÞ of
marking Mi of the reachability graph G. When the model G is
understood, yi
 f is written instead. The steps ðt; bÞ form the
propositions of the language of CTL. When b is understood, t is
written only. The relation
 is defined inductively as follows:

yi
 ðt; bÞ iff ðt; bÞ 2 yi
yi
 :f iff yi 6
 f

yi
 f _ f0 iff yi
 f or yi
 f0

yi
 EX f iff 9p ¼ yi; yiþ1; . . . j yiþ1
 f

yi
 EG f iff 9p ¼ yi; yiþ1; yiþ2; . . . j
8n : ðn � 0 ^ yiþn
 fÞ

yi
 E½f U f0� iff 9p ¼ yi; yiþ1; yiþ2; . . . j
9m : ðm � 0 ^ yiþm
 f0

^8n : ð0 � n < m : yiþn
 fÞÞ

Let F be a set of formulas. G; yi
 F iff for each f 2 F it
holds that G; yi
 f. Then, a set of formulas F is consistent
if F 6‘ ?.

Lemma 1 (Lindenbaum’s Lemma). For each consistent set

F, there is a maximally consistent set F0 such that F � F
0. In

other words, every consistent set F can be extended to a maxi-
mally consistent set.

Lemma 2 (Truth Lemma). For any CTL formula f: G; yi
 f

iff f 2 yi.

Proof. The proof is by structural induction on f. If f con-
sists of a propositional letter ðt; bÞ then by Definition 9.
If f is in the form f1 _ f2 then by Definition 9 yi
 f1

or yi
 f2, and f1 2 yi or f2 2 yi. If f is of the form :f,
then yi 6
 f, and f 62 yi. If f is of the form EXf, then

9p ¼ yi; yiþ1; . . . j yiþ1
 f, and thus f 2 yiþ1. If f is of
the form EGf, then 9p ¼ yi; yiþ1; yiþ2 . . . j 8n :

ðn � 0 ^ yiþn
 fÞ, and thus 8n : ðn � 0 ^ f 2 yiþnÞ. The
case where f is of the form E½f1 U f2� follows
similarly. tu

Theorem 1. Every maximally consistent set F has a model, i.e.,
there is a model G and state yi such that for all f 2 F,
G; yi
 f.

Proof. Suppose that F is a consistent set. By the
Lindenbaum’s Lemma, there is a maximally consistent

set F0 such that F � F
0. Then, by the Truth Lemma, for

each f 2 F
0, we have G;F0
 f. Then, every formula in F

is true at F0 in the graph. tu

Theorem 2. If F
 f then F ‘ f.

Proof. By reductio ad absurdum, suppose that F 6‘ f. Then,
F [f:fg is consistent. By the above theorem, there is a
model of F [f:fg. Hence, F 6
 f. tu

Verification of a formula f on the possible executions
of a CPN proves that f does or does not hold at a certain
point of its execution. More specifically, a formula f may
or may not hold at a version yi 2 YxðMiÞ of marking Mi

(Definition 5). When a step ðt; bÞ holds at yi, that step is
occurring. When a formula f holds at all versions
yi 2 YxðMiÞ of a marking Mi, it can be written that
Mi
 f.

An occurrence path of a CPN is a sequence of sets of
enabled transitions that can occur concurrently p ¼ y1;

y2; . . . with yi 2 YxðMiÞ and Mi

ðti; biÞ 2 yi
�������!Miþ1 for i > 0.

Here, yi 2 YxðMiÞ (Definition 5) are versions of the marking
Mi where different sets of binding elements are enabled
(i.e., those that can occur simultaneously). A binding ele-
ment ðt; bÞ is occurring at yi iff ðt; bÞ 2 yi.

ACKNOWLEDGMENTS

We thank Doina Bucur, Artem Polyvyanyy, and Mustafa
Hashmi for their feedback, and especially thank Guido Gov-
ernatori for sharing his case study and feedback.

REFERENCES

[1] W. van der Aalst, “Workflow verification: Finding control-flow
errors using petri-net-based techniques,” in Business Process Man-
agement. Berlin, Germany: Springer, 2000, pp. 161–183.

[2] G. Governatori, Z. Milosevic, and S. Sadiq, “Compliance checking
between business processes and business contracts,” in Proc.
EDOC’06. 10th IEEE Int. Enterprise Distrib. Object Comput. Conf.,
2006, pp. 221–232.

