
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 05, 2022

A Formal Model of Identity Mixer

Camenisch, Jan; Mödersheim, Sebastian Alexander; Sommer, Dieter

Published in:
Proceedings of the 15th International Workshop on  Formal Methods for Industrial Critical Systems

Link to article, DOI:
10.1007/978-3-642-15898-8_13

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Camenisch, J., Mödersheim, S. A., & Sommer, D. (2010). A Formal Model of Identity Mixer. In Proceedings of
the 15th International Workshop on Formal Methods for Industrial Critical Systems (pp. 198-214). Springer.
Lecture Notes in Computer Science No. LNCS 6371 https://doi.org/10.1007/978-3-642-15898-8_13

https://doi.org/10.1007/978-3-642-15898-8_13
https://orbit.dtu.dk/en/publications/bef7dfeb-9775-49e8-a079-fc4b56d00577
https://doi.org/10.1007/978-3-642-15898-8_13


A Formal Model of Identity Mixer Mixer⋆

Jan Camenisch2, Sebastian Mödersheim1, and Dieter Sommer2

1 DTU Informatics, Denmark
samo@imm.dtu.dk

2 IBM Research – Zurich, Switzerland
jca,dso@zurich.ibm.com

Abstract. Identity Mixer is an anonymous credential system developed
at IBM that allows users for instance to prove that they are over 18 years
old without revealing their name or birthdate. This privacy-friendly tech-
nology is realized using zero-knowledge proofs. We describe a formal
model of Identity Mixer that is well-suited for automated protocol veri-
fication tools in the spirit of black-box cryptography models.

1 Introduction

Due to the spreading use of electronic communication means, users increasingly
disperse their personal information widely. Users have lost control over their
data, as it is most often not clear who receives and stores which information
and how organizations handle this information, particularly to whom they pass
it on. This situation is aggravated by the increasing easiness to store, distribute,
and profile these data. While on the one hand protecting users’ privacy is very
important, on the other hand, many transactions require authentication, au-
thorization, and accountability. There is seemingly a partial conflict of goals of
properly identifying users while protecting their privacy.

The Identity Mixer system developed by IBM Research – Zurich solves this
contradiction by employing particular non-interactive zero-knowledge proofs and
suitable signature and encryption schemes. For instance, using Identity Mixer to
issue electronic identity credentials, a user is able to prove being at least 18 years
old or living in a certain town—without revealing their name or their precise age
or any other details. The system’s main goal is to provide strong authentication
of users and at the same time to protect the users’ privacy by minimizing the
amount of the users’ information being revealed in an interaction.

Identity Mixer is an implementation of the Camenisch-Lysyanskaya anony-
mous credential system [13], extended by a number additional features aimed
at enabling its use in practice. These features were put forth in a number of
later publications [9,15]. The cryptography behind Identity Mixer is well under-
stood and the basic system got proved secure [13]. However, the extended system

⋆ This work was partially supported by the EU-funded projects AVANTSSAR and
PrimeLife (grant agreements 216471 and 216483). The authors enjoyed discussions
with Alberto Calvi, Luca Viganò, and Greg Zaverucha. Thank you!

samo@imm.dtu.dk
jca,dso@zurich.ibm.com


as implemented has never been proved secure. Indeed, proving security of the
complex and dynamic system resulting from the combination of the many cryp-
tographic building blocks is a challenging task in general. Subtle mistakes in the
design can easily lead to vulnerabilities that can be exploited without breaking
the cryptography. Such mistakes are often hard to find due to the complicated
behavior of distributed systems. Automated verification with model-checking
methods based on perfect cryptography models can help here to discover many
such mistakes and increase the confidence in systems when the verification is
successful, e.g., [4,17]. The goal of this paper is provide a formal model for Iden-
tity Mixer, in particular the zero-knowledge proofs it uses, in a way feasible for
automated protocol verification tools.

