
Service-oriented Computing and Applications manuscript No.
(will be inserted by the editor)

A Formal Model for the Interoperability of Service Clouds

Hui Ma, Klaus-Dieter Schewe,

Bernhard Thalheim, Qing Wang

Received: 7 August 2010 / Revised: 6 October 2011 / Accepted: 22 December 2011

Abstract Large-scale service-oriented computing is based on the idea that services

from various servers are combined into one distributed application. Referring to a col-

lection of services on one server as a “service cloud” the problem investigated in this

paper is to define formal high-level specifications of such distributed applications and

to enable the location of suitable services for them. Based on the language-independent

model of Abstract State Services (AS2s), which serves as a universal integrated model

for data and software as services, we extend AS2s by high-level action schemes called

“plots” as a means to specify permitted sequences of service operations. On these

grounds we develop a model for service mediators, i.e. specifications of composed ser-

vices in which service slots have to be filled by actual services, and investigate matching

conditions for slots of mediators and services. For a services to match a slot in a me-

diator, a (generalised) projection of the mediator must comply with the plot of the

service. Furthermore, the service must be semantically adequate, which requires the

use of a service ontology.

Keywords service cloud, abstract state service, service-oriented computing, service

mediation, service ontology

Hui Ma
Victoria University of Wellington, School of Engineering and Computer Science, Wellington,
New Zealand, hui.ma@ecs.vuw.ac.nz

Klaus-Dieter Schewe
Software Competence Center Hagenberg & Christian-Doppler-Laboratory for Client-Centric
Cloud Computing, Johannes-Kepler-University, Hagenberg, Austria,
kd.schewe@scch.at kd.schewe@cdcc.faw.jku.at

Bernhard Thalheim
Christian-Albrechts-University Kiel, Department of Computer Science, Kiel, Germany
thalheim@is.informatik.uni-kiel.de

Qing Wang
University of Otago, Department of Information Science, Dunedin, New Zealand,
qwang@infoscience.otago.ac.nz

2 H. Ma, K.-D. Schewe, B. Thalheim, Q. Wang

1 Introduction

A common slogan in cloud computing claims that “everything becomes a service”,

which suggests to consider cloud computing as an umbrella for service orientation in

the large with the world-wide web as the key medium. In fact, it would be possible to

consider clouds as repositories of software services that are built on top of platforms

and infrastructure services. Key differences arise with respect to ownership and usage

rights. For instance, in the “software as a service” model (SaaS) everything is owned

by the service provider, whereas in the “infrastructure as a service” model (IaaS) only

the basic hardware infrastructure is owned by provider, but used by the client, whereas

the software is owned by the client. Whether this software is again offered as a service

and thus used by others is a decision of the client who could at the same time become

a software service provider. Therefore, in this paper we adopt a loose use of the term

“service cloud” to refer to a repository of data and software services well knowing that

there is more to cloud computing than only a functional view of services.

Despite this big interest in the area, and the many ideas and systems that have

been created many fundamental questions have still not been answered. For instance,

a web service could be almost anything, a simple function, a data warehouse, or a

fully functional Web Information System, as long as it is made available via the world-

wide web. The unifying characteristic is that content, functionality and sometimes even

presentation are made available for use by human users or other services. However, the

commonly used notion of web service would not capture all of these.

1.1 Our Contribution

In this article we first extend the formal model of Abstract State Services (AS2s) by

formalising the notion of plot of a service, which specifies algebraically how a service

can be used. This was left implicit in the original work on AS2s [21]. The notion of

plot is a term adopted from the movie business that has already been used for long

time in the context of web information systems [26]. It actually captures the possible

sequencing of service operations, which is only implicitly present in the AS2 model. For

this we exploit Kleene algebras with test, which are known to be the most expressive

formalism to capture propositional process specifications. So adding plots to the AS2

model is a little new extension.

The key contribution of this paper, however, is the introduction of service media-

tors, which mediate the collaboration of services. For this we exploit plots with open

slots for services to specify intended service-based applications on a high level of ab-

straction. The novel idea is to specify service-oriented applications that involve yet

unknown component services. We then formally define matching criteria for services

that are to fill the slots. A problem in finding such matching criteria is the fact that we

would like to be able to skip component operations of services and change their order.

This enhances the work on service composition, which is already a well-explored

area in service computing with respect to services that are understood functionally. In

the AS2 model this corresponds to the service operations rather than the services as

a whole. More precisely, what we actually need to compose are “runs” of services that

are determined by the plot. What makes our contribution even more interesting is that

we investigate conditions, under which particular service operations can be removed or

A Formal Model for the Interoperability of Service Clouds 3

their order can be changed. This leads to the rather complicated matching conditions

between services and slots in mediators.

Finally, slots in mediators only make sense, if the services that could match them

are located somehow. Here we adapt the idea of a service ontology, which is already

omnipresent in the area of the semantic web, also in our previous work in [22]. In the

paper we exploit a variant of DL LITE, but other description logics could be used in

the same way.

1.2 An Application Scenario

Suppose we want to develop an integrated complete service for conference trip organi-

sation. To make it simple we anticipate only three parts: registration for the conference,

booking of accommodation and booking of the travel – for simplicity let this be only a

flight. We can imagine that for all these components web-based services exist and how

these are organised. A rough picture would be the following:

– For registration we would have to provide personal data, author information and

possible discounts, if applicable plus payment information.

– For flight booking we have to search for flights, select the most suitable one, and

provide again personal data and payment information, say credit card details.

– For accommodation booking we have to search for available hotels, select a hotel

and a room, and provide again personal data and payment information.

We observe some particularities here. For flight and accommodation booking there

may be several competing services. As we do not care which one should be used, we

would have to access these services in parallel for the search, combine the results, and

continue with one of the services only, once a selection has been made. Furthermore, all

the services involved contain redundant parts for entering personal data and credit card

details, but we only want to provide such data once. A solution might be to collect these

data locally and to push them through to the corresponding services when required.

Next we have the choice to either adopt a bottom-up or a top-down approach

to system specification. In the former case we would search for suitable services and

compose them. In the latter case we try to specify the composed system with slots

that are to be filled in by not yet known services. Let us concentrate on the top-down

aproach.

In this case we specify a mediator consisting of local components and yet unknown

services, each of which providing some service operations. In our scenario we would need

one conference registration service and several services for flight and accommodation

booking. The mediator would have to specify the flow of data in and out of the services.

Figure 7 illustrates this idea for our application scenario. It can be seen that ideally

it will be necessary that services can interact with each other, and that they employ

several service operations users or other services can interact with.

The next step would be to search for services that match the “slots” in the mediator.

For matching we have to fulfil functional conditions regarding the input and output,

conditions that refer to the application domain (so we really get flight booking services),

and conditions that align the flow of data in the mediator with those in the individual

services. Figure 4 illustrates the flow of data within the individual services, so the

projection of the data flow from the mediator must be compatible with this.

4 H. Ma, K.-D. Schewe, B. Thalheim, Q. Wang

In addition to matching slots in the mediator with suitable services we have to make

a selection, as there may be many matching services. Selection may depend on avail-

ability, performance, security, costs and other non-functional service-level agreements.

These criteria are beyond the scope of our work here.