[3] P. Bulanov, A. Lazovik, and M. Aiello, “Business process customi-
zation using process merging techniques,” in Proc. IEEE Int. Conf.
Serv.-Oriented Comput. Appl., 2011, pp. 1–4.

[4] S. Nakajima, “Verification of web service flows with model-
checking techniques,” in Proc. Int. Symp. Cyber Worlds, 2002,
pp. 378–385.

[5] Y. Choi and J. L. Zhao, “Decomposition-based verification of
cyclic workflows,” in Automated Technology for Verification and
Analysis. Berlin, Germany: Springer, 2005, pp. 84–98.

[6] S. Sadiq, M. Orlowska, and W. Sadiq, “Specification and valida-
tion of process constraints for flexible workflows,” Inf. Syst.,
vol. 30, no. 5, pp. 349–378, 2005.

[7] S. Feja, A. Speck, and E. Pulverm€uller, “Business process ver-
ification,” in Proc. GI Jahrestagung, 2009, pp. 4037–4051.

478 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 3, MAY/JUNE 2018

[8] H. Groefsema and N. van Beest, “Design-time compliance of ser-
vice compositions in dynamic service environments,” in Proc.
IEEE Int. Conf. Serv.-Oriented Comput. Appl., 2015, pp. 108–115.

[9] K. Jensen, “Coloured petri nets and the invariant method,” Theor.
Comput. Sci., vol. 14, pp. 317–336, 1981.

[10] W. van der Aalst, A. T. Hofstede, B. Kiepuszewski, and A. Barros,
“Workflow patterns,” Distrib. Parallel Databases, vol. 14, pp. 5–51,
2003.

[11] E. A. Emerson and J. Y. Halpern, “Decision procedures and
expressiveness in the temporal logic of branching time,” in Proc.
14th Annu. ACM Symp. Theory Comput., 1982, pp. 169–180.

[12] E. Pulvermueller, S. Feja, and A. Speck, “Developer-friendly veri-
fication of process-based systems,” Knowl.-Based Syst., vol. 23,
no. 7, pp. 667–676, 2010.

[13] A. Awad, G. Decker, and M. Weske, “Efficient compliance check-
ing using BPMN-Q and temporal logic,” in Proc. 6th Int. Conf. Bus.
Process Manage., 2008, pp. 326–341.

[14] S. Goedertier and J. Vanthienen, “Designing compliant business
processes with obligations and permissions,” in Proc. Int. Conf.
Bus. Proc. Manage. Workshops, 2006, pp. 5–14.

[15] C. Gerede and J. Su, “Specification and verification of artifact
behaviors in business process models,” in Proc. Serv.-Int. Conf.
Oriented Comput., 2007, vol. 4749, pp. 181–192.

[16] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu, “Automatic verifica-
tion of data-centric business processes,” in Proc. 12th Int. Conf.
Database Theory, 2009, pp. 252–267.

[17] A. Ghose and G. Koliadis, “Auditing business process compli-
ance,” in Proc. 5th Int. Conf. Serv.-Oriented Comput. 2007, pp. 169–
180.

[18] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns and
change support features - enhancing flexibility in process-aware
information systems,”Data Knowl. Eng., vol. 66, pp. 438–466, 2008.

[19] C. Favre and H. Vlzer, “Symbolic execution of acyclic workflow
graphs,” in Proc. Business Process Management, 2010, vol. 6336,
pp. 260–275.

[20] M. Montali, P. Torroni, F. Chesani, P. Mello, M. Alberti, and
E. Lamma, “Abductive logic programming as an effective technol-
ogy for the static verification of declarative business processes,”
Fund. Inf., vol. 102, no. 3-4, pp. 325–361, 2010.

[21] W. Janssen, R. Mateescu, S. Mauw, and J. Springintveld,
“Verifying business processes using SPIN,” in Proc. 4th Int. Shar.
Prog. Neonatology Workshop, 1998, pp. 21–36.

[22] T. Latvala and K. Heljanko, “Coping with strong fairness,” Fun-
dam. Inform., vol. 43, no. 1-4, pp. 175–193, 2000.

[23] R. Eshuis and R. Wieringa, “Tool support for verifying uml activ-
ity diagrams,” IEEE Trans. Softw. Eng., vol. 30, no. 7, pp. 437–447,
Jul. 2004.

[24] B. Anderson, J. V. Hansen, P. Lowry, and S. Summers, “Model
checking for E-business control and assurance,” IEEE Trans. Syst.
Man Cybern., vol. 35, no. 3, pp. 445–450, Aug. 2005.