While a lot of verification tools exist for protocol verification, the area of zero-
knowledge-proof based system has been started only recently. Backes, Maffei, and
Unruh [7] provide a first attempt to integrate this “cryptographic primitive” into
the verification tool ProVerif [11]. Their model considers non-interactive zero-
knowledge proofs as terms and a set of function symbols representing verification
operations that a verifier can apply to a received proof term. Algebraic properties
ensure that the term resulting from the operations evaluate to true or false
according to whether the zero-knowledge proof term indeed proves the desired
statement. While this gives a highly declarative model of the zero-knowledge
proofs as an abstract primitive, this is hardly feasible in automated verification
tools due to the extensive use of algebraic properties. In fact, even the properties
for the boolean combinations induce an undecidable unification problem, and it
is no wonder that tools that allow for such properties easily run into infinite
loops. As a consequence, Backes et al. [7] uses a very restricted re-encoding
of the algebraic theory in ProVerif, and the authors have eventually moved to
another approach altogether, namely security types [6]. While this is a valuable
complementary approach, the question remains whether we cannot use at all
the existing methods and tools of protocol verification that were so successful
on closely related tasks.

We show that there is indeed a feasible way to model zero-knowledge proofs in
standard black-box protocol verification tools. In a nutshell, the idea to avoid the
difficulties that arise when employing algebraic properties to model statements
that are proved is to use pattern matching. This applies when an honest agent
receives a zero-knowledge proof term. Instead of expressing the verification of this
proof by verification operations, we show how to transform the desired properties
into a pattern that describes the set of zero-knowledge proof terms that the
receiver will accept. This can be done by a simple matching (or unification in
case of symbolic representations) without any algebraic reasoning.

Contributions. The first contribution of this paper is a model of zero-knowledge
proofs that is feasible for automated verification. In fact, the specifications (ex-
cept for privacy goals, which are not considered in this paper) can directly be
run in existing tools without requiring extensions. The second contribution is a
formalization of Identity Mixer in this abstract model, both allowing for verifi-
cation, and also as an overview that abstracts from the underlying cryptography

2



and some implementation details. The long-term vision here is to design a model
that can be turned into a correct (though maybe not optimized) implementation
by plugging in appropriate cryptographic tools; in fact, a first analysis suggests
that this paper provides the initial step to this idea.

Outline. This paper is organized as follows. In section 2, we summarize the
standard black-box cryptography models of security protocols. In section 3, we
describe our black-box style model of zero-knowledge protocols. In section 4,
the main section, we describe our model of Identity Mixer. In section 5 we
present a concrete application scenario for Identity Mixer and the results of
model checking it with the AVISPA tool. In section 6, we conclude with an
overview of experiments, discuss related work, and give an outlook on future
work.

2 Preliminaries

Black-Box Cryptography Models. We assume that the reader is familiar with
Dolev-Yao style protocol models, see for instance [25]. We will denote deduction
rules for the intruder similar to the following one for symmetric encryption:

k ∈ DY(M) m ∈ DY(M)

{|m|}k ∈ DY(M)
,

This expresses that an intruder whose knowledge is characterized by a set of
messages M , can take any derivable terms k and m, and derive the symmetric
encryption {|m|}k. What the intruder can derive, DY(M), is the least set closed
under all considered deduction rules. We will later introduce further function
symbols representing several operations in zero-knowledge proofs and similarly
give intruder deduction rules for them. We will also make use of the following
generalization to simplify the presentation. We consider a set of public function
symbols Σp, containing for instance the above {| · |}·, and define the generic rule
(subsuming the above example):

t1 ∈ DY(M) . . . tn ∈ DY(M)

f(t1, . . . , tn) ∈ DY(M)
f ∈ Σp ,

We assume that there can be several intruders that collaborate (which can be
regarded as one intruder acting under different dishonest identities). The model
includes, for instance, that the machines of an actually honest organization were
compromised by the intruder (which may not be immediately obvious) who
can now control the organization’s machines at his will. We do not consider
several intruders that attack each other as (1) the overall goal is to protect and
ensure the guarantees of the honest participants and (2) from that perspective
the collusion of all dishonest participants is the worst case. We denote with a
predicate dishonest(U) that participant U is dishonest.

3



It is also standard to model a communication medium that is entirely con-
trolled by the intruder (which is again the worst case). Our model is parametrized
over different types of channels that can be used, but this is mainly important
for privacy properties that we do not consider in this paper.