Finally, after search and selection of suitable services we instantiate the mediator,

thus replace the slots by actual services. For our application scenario this is illustrated

in Figure 8, in which two flight booking services, but only one hotel booking service

have been assumed to be selected. This instantiation gives a sketch of a process that

solves the problem we started with. For execution there is still more work to be done.

For instance, intermediate results have to be stored somewhere, i.e. the process may

require to be extended by services docking at a yet unknown cloud. However, the paper

at hand is not concerned with refinement and final implementation of the resulting

service.

In the technical sections of this paper we will use this simple scenario to illustrate

our key contributions.

1.3 Related Work

As the research reported in this paper addresses service specification and description,

service discovery, service composition and orchestration of service-based processes, it

naturally links to commonly used technology such as the Web Services Description

Language (WSDL) [11] that takes the role of describing the parameters that are needed

to use a web service, service publishing with the use of a UDDI registry [23], which

addresses universal description, discovery and integration, service ontologies such as

WSMO, which is a full ontology language dedicated to web services [15] based on the

web services modelling framework WSMF [14], and service orchestration languages

such as BPEL.

This further links our research to the area of semantic web services, which aim at

enabling semantic search for services exploiting the idea of the semantic web [7], in

particular ontologies [16]. The work on WSDL-S extends WSDL by adding attributes,

but does not yet provide a full ontology [1], whereas WSMO is a full ontology language

dedicated to web services. Particular emphasis in semantic web services is given to

functional descriptions as e.g. in [18] and non-functional properties as e.g. in [24].

Let us take BPEL and WSDL as representatives of the state of the art to explain

the differences in our work. In a BPEL orchestration a process flow is specified, in

which individual components are web services that can be run sequentially, in parallel

or even iterated. However, the services as such appear as black boxes without being

interleaved. This implies that any service component that appears redundantly in sev-

eral component services will be used repeatedly. For instance, provision of an address

or payment details may be requested more than once. Our notion of mediator tries to

avoid this, and the key for this is the plot, which specifies the flow between service

operations. As a consequence of taking interleaving of services and thus also commu-

nication between services into the model we also need a more sophisticated notion of

service and of service composition. Every service described by WSDL can be considered

as an AS2, but the opposite does not hold.

Further to these differences to related work our view of a service cloud as a pool of

resources is also used in the meme media architecture [32], which is based on research

that already started in the second half of the 1980s. Naturally, this links our work

A Formal Model for the Interoperability of Service Clouds 5

to research on service-oriented architectures (SOA) (see e.g. [10,20]), service-oriented

computing (SOC), and web services (see e.g. [2,4,6,11]). In an effort to consolidate

and integrate research activities, the Service-Oriented Computing Research Roadmap

[25] has been proposed. Service foundations, service composition, service management

and monitoring, and service-oriented engineering have been identified as core SOC

research themes as exemplified by WSDL [11], the OASIS web services standard [4], the

UDDI standard for universal description, discovery and integration [23] and the SOAP

protocol for simple object access [30]. Web service integration has become a highly

relevant research topic [6] including transaction processing (e.g. WS-Transaction [12]

and WS-Coordination [13]).

We developed the model of Abstract State Services (AS2s) in [21] as a universal,

formal model for services. It is based on Abstract State Machines (ASMs) [9], which

have already been shown their usefulness in many areas, e.g. modelling web services

[3]. AS2s abstract from and generalise our research on Web Information Systems [26],

integrate the customised ASM thesis for database transformations [28], and base service

composition on general ideas about component-based systems engineering [27]. Thus,

AS2s provide an integrated model for data and software as a service.

Remark 1 Actually, Gurevich’s seminal work on Abstract State Machines in [17,8]

is first a language-independent clarification of the notion of (sequential) algorithm by

means of a few intuitive postulates. Then he proves that algorithms defined this way are

captured by (sequential) ASMs. As there are many formal languages that are equivalent

to ASMs, they could have been used instead, though the proof may have become much

harder. A decisive feature of ASMs is the exploitation of first-order Tarski structures for

states (as common in mathematics), which permits specifications of algorithms on any

level of abstraction, i.e. without tedious elaboration of encodings. Thus, “following the

ASM approach” means to start from a language-independent definition of services by

means of the AS2 model. As shown in our previous work, AS2s are of course captured

by a variant of ASMs, but concrete specifications could exploit any other formalism

that is equivalent.

A service ontology should contain at least a functional description of services by

means of types, and pre- and postconditions, plus a categorical description of the

application area by keywords, which can be formalised by description logics [5,33].

The choice of DL Lite is only to exemplify the key ideas. Service mediation has also

been addressed in the context of semantic web services, e.g. [31], but our model goes

further. It also extends our first tentative ideas in [29].

1.4 Outline

In Section 2 we first present a brief overview of the ideas of the AS2 model. Then we

formally introduce the notion of a plot of a service. Section 3 is dedicated to our notion

of a service cloud, which consists of several services plus a service ontology describing

them for the sake of enabling search. Section 4 contains the core contribution of this

paper, the notion of mediator plus its instantiation by services matching the mediator’s

slots. We conclude with a brief summary and outlook on future work in Section 5.

6 H. Ma, K.-D. Schewe, B. Thalheim, Q. Wang

2 A Formal Model for Services

In this section we first give a brief summary of the formal model of Abstract State

Services (AS2s) [21]. We then extend this model to make the possible flows of service

operations explicit. For this we exploit high-level action schemes, also called plots, which

are common in Web Information Systems [26]. Plots can be expressed algebraically by

Kleene algebras with tests [19], which gives a nice handle to use them for specifications

of applications that exploit multiple services.

2.1 Abstract State Services

Abstract State Services are composed of two layers: a data(base) layer and a view layer

on top of it. Both layers combine static and dynamic aspects. The assumption of an

underlying database is no restriction, as it is hidden anyway, and data services will

be formalised by views, which in the extreme case could be empty to capture pure

functional services.

Starting with the database layer and following the general approach of Abstract

State Machines (ASMs) [17] we may consider each database computation as a sequence

of abstract states, each of which represents the database (instance) at a certain point in

time plus maybe additional data that is necessary for the computation, e.g. transaction

tables, log files, etc. In order to capture the semantics of transactions we distinguish

between a wide-step transition relation and small step transition relations. A transition

in the former one marks the execution of a transaction, so the wide-step transition

relation defines infinite sequences of transactions. Without loss of generality we can

assume a serial execution, while of course interleaving is used for the implementation.

Then each transaction itself corresponds to a finite sequence of states resulting from

a small step transition relation, which should then be subject to the postulates for

database transformations [28], in particular states comprise a finite database part and

a possibly infinite algorithmic part.

Definition 1 A database system DBS consists of a set S of states, together with a

subset I ⊆ S of initial states, a wide-step transition relation τ ⊆ S ×S, and a set T of

transactions, each of which is associated with a small-step transition relation τt ⊆ S×S
(t ∈ T) satisfying the postulates of a database transformation over S.

A run of a database system DBS is an infinite sequence S0, S1, . . . of states Si ∈ S
starting with an initial state S0 ∈ I such that for all i ∈ N (Si, Si+1) ∈ τ holds,

and there is a transaction ti ∈ T with a finite run Si = S0
i , . . . , S

k
i = Si+1 such that

(Sj
i , S

j+1
i) ∈ τti holds for all j = 0, . . . , k − 1.