[25] D. Bianculli, C. Ghezzi, and P. Spoletini, “A model checking
approach to verify BPEL4WS workflows,” in Proc. IEEE Int. Conf.
Serv.-Oriented Comput. Appl., 2007, pp. 13–20.

[26] O. Kherbouche, A. Ahmad, and H. Basson, “Using model check-
ing to control the structural errors in BPMN models,” in Proc.
IEEE 7th Int. Conf. Res. Challenges Inform. Sci., 2013, pp. 1–12.

[27] A. Kheldoun, K. Barkaoui, and M. Ioualalen, “Specification and
verification of complex business processes - a high-level petri net-
based approach,” in Proc. Bus. Proc. Manage., 2015, vol. 9253,
pp. 55–71.

[28] Y. Liu, S. M€uller, and K. Xu, “A static compliance-checking frame-
work for business process models,” J. IBM Syst., vol. 46, pp. 335–
361, 2007.

[29] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based verifi-
cation of web service compositions,” in Proc. 18th IEEE Int. Conf.
Autom. Softw. Eng., 2003, pp. 152–163.

[30] J. Esparza, “Model checking using net unfoldings,” in Proc. Theory
Practice Softw. Dev., 1993, vol. 668, pp. 613–628.

[31] P. Huber, A. M. Jensen, Li, L. O. Jepsen, and K. Jensen,
“Reachability trees for high-level petri nets,” Theor. Comput. Sci.,
vol. 45, no. 3, pp. 261–292, 1986.

[32] OMG, “Business process model and notation beta 1 for version
2.0,” Needham, MA, USA, 2009, http://www.omg.org/spec/
BPMN/2.0/PDF

[33] R. Dijkman, M. Dumas, and C. Ouyang, “Semantics and analysis
of business process models in bpmn,” Inform. Softw. Technol.,
vol. 50, no. 12, pp. 1281–1294, 2008.

[34] E. Clarke, O. Grumberg, and D. Peled,Model Checking. Cambridge,
MA, USA: MIT Press, 1999.

[35] M. C. Browne, E. M. Clarke, and O. Gr€umberg, “Characterizing
finite kripke structures in propositional temporal logic,” Theor.
Comput. Sci., vol. 59, no. 1-2, pp. 115–131, Jul. 1988.

[36] L. Lamport, “What good is temporal logic?” in Proc. Int. Fed.
Inform. Process. Congr., vol. 83, 1983, pp. 657–668.

[37] J. F. Groote and F. W. Vaandrager, “An efficient algorithm for
branching bisimulation and stuttering equivalence,” in Proc. Int.
Colloquium Automata Lang. Program., 1990, pp. 626–638.

[38] R. Cavada, et al., “The nuxmv symbolic model checker,” in Int.
Conf. Comput. Aided Verif., 2014, pp. 334–342.

Heerko Groefsema received the BA degree in
information and communication technology at the
Hanzehogeschool Groningen in 2004, and the BSc
and MSc degrees in computer science at the
University of Groningen in 2006 and 2008, respec-
tively. He is working toward the PhD degree at the
Distributed Systems group of the University of
Groningen, The Netherlands. His research inter-
ests include business process and service compo-
sition compliance, verification, and variability.

Nick R. T. P. van Beest received the PhD degree
in information systems from the University of Gro-
ningen, The Netherlands, in 2013. He is a
researcher at Data61, CSIRO, in Australia. He is
a visiting researcher at the Queensland Univer-
sity of Technology (Australia) and the University
of Tartu (Estonia). His research experience cov-
ers artificial intelligence, process mining, busi-
ness process compliance, knowledge-intensive
business processes, and distributed systems.

Marco Aiello received the MSc degree in engi-
neering from the University of Rome La Sapienza
cum Laude and the PhD degree in logic from the
University of Amsterdam. He is a professor of
Distributed Systems at the University of Gronin-
gen (UG), head of the Distributed Systems unit,
member of the board of the Johann Bernoulli
Institute of Mathematics and Computer Science
and member of the Board of the startup company
Nerdalize BV. Before joining the UG he was a
Lise Meitner fellow at the Technical University of

Vienna (from which he obtained the Habilitation), and assistant professor
at the University of Trento. He is a member of the IEEE.

GROEFSEMA ET AL.: A FORMAL MODEL FOR COMPLIANCE VERIFICATION OF SERVICE COMPOSITIONS 479

http://www.omg.org/spec/BPMN/2.0/PDF
http://www.omg.org/spec/BPMN/2.0/PDF