Honest Agents and Pattern Matching. The behavior of honest agents can be
described by various formalisms such as process calculi or set rewriting as in
the Intermediate Format of the AVISPA platform [3]. The most common way to
describe what messages an agent can receive at a particular point of the protocol
execution is a pattern, i.e., a message term with variables. The variables can be
substituted for an arbitrary value (possibly with a type restriction). For instance,
a message transmission such as

A → B : {|N, {|M |}KAS
|}KAB

,

where KAB is a shared key of A and B, KAS is the shared key of A and a
server S and N and M are some nonces, will have the pattern {|N,X|}KAB

on
the receiver side for a variable X, because B does not have the shared key and
cannot check the format of that part of the message.

3 Modeling Zero Knowledge

3.1 Communication

Many zero-knowledge protocols are concerned with proving authentication and
they do in fact not make much sense when assuming insecure channels as it is
standard in protocol analysis models. Vice versa, we also cannot assume secure
channels as that would assume authentication already. One may rather think of
a TLS channel without client authentication or a card in a card reader. For a
formal model of such channels see [27].

Identity Mixer, in contrast, can indeed be run over insecure channels: the
basic authentication properties (in terms of ownership of certain credentials)
should be satisfied. This is because the proof of ownership of a credential is
always bound to the knowledge of the user’s master secret that even the issuing
party does not know. However, when doing that, we immediately loose many
of the privacy guarantees, as all actions become observable for an intruder who
controls the network. While in the notation of this paper we do not bother about
channels, in the formal verification we have considered both the pseudonymous-
secure case and the insecure case of communication channels.

3.2 Non-Interactive Zero Knowledge Proofs of Knowledge

Zero-knowledge proofs of knowledge [10] are a cryptographic building block that
allow a prover to convince a verifier that he “knows” a secret value (witness) S
such that (S, P ) ∈ R holds for some public relation R ⊆ {0, 1}∗ × {0, 1}∗ and a
public value P . Here “knows” is defined by if the prover is able to convince the

4



verifier then he is also able to compute S such that (S, P ) ∈ R. Non-interactive
zero-knowledge proofs [12] are a variant where the prover sends the verifier only
a single message (the proof) and thus requires no interaction. Informally, zero-
knowledge means that the verifier cannot compute any information about S from
the proof, P , and R that he could not have computed from P and R alone.

In practice, non-interactive zero-knowledge proofs (of knowledge) are often
derived from discrete logarithm based proofs protocols (such as the well-known
Schnorr protocol [28]) by applying the Fiat-Shamir heuristic. Here, the challenge
is computed as (cryptographic) hash of the message sent to the verifier instead of
being chosen by the verifier. They are often also called signature of knowledge [16]
as they can also be seen as a signature scheme: by including the message m to
be signed in the input to the hash function used for the Fiat-Shamir heuristic
one can conclude that the entity who has constructed the proof has authorized
m.

We now consider how such non-interactive zero-knowledge proofs can be in-
tegrated into our black-box cryptography model, i.e., we assume that an intruder
cannot break the cryptography.

To this end, we model a non-interactive zero-knowledge proof of knowledge
for a relation R and public input P as an abstract message term that has the
following crucial properties:

1. One can compose the term (proof) for P and R only when “knowing” a
secret S such that (S, P ) ∈ R.

2. Given the term, P , and R, one can neither obtain the secret S (nor any
information about it).

3. The prover can include a statement in the proof that is “signed” by the proof,
i.e., the verifier has (transferable) evidence that the person who performed
the zero-knowledge proof authorized the statement.

4. The term identifies what exactly is proved about the secret (and some public
values).

5. The term “behaves” like any other message term, in particular, when the
intruder sees a zero-knowledge proof, he is able to replay or forward that
term arbitrarily.

The Properties 1 and 2 model the cryptographic properties of “proof of knowl-
edge” and “zero-knowledge”. Property 3 models the signature-scheme nature
of the Fiat-Shamir heuristic. Property 4 models that the proof unambiguously
identifies the relation R that is being proved (about the given public P and the
secret S). This is crucial for the model of both honest and dishonest verifiers
that we will discuss shortly. For Property 5 is models the fact that NIZK in the
end are just strings that can be used out of context. We discuss this in more
detail below as well.