Figure 1 illustrates the notion of a database system with a wide-step transition

relation τ and runs of two transactions ti by means of the small-step transition relations

τti .

Views in general are expressed by queries, i.e. read-only database transformations.

Therefore, we can assume that a view on a database state Si ∈ S is given by a finite

run Si = Sv
0 , . . . , S

v
` of some database transformation v with Si ⊆ Sv

` – traditionally,

we would consider Sv
` − Si as the view. We can use this to extend a database system

by views.

In doing so we let each state S ∈ S to be composed as a union Sd∪V1∪· · ·∪Vk such

that each Sd ∪ Vj is a view on Sd. As a consequence, each wide-step state transition

A Formal Model for the Interoperability of Service Clouds 7

Fig. 1 Illustration of the notion of database system from Definition 1

becomes a parallel composition of a transaction and an operation that “switches views

on and off”. This leads to the definition of an Abstract State Service (AS2).

Definition 2 An Abstract State Service (AS2) consists of a database system DBS,

in which each state S ∈ S is a finite composition Sd ∪ V1 ∪ · · · ∪ Vk, and a finite set

V of (extended) views. Each view v ∈ V is associated with a database transformation

qv such that for each state S ∈ S there are views v1, . . . , vk ∈ V with finite runs

Sd = Sj
0, . . . , S

j
nj = Sd ∪ Vj of vj (j = 1, . . . , k). Each view v ∈ V is further associated

with a finite set Ov of (service) operations o1, . . . , on such that for each i ∈ {1, . . . , n}
and each S ∈ S there is a unique state S′ ∈ S with (S, S′) ∈ τ . Furthermore, if

S = Sd ∪ V1 ∪ · · · ∪ Vk with Vi defined by vi and o is an operation associated with vk,

then S′ = S′d ∪ V
′
1 ∪ · · · ∪ V ′m with m ≥ k − 1, and V ′i for 1 ≤ i ≤ k − 1 is still defined

by vi.

In a nutshell, in an AS2 we have view-extended states, and each service operation

associated with a view induces a transaction on the database, and may change or delete

the view it is associated with, and even activate other views. These service operations

are actually what is exported from the database system to be used by other systems

or directly by users. Figure 2 illustrates this notion of state in an AS2 and the effect

of applying a service operation o, which induces a transaction t.

Fig. 2 Illustration of the notion of state in Definition 2

Note that for each view v the defining query, i.e. the database transformation qv,

can be considered itself a service operation. This simply reflects the fact that data

8 H. Ma, K.-D. Schewe, B. Thalheim, Q. Wang

that is made available on the web can be extracted and stored or processed elsewhere.

In particular, we have the extreme cases of a pure data service, in which no service

operations would be associated with a view v, i.e. Ov = ∅, and a pure functional

service, in which the view v is empty.

A formalisation of database transformations is beyond the scope of this paper.

In a nutshell, the postulates require a one-step transition relation between states (se-

quential time postulate), states as (meta-finite) first-order structures (abstract state

postulate), necessary background for database computations such as complex value

constructors (background postulate), limitations to the number of accessed terms in

each step (bounded exploration postulate), and the preservation of equivalent substruc-

tures in one successor state (genericity postulate) [28].

Remark 2 We should note that this definition of services by means of postulates is

indeed language-independent. To be precise, AS2s only capture services functionally,

whereas quality aspects, domain aspects as well as agreements regarding the use of

services (ownership, rights, obligations, legal aspects, etc.) are beyod the scope of the

model. AS2s can be specified by ASMs, but they can also specified (and implemented)

by any other suitable language.

Remark 3 We should further note that the AS2 model distinguishes between services

and service operations, whereas the latter ones are quite often called already services.

The reason is that services may require interaction, in which case more than one service

operation is used.

2.2 High-Level Action Schemes

In order to use a service (expressed as an AS2) a sequence of service operations has to

be executed. However, the sequencing of several service operations in order to execute

a particular task is only left implicit in the AS2 model. We now make it explicit by

algebraic expressions called plots.

According to [26] a plot is a high-level specification of an action scheme, i.e. it spec-

ifies possible sequences of service operations in order to perform a certain task. For an

algebraic formalisation of plots in Web Information Systems (WISs) it was possible to

exploit Kleene algebras with tests (KATs [19]). Then a plot is an algebraic expression

that is composed out of elementary operations including 0, 1, and propositional atoms,

binary operators · and +, and unary operators ∗ and ,̄ the latter one being only appli-

cable to propositions. With the axioms for KATs we obtain an equational theory that

can be used to reason about plots.

Propositions and operations testing them are considered the same. Therefore, propo-

sitions can be considered as operations, and overloading of operators for operations and

propositions is consistent. In particular, 0 represents fail or false, 1 represents skip

or true, p · q represents a sequence of operations or a conjunction, if both p and q are

propositions, p + q represents the choice between p and q or a disjunction, if both p

and q are propositions, p∗ represents iteration, and p̄ represents negation.

For our purposes here, the definition of plots for AS2s requires that we leave the

purely propositional ground. The service operations give rise to elementary processes

of the form

ϕ(x) op[z](y) ψ(x,y, z),

A Formal Model for the Interoperability of Service Clouds 9

in which op is the name of a service operation, z denotes input for op selected

from the view v with op ∈ Opv, y denotes additional input from the user, and ϕ

and ψ are first-order formulae denoting pre- and postconditions, respectively. The pre-

and postconditions can be void, i.e. true, in which case they can be simply omitted.

Furthermore, also simple formulae χ(x) – again interpreted as tests checking their

validity – constitute elementary processes. With this we obtain the following definition.

Definition 3 The set of process expressions of an AS2 is the smallest set P containing

all elementary processes that is closed under sequential composition ·, parallel compo-

sition ‖, choice +, and iteration ∗. That is, whenever p, q ∈ P hold, then also pq, p‖q,
p+ q and p∗ are process expressions in P.

The plot of an AS2 is a process expression in P.

(a) for ϕ(x) op[z](y) ψ(x,y, z)

(b) for p · q

(c) for p∗

(d) for p‖q

(e) for p+ q

Fig. 3 Illustration of process expressions in Definition 3: Picture (a) shows an elementary
process with service operation op, user input y and input z selected from the defining view.
The defining view is indicated by the circle, but left anonymous. The two half circles capture the
pre- and postcondition, respectively. The other pictures (b) – (e) show sequential composition,
iteration, parallel composition and choice, respectively.

Example 1 Let us look at some very simplistic examples. For a flight booking service

we may have the following (purely sequential) plot:

get itineraries[](d) select itinerary[i]()

personal data[](t) confirm flight[](y)

pay flight[](c)

Here the parameters d, i, t, c and y represent dates, selected itinerary, traveller data,

card details, and a Boolean flag for confirmation.

Similarly, the following expression represents another plot for accommodation book-

ing:

10 H. Ma, K.-D. Schewe, B. Thalheim, Q. Wang

get hotels[](d) select hotel[h]()

select room[r]() personal data[](t)

confirm hotel[](y) pay accommodation[](c)

Here the parameters h and r represent the selected hotel and room.

Finally, the expression personal data[](t) (papers[](p) ‖ discount[](d′) payment[](c)

represents the plot of a conference registration service.