Black-Box Model. As in the case of other cryptographic primitives, we use an
“uninterpreted” function symbol representing the operation of performing a zero-
knowledge proof, namely the 4-ary symbol spk (for “signature of knowledge”);
this was inspired by the notation of [16]). In the proof term spk(S;P ;φ;Stmt), S

5



is a list of secret values that the prover knows, P is a list of public values about
which something is proved, φ is (an identifier of) the relation R and Stmt is an
arbitrary string being signed by the proof.

As an example, let us consider a classical application of zero-knowledge
proofs: a user has a secret S (may be considered a private key) and a server
knows a corresponding value f(S) for a public function f . The user authenti-
cates itself by proving the knowledge of S without revealing S. This proof is
modeled by the term

spk(S; f(S);φ;Stmt) ,

where φ is an identifier for the relation R = {(S, P ) : P = f(S) ∧ S ∈ {0, 1}∗},
i.e., the proof proves knowledge of an S that is a pre-image of P = f(S). We
discuss below the precise role of this identifier. For now it suffices that every
proof that occurs in a system specification has a unique identifier. The Stmt can
be an arbitrary message term that is used together with the protocol, however,
as we discuss below, it should contain certain items.

Honest Provers and Verifiers. As the next part of our model, we need to define
how honest agents deal with spk terms during proving and verifying proofs. As
this is basically sending and receiving a message, respectively, let us consider
again how this is done in standard black-box models for, e.g., symmetric cryp-
tography. Basically, since honest agents always execute the protocol to the best
of their knowledge, the terms that they send and receive reflect the ideal pro-
tocol run except for subterms that they cannot control. In particular, receiving
is expressed by a pattern that describes the set of acceptable messages, where
each variable of the pattern can be replaced by an arbitrary message.

Using pattern matching is in fact one of the key ideas of our formal model of
zero-knowledge proofs. In contrast, the previous formal model of Backes et al. [7]
uses algebraic properties to express, roughly speaking, that applying an abstract
verification operator to a proof reduces to valid iff the proof is valid. This alge-
braic reasoning makes automated verification difficult, at least for a large variety
of analysis methods including those used by OFMC and ProVerif, and we see
the main advantage of our model in entirely avoiding the algebraic reasoning by
using pattern matching. We note that in the formal modeling of ordinary encryp-
tion/decryption we have a similar situation: one may either describe decryption
as receipt of terms by an appropriate pattern or instead use algebraic properties
stating that decryption and encryption cancel each other out; the latter model
is usually more complicated to handle and incompatible with many approaches
while all verification tools can easily support pattern matching.

For each zero-knowledge proof we define a proof pattern, i.e., an spk term with
variables that describes the “correct” proofs that an honest verifier accepts. For
the above example of proving the knowledge of a secret S, this pattern can be

spk(X ; f(X );φ;Stmt) ,

where X is a variable of the pattern that represents a term that the verifier does
not see; here, and in the following, we will use the convention to use calligraphic
variable names for such secrets.

6



A B

spk(S; f(S);φ;Stmt) //
spk(X ;P ;φ;Stmt)
| P = f(X )

Fig. 1. An example of our notation for zero-knowledge protocols.

We thus define the “view” of the verifier, describing which aspects of the
message it can observe (and which it cannot). Thus, the verifier’s pattern is the
crucial part in our model of zero-knowledge proofs. We describe a system based
on zero-knowledge proofs in a simple graphical notation close to Alice and Bob
notation; Figure 1 shows the message sequence chart for the above identification
example, making explicit the terms sent and received. In this example, the re-
ceiver B initially knows P , and will thus accept only a zero-knowledge proof for
knowing a corresponding secret S (i.e., such that f(S) = P ).

More generally, we write s → t where s is in the column of role A and t

is in the column of role B to denote the following: A constructs and sends the
message s and B will accept any message that has the form t. This is similar to a
classical notation due to Lowe and used in [24]. We also abbreviate the patterns
using equations, e.g., we may write t | X = t′ meaning the substitution of all
occurrences of X in t by t′. We also note that every column represents a variable
scope of its own; each agent can only see the values in its own scope that are not
calligraphic. If the same variable name occurs in two scopes then the protocol
intends them to be the same, but it does not assume that, i.e., we do not a
priori exclude that (due to an attack) there may be a mismatch. However, all
occurrences of a particular variable in one column (role of the protocol) always
shall be the same value.

Dishonest Provers and Verifiers. It is crucial that an intruder (or several dis-
honest agents controlled by the intruder) can act as a normal participant and
perform zero-knowledge proofs about its knowledge, or act as a dishonest server,
accepting proofs. As it is standard in black-box cryptography models, the in-
truder is characterized by a set of rules that express what new messages he can
derive from a given set of messages. For the zero-knowledge proofs we have the
following two rules:

spk(S;P ;φ;Stmt) ∈ DY(M)

〈P, φ, Stmt〉 ∈ DY(M)
and

〈S, P, φ, Stmt〉 ∈ DY(M)

spk(S;P ;φ;Stmt) ∈ DY(M)
,

The first rule tells us that from seeing a zero-knowledge proof, the intruder can
learn the public values, the property proved, and the statement signed—but
not the secret values, of course. Note that we do not need to consider proof
verification for the intruder, since honest agents perform only correct proofs,

7



and since dishonest agents in our model collaborate and do not try to cheat each
other.

The second rule tells us that the intruder can construct spk terms for any
subterms that he knows. This includes many terms that do not make up valid
zero-knowledge proofs, i.e., when the claimed property φ does not hold for the
secret and public values involved. In reality, this corresponds to the intruder
sending nonsensical terms instead of a zero-knowledge proof, that have the cor-
rect basic format, but on which the verification will fail. One may rule out such
terms from our model by specializing the intruder rules, but in fact they do
not hurt because honest agents only accept valid zero-knowledge proofs (and
dishonest agents do not need to be convinced).

Proof Identifiers. The proof identifiers φ in the zero-knowledge proofs play the
role of identifying the relation that is being proved. While of course the secret and
public values the prover holds might also satisfy other relations (or properties),
the cryptographic properties of the implementation of a proof hold only for the
specified relation. This becomes also clear in our abstraction, as the following
simple example shows. In Identity Mixer, a user may show for instance that he
or she is over 18 years old. Another service of a deployed system may give a
reduction on an entry fee if one proves to be over 65. Consider a user U who
has shown to be over 18 and who is in fact 70. Obviously, the credential of U in
this proof can also be used to prove that U is over 65. So the over-18 proof must
carry the information that it proves only the over-18 property, not the stronger
over-65 property. Otherwise there would be the danger to misuse proof terms
for getting more information about a person than actually revealed.

Mafia Attacks. A Mafia Attack is a classical man-in-the-middle attack against
zero-knowledge proofs for authentication, where a dishonest verifier I tries to use
the identity of the prover P towards another (honest) verifier V , by forwarding
every message from P to V and vice-versa. In the non-interactive zero-knowledge
world, I can simply forward the entire proof term from P to any V at any time.
A simple way to prevent this attack is to include in the signed statement Stmt

of an spk term the name of the intended verifier. In fact, in Identity Mixer all
proofs implicitly contain the name of the intended verifier.

Replay Attacks. Also, when an intruder has seen a zero-knowledge proof, he can
replay it (to the intended verifier) any number of times. Usually, the concrete ap-
plication will insert into the proved statements also some mechanisms to prevent
replay, e.g., include context information in the message Stmt , so an anonymous
electronic order may contain an order number (and timestamp).

4 Identity Mixer Components

We now describe step-by-step the components of Identity Mixer along with our
formalization. We proceed bottom up, from the smallest units of Identity Mixer

8



to the largest. In the next section, we then show how these components are used
in concrete example protocols.

The Identity Mixer system defines two kinds of parties: users and creates a
master secret, which it never reveals to any other party.

Users are known to organizations under pseudonyms and organizations make
statements about users by issuing credentials to the users. Each credential is
bound to the master secret of the user that it is issued to (without the issuer
learning that master secret).