Figure 4 shows the graphical illustrations of these plots according to the legend

defined in Figure 3. ut

Fig. 4 Illustration of the plots for flight booking, accommodation booking, and conference
registration

Note that the set of all instantiations of process expressions in P still defines a

Kleene algebra with tests, but different to the work on Web Information Systems in

[26] this algebra is not finitely generated. The sequences of service operations with

instantiated parameters that are permitted by the plot define the semantics of the

AS2.

The following table summarizes the notation we used for processes:

A Formal Model for the Interoperability of Service Clouds 11

op[z](y) service operation named op with input y from the user

and input z selected from the associated view

ϕ(x) precondition for a service operation op[z](y)

ψ(x,y, z) postcondition for a service operation op[z](y)

pq sequential composition of processes p and q

p‖q parallel composition of processes p and q

p∗ iteration of process p

pq choice between processes p and q

3 Service Repositories

In order to locate services it is crucial that the service operations including the view

defining queries that are made available are provided with an adequate description,

which will allow a search engine to discover (with some certainty) the required services.

Such a description should comprise three parts:

– a functional description of input- and output types as well as pre- and post-

conditions telling in technical terms, what the service operation will do,

– a categorical description by inter-related keywords telling what the service operation

does by using common terminology of the application area, and

– a quality of service (QoS) description of non-functional properties such as availabil-

ity, response time, cost, etc.

The QoS description is not needed for service discovery and merely useful to select

among alternatives, but neither functional nor categorical description can be dispensed

with.

A functional description alone would be insufficient. For instance, a flight book-

ing service operation requires an itinerary to be selected, so the input type could

be specified as {(flight no : STRING, day : DATE , departure : TIME , class :

CHAR, price : DECIMAL)}, i.e. the input is a finite set of tuples, each of which defines

a flight number, departure day and time, the booking class and the price. The output

type could be similar with a status (confirmed, waitlisted, unavailable) added for each

flight segment, i.e. we have the type {(flight no : STRING, day : DATE , departure :

TIME , class : CHAR, price : DECIMAL, status : STRING)}. A precondition could

simply be that the selected itinerary is meaningful, i.e. flight numbers exist for the cor-

responding date and time, and are compatible. However, no meaningful post-condition

can be specified, as the output depends on the status of the (hidden) flight database.

Moreover, a booking service for railway tickets would require the same types, so the

functional description does not indicate exactly what kind of service is offered.

As for the categorical description, the terminology has to be specified. This defines

an ontology in the widest sense, i.e. we have to provide definitions of “concepts” and

relationships between them, such that each offered service becomes an instantiation of

one or several concepts in the terminology. In this way we adopt the fundamental idea

of the “semantic web”. In the following we will outline how description logics [5] can

be exploited for service description.

Remark 4 As outlined above, the key to service discovery is a description of available

services. Here we follow the already well accepted approach to exploit description logics

for this task. The reason for the use of description logics (since its very beginnings over

12 H. Ma, K.-D. Schewe, B. Thalheim, Q. Wang

30 years ago) is that they enable the definition of concepts by necessary and sufficient

conditions, and the logics are kept so simple that classification, i.e. determining sub-

sumption relationships, is decidable. Thus, a search requires a definition of the service

sought by means of a complex concept. The well-known classification algorithms for

description logics then can be used to determine all instances (in the ABox) matching

the complex concept. As this is standard, we do not repeat any of this in the paper.

Remark 5 In the following we adapt the idea of a service ontology using description

logics, which is already omnipresent in the area of the semantic web. In particular, we

exploited a variant of DL LITE, but any other description logic could be used in the

same way.

3.1 Terminologies

As outlined, the functional, categorical and QoS description of services in a cloud

requires the definition of an ontology. That is, we need a terminological knowledge layer

(aka TBox in description logics) describing concepts and roles (or relationships) among

them. This usually includes a subsumption hierarchy among concepts (and maybe

also roles), and cardinality constraints. In addition, there is an assertional knowledge

layer (aka ABox in description logics) describing individuals. Thus, services in a cloud

constitute the ABox of an ontology, while the cloud itself is defined by the TBox.

In principle, instead of TBox and ABox we could use the more classical notions of

schema and instance, and exploit any kind of data model. A query language associated

with the used data model, could then be used to find the required services. In fact,

description logics only provide rather limited logics with respect to expressiveness.

There are two major reasons for giving preference to description logics:

1. Description logics use two important relationships, which due to the restrictions

become decidable: subsumption and instantiation. Subsumption is a binary rela-

tionship between concepts (denoted as C1 v C2) guaranteeing that all instances of

the subsumed concept C1 are also instances of the subsuming concept C2. Instan-

tiation defines a binary relationship between instances in the ABox and concepts

in the TBox asserting that an element A of the ABox is an instance of a concept

C in the TBox.

Subsumption and instantiation together allow us to discover services that are more

expressive than needed, but can be projected to a service just as required.

2. Concept and role names in the TBox can be subject to similarity search by a search

engine. That is, the search engine could produce services that are similar (with a

certainty factor) to the ones required with respect to the categorical description,

and match the functional description.

Let us now look more closely into one particular description logic in the DL-Lite

family (see [5]). For this assume that C0 and R0 represent not further specified specified

sets of basic concepts and roles, respectively. Then concepts C and roles R are defined

by the following grammar:

R = R0 | R−0
A = C0 | > | ≥ m.R (with m > 0)

C = A | ¬C | C1 u C2 | C1 t C2 | ∃R.C | ∀R.C

A Formal Model for the Interoperability of Service Clouds 13

Definition 4 A terminology (or TBox) is a finite set T of assertions of the form

C1 v C2 with concepts C1 and C2 as defined by the grammar above.

Each assertion C1 v C2 in a terminology T is called a subsumption axiom. Note that

Definition 4 only permits subsumption between concepts, not between roles, though it

is possible to define more complex terminologies that also permit role subsumption.

As usual, we use the shortcut C1 ≡ C2 instead of C1 v C2 v C1. For concepts, ⊥
is a shortcut for ¬>, and ≤ m.R is a shortcut for ¬ ≥ m+ 1.R.

Definition 5 A structure S for a terminology T consists of a non-empty set O to-

gether with subsets S(C0) ⊆ O and S(R0) ⊆ O×O for all basic concepts R0 and basic

roles R0, respectively. O is called the base set of the structure.

We first extend the interpretation of basic concepts and roles and to all concepts

and roles as defined by the grammar above, i.e. for each concept C we define a subset

S(C) ⊆ O, and for each role R we define a subset S(R) ⊆ O ×O as follows:

S(R−0) = {(y, x) | (x, y) ∈ S(R0)}
S(>) = O

S(≥ m.R) = {x ∈ O | #{y | (x, y) ∈ S(R)} ≥ m}
S(¬C) = O − S(C)

S(C1 u C2) = S(C1) ∩ S(C2)

S(C1 t C2) = S(C1) ∪ S(C2)

S(∃R.C) = {x ∈ O | (x, y) ∈ S(R) for some y ∈ S(C)}
S(∀R.C) = {x ∈ O | (x, y) ∈ S(R)⇒ y ∈ S(C) for all y}

Definition 6 A model for a terminology T is a structure S, such that S(C1) ⊆ S(C2)

holds for all assertions C1 v C2 in T . A finite model, i.e. a model with a finite base

set, is also called instance or ABox associated with T .

Example 2 The general part of a service ontology could be defined by a terminology

as follows:

Service v ∃name.Identifier u ≤ 1.name u ∃address.URL u
∃offered by.Provider u ≤ 1.address u ≤ 1.offered by

u ∃defining.Query u ≤ 1.defining u ∃offers.Operation

Operation v ∃associated with.Query u ≤ 1.associated with

Data Service ≡ Query u ≥ 1.defining−

Functional Service ≡ Operation u ≥ 1.offers−

Service Operation ≡ Data Service t Functional Service

Service Operation v ∃input.Type u ≤ 1.input

∃output.Type u ≤ 1.output

Type v ∃name.Identifier u ≤ 1.name u ∃format.Format

Here we used capital first letters to indicate concept names, and lower case letters

for role names. Figure 5 illustrates this TBox. ut

14 H. Ma, K.-D. Schewe, B. Thalheim, Q. Wang

Fig. 5 Illustration of the top-level terminology for services

3.2 Functional and Categorical Description

As outlined above we expect the terminology T of a cloud to provide the functional,

categorical and QoS description of its offered services.

The functional description of a service operation consists of input- and output-

types as already indicated in Example 2, and pre- and post-conditions. For the types

we need a type system with base types and constructors. For instance, the following

grammar

t = b | > | (a1 : t1, . . . , an : tn) | {t} | [t] |
(a1 : t1)⊕ · · · ⊕ (an : tn)

describes (the abstract syntax of) a type system with a trivial type >, a non-further

specified collection of base types b, and four type constructors (·) for record types, {·}
for finite set types, [t] for list types, and ⊕ for union types. Record and union types

use field labels ai.

The semantics of such types is basically described by their domain, i.e. sets of

values dom(t). Usually, for a base type b such as Cardinal , Decimal , Float , etc. the

domain is some commonly known at most countable set with a common presentation.

The domain of the trivial type contains a single special value, say dom(>) = {⊥}. For

constructed types we obtain the domain in the usual way:

dom((a1 : t1, . . . , an : tn)) =

{(a1 : v1, . . . , an : vn) | ai ∈ dom(ti) for i = 1, . . . , n}
dom({t}) = {A | A ⊆ dom(t) finite}
dom([t]) = {[v1, . . . , vk] | vi ∈ dom(t) for i = 1, . . . , k}

dom((a1 : t1)⊕ · · · ⊕ (an : tn)) =
⋃n

i=1
{(ai : vi) | vi ∈ dom(ti)}

A Formal Model for the Interoperability of Service Clouds 15

In particular, a union type (a1 : >) ⊕ · · · ⊕ (an : >) has the domain {(a1 :

⊥), . . . , (an : ⊥)}, which can be identified with the set {a1, . . . , an}, i.e. such types

are in fact enumeration types.

It is no problem to add the specification of types to the general service terminology

as outlined in Example 2 thereby defining part of the functional description.

Example 3 We can extend the terminology in Example 2 by the following axioms for

types:

Type ≡ Base type t Trivial type t Composed type

Composed type ≡ Record t Set t List t Union

Record v ∀component.Field

Field v ∃field name.Identifier u ≤ 1.field name

u ∃type.Type u ≤ 1.type

Union v ∀component.Field

Record u Union v ⊥
Set v ∃component.Type u ≤ 1.component

List v ∃component.Type u ≤ 1.component

Set u List v ⊥

Of course, the specification of composed types impacts directly on the format, which

is defined by field names and the format for the component type(s). Nevertheless, this

constraint can be handled by the specification of ABox assertions. ut

In addition to the types, the functional description of a service operation includes

pre- and post-conditions, which are defined by (first-order) predicate formulae. These

formulae may contain further functions and predicates, which are subject to further

(categorical) description.

Example 4 The terminology in Examples 2 and 3 can be further extended by the

following axioms:

Service Operation v ∀pre.Condition u ≤ 1.pre

u ∃post.Condition u ≤ 1.post

Condition v Formula u ∀uses.(Predicate u Function)

Predicate v ∃in.Type u ≤ 1.in u ¬ ≥ 1.out

Function v ∃in.Type u ≤ 1.in u ∃out.Type u ≤ 1.out

This would complete the functional part of the terminology. ut

As shown at the beginning of this section, the functional description is insufficient

for enabling service discovery, and the QoS description is only needed as a means to

support the selection among several alternatives. The core of the service description

by means of the terminology of a cloud is the categorical description, which refers to

the standard terminology of the application area, and relates the used notions to each

other.

There are no general requirements for the categorical description, as it depends

completely on the application domain. However, it will always lead to subconcepts of

the concept Service Operation plus additional concepts and roles. It will also add more

details to the predicates and functions used in the pre- and post-conditions.

16 H. Ma, K.-D. Schewe, B. Thalheim, Q. Wang

Example 5 Let us look at booking services as required by a conference trip application

with particular emphasis on flight booking. The categorical description may consist of

the following axioms:

Booking v Service Operation u ∃initiator.Customer u
∃initiated by.Request u ∃receives.Acknowledgement

u ∃requires.Customer data u ∃requires.Payment u
∃receives.(Confirmation t Declination t Amendment)

Request v ∃object.Booking object u ∃date.DATE

Flight booking v Booking u ∀initiated by.Flight request

Flight request v Request u ∀object.Flight

Flight v Booking object u ∃number.Flight number u
∃carrier.Airline u ∃departure.Date u duration.Duration

u ∃origin.Airport u ∃destination.Airport

This specification is of course incomplete, but it shows how to proceed. That is, a

booking is defined by a service operation that is initiated by a request from a customer,

it further requires customer data and payment, and leads to an acknowledgement plus

a confirmation, declination or (suggested) amendment. The request for a booking con-

tains at least a booking object – it could contain more than one – and a date. A flight

booking is a booking that is initiated by a flight request, which is a request, in which

all booking object are flights. Flights themselves must have at least a flight number,

an airline, a departure date, a duration, and origin and destination airports. ut

3.3 Service Clouds

We are now ready to define our formal model of a service cloud as a federation of

services together with a descriptive ontology.

Definition 7 A service cloud is a finite collection {Ai | i ∈ I} of AS2s together with

their plots and a service terminology T , such that the defining queries of views and

the associated service operations of these AS2s define an instance of T .

Thus, the service terminology of a service cloud can be used to search for suitable

services that match the slots of a service mediator.

The terminology of a service cloud enables the discovery of services, as it can be

queried. However, the success of a search depends on the compatibility of the ontologies

used by the service seeker and the service provider. If there is no common understanding

of the terms used in the terminology, in particular in the categorical description, the

service seeker may apply a service, which does not deliver the required functionality.

Remark 6 As stated in the introduction, the use of the term “cloud” for a repository

of services together with semantic descriptions only refers to the functionality of the

(software) services offered by the cloud. Of course, there is more to cloud computing

than this, but for the purpose of describing a formal model of how services can be

integrated into new large-scale distributed applications this definition of service cloud

captures the most relevant aspects. Nonetheless, the agreements regarding availability,

A Formal Model for the Interoperability of Service Clouds 17

performance, costing, and even legal aspects could very well be made part of the quality

of service description in the terminology, which has no relevance for the purposes of

this paper.