Master Secret. Every user U has a master secret that we denote xU . This mas-
ter secret is crucial because each pseudonym and credential in Identity Mixer
is based on a master secret and we define the ownership of pseudonyms and
credentials as knowledge of their master secrets. We can model x· as a private
function (i.e., the intruder cannot obtain the master secret of a known user).
Note, however, that the function is not a cryptographic operation, but just a
mapping from users to their respective master secrets. (This also reflects the
assumption that every user can have only one master secret.)

Pseudonyms and Domain Pseudonyms. Users interact with organizations under
pseudonyms. We assume that by default users create a fresh pseudonym for every
separate interaction with an organization, so that different interactions cannot
be linked. A pseudonym is related to the master secret of the user. A pseudonym
has the form:

p(xU , R) ,

where R is a random value created by the user (without R, all pseudonyms of a
user would be the same). This allows every user to establish as many different
pseudonyms with an organization as it wishes. There are cases where this is not
desirable and a user should have only one pseudonym for a given domain (e.g., a
set of organizations, identified by a string) so that the user can be anonymous but
not acting under different pseudonyms. This is useful for instance for petitions
where users should state their opinion only once. For this, we use a domain

pseudonym which has the form:

pd(xU , domain) ,

where domain is a string specifying the domain.
Both the functions are public (see section 2), so the intruder can form his own

pseudonyms and domain pseudonyms, but there is no further rule, in particular
one cannot obtain xU from a known pseudonym.

Commitments. In several transactions, we need commitments of the form

commit(R, V ) ,

where V is a value that is committed to, and R is a random number. Also
this function is public, i.e., the intruder can build commitments, but from the
commitment one cannot obtain the committed value V (nor R). Commitments
will be used for dealing with values in a credential that the issuing organization
does not see while proofs have to be made about these values.

9



Credentials. Roughly speaking, a credential is a list of attributes signed by the
issuing organization O. We assume, for simplicity, that every organization issues
only one type of credentials. We assume that the public keys of each organization
O, along with a description of the credential type that O issues, are publicly
known. This may include (informal or formal) descriptions of the meaning of
the attributes. In the implementation, all attributes are represented as integers
(or fixed-length sequences of integers), so we shall not distinguish the different
attribute types (like date or string) here, but assume that they are understood
from the credential type (which is determined by the signature of O). Also, a
credential is relative to the master secret xU of a user U , and the ownership of
a credential is defined by the knowledge of the underlying master secret. Thus,
a credential has the form

credxU

O (V1, . . . , VkO
) .

Here, the Vi are the values of the attributes and kO is the number of attributes
contained in credentials issued by O.

The function symbol cred is characterized by two intruder rules. First, from
a credential, the intruder can derive its attributes (but not the master secret):

credxU

O (A) ∈ DY(M)

A ∈ DY(M)
,

where A is any list (a concatenation) of attributes. Second, for every dishonest
organization O the intruder can issue credentials given a commitment by the
user on its master secret.

A ∈ DY(M) commit(R, xU ) ∈ DY(M)

credxU

O (A) ∈ DY(M)
dishonest(O) ,

Relations on Attributes. When using credentials to prove properties about one-
self, Identity Mixer allows the user to hide the attribute and to prove only a
statement about it. For instance, the user could prove to be over 18 years old
according to an electronic passport. More concretely, suppose we have a passport
credxU

O (name, bd, . . .) where name is the bearer’s name, bd is the birthdate etc.
We want to show plusYears(bd, 18) ≤ today where plusYears adds to a date a
given number of years and today is the date of the verification, and ≤ is the
comparison on dates.

This is problematic in two regards. First, if we commit to using concrete
numbers, e.g., setting a birthdate to a concrete date in a scenario, then the
verification result only applies to that particular birthdate which is clearly not
very helpful. Second, we get the problem of dealing with arithmetic in general
(e.g., that from bd1 ≤ bd2 and bd2 ≤ bd3 it immediately needs to follow that
bd1 ≤ bd3 without further proof).

To avoid both problems, we consider only unary relations R(x), e.g., R can be
the “over-18” property of birthdates. (This excludes for instance the proof that
one birthdate is greater than another.) Let R1, . . . , Rn be the set of relations that

10



can occur in all zero-knowledge protocols of our verification task. We consider
the 2n equivalence classes of data (recall that we assume just one data type for
attributes), denoted as D0,...,0, . . . , D1,...,1, where

Db1,...,bn = {x | R1(x) ⇐⇒ b1 ∧ . . . ∧Rn(x) ⇐⇒ bn} .

We do not exclude that one relation may imply another, e.g., R1 may be “over-
18” and R2 may be “over-21”; in this case the equivalence classes D0,1,... are
simply empty.

For the encoding of concrete credential attribute values such as names, dates,
and so on, we use terms of the form val(c, b1, . . . , bn) where val stands for an
abstract value, c is an ordinary constant (so we can have several abstract values
that belong to the same equivalence class) and b1, . . . , bn is the list of booleans
that characterizes the concrete equivalence class.

Let us assume for the concrete age example that there is only one relation
“over-18” and we consider the concrete scenario with the certificate

credxU

O (val(alice, 0), val(aliceBirthday , 1)) ,

i.e., where the name alice does not satisfy “over-18”, but the date of birth does.
(Note that there is only one other reasonable case, namely with val(aliceBirthday , 0)
where alice is a minor.)

Verifiable Encryption. Our model of verifiable encryption does differ somewhat
from standard public-key encryption, namely we will use so-called labels. A label
is a public string that can be attached to a ciphertext when generating it. The
label has the property that (1) a ciphertext cannot be decrypted without the
correct label and (2) the label cannot be modified. Labels are useful for instance
to bind the context to a ciphertext or a policy defining under what circumstances
the third party is expected to decrypt. To model this encryption primitive, we use
terms of the form crypt(k;m; l) where k is the public key of the recipient (usually
a trusted party) m is the encrypted message and l is the encryption label. The
symbol is characterized by three intruder deduction rules. First, crypt is again
a public symbol; the other two are:

crypt(k;m; l) ∈ DY(M)

l ∈ DY(M)
and

crypt(k;m; l) ∈ DY(M) inv(k) ∈ DY(M)

m ∈ DY(M)
,

These rules express that the intruder can see the label from any encryption, and
that he can decrypt the message if he knows the private key inv(k).

Another difference with respect to the standard model of encryption is that
we will use the term in zero-knowledge proofs, e.g., that the encryption indeed
has the form crypt(T ;M ;L) for the trusted third party T that an organization
wants to use and M is, for instance, the attributes of a particular credential.

5 Identity Mixer Protocols in Concrete Scenarios

The components introduced in the previous section can be put together in many
different ways, depending on what scenario shall be addressed. The resulting

11



protocols can then be analyzed using automated formal verification tools such
as OFMC [26]. In this section we give an example protocol that uses Identity
Mixer.

We consider a scenario where a user U wants to buy some wine at an online
winery without revealing its personal information. For that, U needs to prove to
the wineshop that it is over 18 years old according to a passport that was issued
by organization I. The passport credential shall have the format (omitting a lot
of common passport fields for simplicity):

credxU

I (Surname,Prename,DateOfBirth) .

We model a statement about an attribute by a relation R indicating the “over-
18” property, so the date of birth of an adult will simply be val(c, 1) where c is an
individual constant (i.e., the birthdate). For instance, U may have the following
concrete credential in its possession:

credxU

I (Smith,Alice, val(c, 1 )) .

The online winery O and the user run a protocol, shown in Figure 2, that
requires the user to prove (1) the possession of a credential C that was issued
by I and has val(B, 1) in the birthdate field; (2) the knowledge of its master
secret X to which C is bound (recall that all expressions that the receiver does
not learn from the zero-knowledge proof are set in calligraphic font); and (3)
that the pseudonym p(X ,R) by which the user introduces itself also contains its
master secret. We denote this proof statement by wine. With the zero-knowledge
proof, the user also signs an order description ORD ; we assume that this order
contains a unique order ID that is assigned when U has browsed the offers of the
winery and selected “order”. Such a unique ID (and also a timestamp) trivially
prevent all problems with multiple processing of the same order (due to replay
of the intruder or honest mistakes).