Finally, the following table summarises the notation we use for terminologies:

> top concept in a terminology

⊥ bottom concept in a terminology

C1 v C2 concept C1 subsumes concept C2

C1 ≡ C2 concept C1 is extensionally equivalent to concept C2

C1 u C2 intersection of concepts C1 and C2

C1 t C2 union of concepts C1 and C2

¬C complement of concept C

∃R.C concept that has a role R leading to concept C

∀R.C concept for which all roles R lead to concept C

≥ m.R concept with at least m roles R leading to concept C

≤ m.R concept with at most m roles R leading to concept C

4 Creating Large-Scale Distributed Service-Oriented Applications

Let us now address the main problem handled in this paper, the specification and

instantiation of large-scale distributed systems exploiting services. This problem goes

beyond service composition, even more beyond the composition of service operations.

One way to create such an application would be to start from a set of known services

that are composed and extended by local components. This can be assumed to be

well-explored.

The other way is to start from a specification of the composed specification, which

can be taken as the plot of an AS2. However, in this plot we assume that most service

operations are yet unknown; we only know a categorical description for them. For

instance, some of the service operations may belong to a flight booking service, so we

have to locate corresponding services using the service ontology of a service cloud and

match them with the plot of the composed service. That is, besides search for services

we also need a notion of matching services.

The matching problem becomes particularly interesting, when we consider that

services sought may be overlapping. For instance, when combining several booking

services, each of them may contain a service operation for payment as well as one for

gathering personal data. It would be not a very interesting composed applications, if

such overlaps were not integrated. For the booking example this would mean to have

only one payment operation and gather personal data only once.

4.1 Service Mediators

With the concept of service mediators we want to capture the plot of a composed AS2.

In other words, we want to define a plot of an application that is yet to be constructed.

The key issue is that such mediators specify service operations to be searched for, which

can then be used to realise the problem at hand in a service-oriented way.

In order to capture the idea to specify service requests we relax the definition

of a plot in such a way that service operations do not have to come from the same

18 H. Ma, K.-D. Schewe, B. Thalheim, Q. Wang

AS2. Thus, in elementary processes we use prefixes to indicate the corresponding AS2,

so we obtain ϕ(x) X : op[z](y) ψ(x,y, z), in which X denotes a service slot, i.e. a

placeholder for an actual service. Apart from this we leave the construction of the set

of process expression as in Definition 3 with the only difference that also `-op〈p〉 is a

process expression, whenever p is one. Here 〈·〉 denotes a finite multiset constructor,

i.e. we consider an arbitrary number of processes running in parallel, and `-op denotes

a multiset operation, which aggregates the query results of the different processes in

the multiset.

Definition 8 A service mediator is a process expression with service slots. Further-

more, each service operation is associated with input- and output-types, pre- and post-

conditions, and a concept in a service terminology.

Figure 6 shows the graphical elements that are needed in addition to those in Figure

3 to illustrate mediators.

(a) for an aggregation operation op

(b) for multiple service slots of the
same kind

(c) for parallel execution of arbitrarily
many service operaions

(d) for execution of a single selected
service operation

Fig. 6 Illustration of mediators in Definition 8

Example 6 Let us specify a service mediator for a conference trip application, which

should combine conference registration, flight booking, and accommodation booking.

Furthermore, replicative entry of customer data should be avoided, and confirmation

of selection as well as payment should be unified in single local operations. This leads

to the following specification:

personal data[](t)

(X : papers[](p) ‖ X : discount[](d′)
(union〈Yj : get itineraries[](d)〉

Yj : select itinerary[i]() ‖
union〈Zk : get hotels[](d)〉

Zk : select hotel[h]() Zk : select room[r]())

confirm[](y)

(Yj : confirm flight[](y) ‖ Zk : confirm hotel[](y))

pay[](c)

(Yj : pay flight[](c) ‖ Zk : pay hotel[](c) ‖ X : payment[](c))

Here the slots X,Yj and Zk refer to services for conference registration, flight book-

ing, and accommodation booking, respectively, while the operations without prefix are

considered to be local. For confirmation and payment the input parameters y and c

A Formal Model for the Interoperability of Service Clouds 19

Fig. 7 Illustration of a mediator

are simply pushed through to the two booking services. This mediator is illustrated in

Figure 7 using the notation from Figure 6. ut

4.2 Service Matching

A service mediator specifies, which services are needed and how they are composed

into a new plot of a composed AS2. So we now need exact criteria to decide, when a

service matches a service slot in a service mediator.

It seems rather obvious that in such a matching criteria for all service operations

in a mediator associated with a slot X we must find matching service operations in the

same AS2, and the matching of service operations has to be based on their functional

and categorical description. The guideline is that the placeholder in the mediator must

be replaceable by matching service operations. Functionally, this means that the input

for the service operation as defined by the mediator must be accepted by the matching

service operation, while the output of the matching service operation must be suitable

to continue with other operations as defined by the mediator. This implies that we

20 H. Ma, K.-D. Schewe, B. Thalheim, Q. Wang

need supertypes and subtypes of the specified input- and output-types, respectively,

in the mediator, as well as a weakening of the precondition and a strengthening of

the postcondition. Categorically, the matching service operation must satisfy all the

properties of the concept in the terminology that is associated with the placeholder

operation, i.e. the concept associated with the matching service operation must be

subsumed by that concept.

However, the matching of service operations is not yet sufficient. We also have to

ensure that the projection of the mediator to a particular slot X results in a subplot

of the plot of the matching AS2.

Definition 9 A subplot of a plot p is a process expression q such that there exists

another process expression r such that p = q + r holds in the equational theory of

process expressions.

The projection of a mediator m is a process expression pX such that pX = πX(m)

holds in the equational theory of process expressions, where πX(m) results from m by

replacing all placeholders Y : o with Y 6= X and all conditions that are irrelevant for

X by 1.

Based on this definition it is tempting to require that the projection of a mediator

should result in a subplot of a matching service. This would, however, be too simple,

as order may differ and certain service operations may be redundant. We call such

redundant service operations phantoms.

Definition 10 If for a condition ϕ(x) appearing in a process expression p the equation

ϕ(x) = ϕ(x)op[y](z) holds, then op[y](z) is called a phantom of p.

That is, if the condition ϕ(x) holds, we may execute the operation op[y](z) (or

not) without changing the effect. Whenever p = q holds in the equational theory of

process expressions, and op[y](z) is a phantom of p with respect to condition ϕ(x), we

may replace ϕ(x) by ϕ(x)op[y](z) in q. Each process expression resulting from such

replacements is called an enrichment of p by phantoms.

Thus, we must consider projections of enrichments by phantoms, which leads us to

the following definition.

Definition 11 An AS2 A matches a service slot X in a service mediator m iff the

following two conditions hold:

1. For each service operation X : o in m there exists a service operation op provided

by A such that

– the input-type Iop of op is a supertype of the input-type Io of o,

– the output-type Oop of op is a subtype of the output-type Oo of o,

– preo ⇒ preop holds for the preconditions preo and preop of o and op, respec-

tively,

– postop ⇒ posto holds for the postconditions posto and postop of o and op,

respectively, and

– the concept Co associated with o in the service terminology subsumes the con-

cept Cop associated with op.

2. There exists an enrichment mX of m by phantoms such that building the projection

of m and replacing all service operations X : o by matching service operations op

from A results in a subplot of the plot of A.

A Formal Model for the Interoperability of Service Clouds 21

Example 7 Let us look again at the simple service mediator in Example 6. We can

assume that the local operation personal data[](t) has the postcondition person(t), and

this is invariant under the service operations for itinerary and hotel selection. We can

further assume that in both booking services the service operation personal data[](t) is

a phantom for person(t). Thus, the mediator can enriched by phantoms, which results

in:

personal data[](t)

(X : papers[](p) ‖ X : discount[](d′)
(union〈Yj : get itineraries[](d)〉

Yj : select itinerary[i]() Yj : personal data[](t) ‖
union〈Zk : get hotels[](d)〉

Zk : select hotel[h]() Zk : select room[r]())

Zk : personal data[](t)

confirm[](y)

(Yj : confirm flight[](y) ‖ Zk : confirm hotel[](y))

pay[](c)

(Yj : pay flight[](c) ‖ Zk : pay hotel[](c) ‖ X : payment[](c))

The added phantom operations are highlighted. The projection of this process

expression to the services X, Yj and Zk, respectively, results exactly in the three plots

in Example 1. ut

The following table summarises the notation we use for mediators.

X : op[z](y) service operation named op in slot X with user-input y and

input z selected from the associated view

〈Xj : op[z](y)〉 parallel run of arbitraily many service operations op of the

same kind in slots Xj

op〈. . . 〉 execution of multiset operation op aggregating the results

of the parallel run in 〈. . . 〉

4.3 Instantiation and Execution

Once matching services for all slots in a mediator have been found, we can built an

instantiation of the mediator with real services, which serves as a high-level specification

of a process that exploits several services.

Example 8 Consider again the mediator from Example 7. Suppose the slot X matches

a conference registration service Conf reg. Furthermore, let Fl book and Flight be

two service matching the slot Yj , while Hotel boo is a matching hotel booking service

for Zk. then the instantiated mediator becomes

personal data[](t)

(Conf reg : papers[](p) ‖ Conf reg : discount[](d′)
(union〈Fl book : get itineraries[](d), Flight : get itineraries[](d)〉

Fl book : select itinerary[i]() Fl book : personal data[](t) ‖ +

Flight : select itinerary[i]() Flight : personal data[](t) ‖
Hotel boo : get hotels[](d)

Hotel boo : select hotel[h]() Hotel boo : select room[r]())

22 H. Ma, K.-D. Schewe, B. Thalheim, Q. Wang

Hotel boo : personal data[](t)

confirm[](y)

((Fl book : confirm flight[](y) + Flight : confirm flight[](y)) ‖
Hotel boo : confirm hotel[](y))

pay[](c)

((Fl book : pay flight[](c) + Flight : pay flight[](c)) ‖
Hotel boo : pay hotel[](c) ‖ Conf reg : payment[](c))

This is illustrated in Figure 8.

Fig. 8 Illustration of the instantiated mediator

Informally, this plot reads as follows. Start with gathering personal data t from a

user of the composed service. This is a new operation performed locally. Then enter the

service Conf reg for conference registration. The first required service operation would

be the entering of personal data, which can be done by passing on the already collected

data, so the interaction actually continues with two service operations papers[](p) and

discount[](d′) for entering papers p and any potential discount d′ for the conference

fee. These two service operations can be accessed in parallel. With this, the interaction

with service Conf reg is already finished.

We then enter (in parallel) the services Fl book, Flight and Hotel boo for

flight and hotel booking, respectively. For the first two we first get itineraries using the

service operation get itineraries[](d), which are combined by the union operator. We

then select an itineray i, which was provided either by Fl book or Flight. Depending

on which service provided the selected itnerary, personal data are passed on to the

A Formal Model for the Interoperability of Service Clouds 23

service without involving the user, while the other service is no longer considered.

Analogously, a hotel and a room in that hotel is selected using service operations

select hotel[h]() and select room[r]()), respectively, and again personal data are passed

on.

The local operation confirm[](y) would actually have to present the selections made

and request confrmation y, which is then passed on to the corresponding service op-

erations confirm flight[](y) and confirm hotel[](y) of Fl book (or Flight) and Ho-

tel boo, respectively.

Finally, the local operation pay[](c) collects payment information and passes these

on to the involved services, which then terminate. ut

Remark 7 It is clear from the definition of mediators by means of KAT expressions

that an instantiated mediator is only a very high-level specification of a large-scale dis-

tributed application that runs several services at the same time. This becomes further

evident by Example 8. Refining and implementing such a specification would require

several add-ons. First, the involved services have to be started and terminated, which

usually involves a log-in and authentication process. Then data has to be passed from

the mediation process to the individual services, which bypass the user interaction,

i.e. a control component associated with the process is needed. Furthermore, output

from several services is combined, and a selection made by a user is passed back to the

originating services, while non-selection leads to service termination. This must also

be handled by the control component. That is, from the high-level specification of a

composed application to an executable software is still some work to be done. However,

the specification shows what is needed in the implementation.

Remark 8 We used Kleene algebras with tests to specify mediators, and thus, also

instantiations of mediators result in KAT expressions. The choice is merely motivated

by the fact that KATs have the “right” expressiveness, as we only combine service

operations, and only use their parameters in the specification. Furthermore, KAT ex-

pressions are very compact, and we can spare lengthy explanations of how to read a

specification. We could have used ASMs instead or any other formalisms that allow

us to specify processes. In particular, we could then exploit refinement in the same

framework.

5 Conclusions

In this paper we continued our work on foundations of (web-based) service-oriented

systems by extending our ASM-based model of Abstract State Services (AS2s) by a

service ontology, which permits searching for services. In doing so we observed that

for a service seeker to be able to discover a suitable service the service specification is

not sufficient nor would it be possible for a machine to understand the specification.

Similarly, a functional description by means of types, and pre- and post-conditions is

insufficient. This leads to the requirement that a description of services by means of a

service terminology is necessary, which must enrich the functional service descriptions

by keyword descriptions that describe the application area, and the available data and

functions. This can be exploited to match the requests of a service seeker with the

available services, and thus supports the semi-automatic selection of services.

24 H. Ma, K.-D. Schewe, B. Thalheim, Q. Wang

Remark 9 We believe that in order to be completely sure about service selection, the

final decision will be made by human experts. Nonetheless, the “semantic” description

of services can be useful for making a pre-selection.

The real novel contribution of this paper, however, concerns service mediation,

which we understand as the process of developing web-scale distributed applications,

in which components are realised by exploiting service including interaction with them.

We addressed the problem of service mediation starting from a high-level specification

of an intended service-oriented application, in which ”holes” are to be filled by suitable

services. This led us to the formal model of service mediators with service slots. For the

slots we provided matching conditions for services, which combine functional criteria

by means of types, and pre- and postconditions, and categorical criteria capturing the

application area. Thus, the matching conditions link to the description of services.

Furthermore, the sequencing of service operations of a matching service must com-

ply with corresponding requirements of the mediator. Therefore, we used a concept of

“plot” to define a high-level action scheme for services as well as for mediators.

With this work we add another tile to our theory, which permits the identification,

search and composition of services in order to build a web-oriented application. While

this is highly relevant to realise the vision of cloud computing on the web, there are still

many open problems regarding allocation and optimised performance, selection among

choices, and security and privacy. These open problems constitute the challenges for

our continuing research.

We intend to extend our research in various directions. As the model of AS2s is

based on database transformations, we already know that all database transformations

are captured (this was shown in [28]). It would thus be a natural consequence to

investigate AS2s that are bound to a particular data model, e.g. relational databases

or XML, and to tailor service specifications to available languages such as XQuery.

Furthermore, solid results how well a service terminology for a particular applica-

tion area can capture the service needs in that area would be desirable. The need for

optimised service selection based on quality-of-service criteria constitutes another line

of research to continue our present work. Finally, case studies applying the framework

would be helpful to gain further insights.

In the paper we used the term of a “service cloud” to refer to a collection of

services plus the necessary plots and a service terminology. While this is not a full

model for clouds, we believe that it has an impact on cloud computing. First, the top

of the cloud service stack is indeed the most relevant part. Infrastructure as a service

becomes only interesting, if the infrastructure is used to take up software services. For

platforms this is similar, and the whole stack can be understood in terms of ownership

and access rights. For the simplest form of a company using infrastructure to run their

own applications everything except the basic hardware infrastructure would be owned

by the cloud user, but not shared with anyone else. Nonetheless, such a cloud user

could offer web services, in which case we are in the picture of service clouds. Second,

in this paper we only mentioned the possibility to describe non-functional properties of

services in the service terminology. Theis could be elaborated to capturing many other

aspects of cloud computing.

References

1. Akkiraju, R., et al. Web service semantics: WSDL-S, 2005.

A Formal Model for the Interoperability of Service Clouds 25

http://www.w3c.org/Submission/WSDL-S.
2. Alonso, G., et al., Eds. Web Services: Concepts, Architectures and Applications. Springer-

Verlag, 2003.
3. Altenhofen, M., Börger, E., and Lemcke, J. An abstract model for process mediation.

In Formal Methods and Software Engineering, 7th International Conference on Formal
Engineering Methods (ICFEM 2005) (2005), K.-K. Lau and R. Banach, Eds., vol. 3785 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 81–95.

4. Alves, A., et al. Web services business process execution language, version 2.0, 2007.
OASIS Standard Committee, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

5. Baader, F., et al., Eds. The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, 2003.

6. Benatallah, B., Casati, F., and Toumani, F. Representing, analysing and managing web
service protocols. Data and Knowledge Engineering 58, 3 (2006), 327–357.

7. Berners-Lee, T., Hendler, J., and Lassila, O. The semantic web. Scientific American 285,
5 (2001), 34–43.

8. Blass, A., and Gurevich, J. Abstract state machines capture parallel algorithms. ACM
Transactions on Computational Logic 4, 4 (2003), 578–651.

9. Börger, E., and Stärk, R. Abstract State Machines. Springer-Verlag, Berlin Heidelberg
New York, 2003.

10. Brenner, M. R., and Unmehopa, M. R. Service-oriented architecture and web services
penetration in next-generation networks. Bell Labs Technical Journal 12, 2 (2007), 147–
159.

11. Christensen, E., et al. Web services description language (WSDL) 1.1, 2001.
http://www.w3c.org/TR/wsdl.

12. Cox, W., et al. Web services transaction (WS-Transaction), 2004. BEA Systems, IBM,
Microsoft, http://dev2dev.bea.com/pub/a/2004/01/ws-transaction.html.

13. Feingold, W., and Jeyaraman, R. Web services coordination (WS-Coordination), version
1.1, 2007. OASIS Web Services Transaction WS-TX TC, http://docs.oasis-open.org/ws-
tx/wstx-wscoor1.1-spec.pdf.

14. Fensel, D., and Bussler, C. The web service modeling framework WSMF. Electronic
Commerce Research and Applications 1, 2 (2002), 113–137.

15. Fensel, D., et al. Enabling Semantic Web Services. Springer-Verlag, 2007.
16. Guarino, N. Formal ontology and information systems. In Proceedings FOIS’98. IOS

Press, 1998, pp. 3–15.
17. Gurevich, J. Sequential abstract state machines capture sequential algorithms. ACM

Transactions on Computational Logic 1, 1 (2000), 77–111.
18. Keller, U., Lausen, H., and Stollberg, M. On the semantics of functional descriptions of

web services. In Proceedings of the 3rd European Semantic Web Conference – ESWC
2006. 2006.

19. Kozen, D. Kleene algebra with tests. ACM Transactions on Programming Languages and
Systems 19, 3 (1997), 427–443.

20. Kumaran, S., et al. Using a model-driven transformational approach and service-oriented
architecture for service delivery management. IBM Systems Journal 46, 3 (2007), 513–530.

21. Ma, H., Schewe, K.-D., Thalheim, B., and Wang, Q. A theory of data-intensive software
services. Service Oriented Computing and Its Applications 3, 4 (2009), 263–283.

22. Ma, H., Schewe, K.-D., and Wang, Q. An abstract model for service provision, search and
composition. In Services Computing Conference - APSCC 2009, M. Kirchberg et al., Eds.
IEEE Asia Pacific, 2009, pp. 95–102.

23. Universal description, discovery and integration (UDDI). http://www.uddi.org.
24. O’Sullivan, J., Edmond, D., and Ter Hofstede, A. What is a service? Towards accurate

description of non-functional properties. Distributed and Parallel Databases 12, 2-3 (2002),
117–133.

25. Papazoglou, M. P., and van den Heuvel, W.-J. Service oriented architectures: Approaches,
technologies and research issues. VLDB Journal 16, 3 (2007), 389–415.

26. Schewe, K.-D., and Thalheim, B. Conceptual modelling of web information systems. Data
and Knowledge Engineering 54, 2 (2005), 147–188.

27. Schewe, K.-D., and Thalheim, B. Component-driven engineering of database applications.
In Conceptual Modelling 2006 – Third Asia-Pacific Conference on Conceptual Modelling
(APCCM 2006), M. Stumptner, S. Hartmann, and Y. Kiyoki, Eds., vol. 53 of CRPIT.
Australian Computer Society, 2006, pp. 105–114.

26 H. Ma, K.-D. Schewe, B. Thalheim, Q. Wang

28. Schewe, K.-D., and Wang, Q. A customised ASM thesis for database transformations.
Acta Cybernetica 19, 4 (2010), 765–805.

29. Schewe, K.-D., and Wang, Q. A formal model for service mediators. In Advances in
Conceptual Modeling - Applications and Challenges (ER 2010 Workshops), J. Trujillo
et al., Eds., vol. 6413 of LNCS. Springer-Verlag, 2010, pp. 76–85.

30. Simple object access protocol (SOAP). http://www.w3c.org/TR/soap.
31. Stollberg, M., Cimpian, E., Mocan, A., and Fensel, D. A semantic web mediation archi-

tecture. In Proceedings CSWWS 2006. 2006.
32. Tanaka, Y. Meme Media and Meme Market Architectures. IEEE Press, Wiley-Interscience,

USA, 2003.
33. Web ontology language (OWL). http://www.w3c.org//OWL/.