Finally, O also requires a verifiable encryption of the surname and prename
attributes of C for the trusted third party T . This includes an encryption label LO
that identifies the purpose of the verifiable encryption and specifies a condition
under which the encryption may be opened. In this scenario, the label should
include an opening date if the customer did not pay. In case that A never pays
for the order, O can forward the entire zero-knowledge proof and the verifiable
encryption to T . Now T checks whether O’s claim is valid: first it verifies the
zero-knowledge proof and whether the payment conditions (as stated in LO)
were indeed not met by the user (how this is verified is not part of our scenario).
If these checks are successful, T decrypts the verifiable encryption using the label
LO . Hence, according to our convention, the attributes S and P are set here in
italic and not in calligraphic font. The same holds for these two attributes within
the shown credential—because T can also check the zero-knowledge proof. Thus
T can infer the real name of the spk-signer of ORD . Note, however, that T

does not learn any more information than what was intentionally revealed by U ,
namely it does not learn the master secret X , the credential C, or the contained
concrete date of birth B.

12



U

Prepare order ORD

Select Passport CU = cred
xU

I
(S, P, val(B, 1))

Choose random R

Encrypt name E = crypt(pk(T );S, P ;LO)

O

spk(xU , CU ; p(xU , R), E;wine;O,ORD)
//

spk(X , C; p(X ,R), E;wine;O,ORD)

| C = cred
X

I
(S,P, val(B, 1)),

E = crypt(pk(T );S,P;LO)

T if U does not pay the order

spk(X , C; p(X ,R), E;wine;O,ORD)

| C = cred
X

I
(S, P, val(B, 1)),

E = crypt(pk(T );S, P ;LO)

spk(X , C; p(X ,R), E;wine;O,ORD)
oo

Fig. 2. First scene of the online shopping scenario.

In this scene, we have omitted the delivery and payment processes. There
are several possible ways to implement them. One can use verifiably encrypted
orders to a payment organization (like U ’s credit card organization) and a de-
livery company. But one can alternatively use anonymous payment (which can
be realized again using Identity Mixer) and anonymous pickup (which is offered,
e.g., by gas stations in which case a delivery code could be verifiably encrypted
for it).

Verification Goals. We omit here the details of special events that are used in
the formal specification to allow for a declarative specification of the goals, and
just give an informal account of them:

Correct presentation of credentials First, if an honest O appears to have
received a well-formed order, then there indeed exists a user U (not nec-
essarily honest) who owns the required credential and has submitted the
order. Second, if the honest judge T is convinced that a particular user has
submitted an order, then this is indeed the case, even if O is not honest.

Privacy Here we consider only some secrecy goals (i.e., safety properties), not
indistinguishability of traces. First, the intruder knows xU iff U is dishon-
est. Nobody ever learns other agents’ credentials or contents that are not
intentionally revealed.

13



Accountability After a shop has received an order, there is enough evidence
from which, with the help of T , the identity of the ordering user can be
obtained in case no payment is made.

Formal Verification Results. All the goals just stated have been formulated
and checked to hold for the given scene with the OFMC tool [26] for at least two
symbolic sessions. Here, a session means that each role like U and O is instanti-
ated with one individual agent (honest or dishonest) who wants to execute the
protocol and symbolic means that we do not specify a concrete instantiation,
but let OFMC consider every possible instantiation of the role names with agent
names. As a result, we can be sure that there is no attack in any scenario with
two sessions. More complicated attacks are thus those that necessarily relate
to at least three individual sessions, for which, besides contrived examples, we
have only examples in parametrized protocols. A major goal of Identity Mixer is
that one cannot observe more information about users than they deliberately re-
leased, including that the different transactions of a user cannot be linked. These
privacy goals are quite difficult to formalize since they are not properties of sin-
gle execution traces but rather based on the question whether the intruder can
observe a difference between certain pairs of traces. In the automated protocol
verification, there are only few approaches that address privacy properties [19].
We therefore do not consider privacy properties formally and just give an infor-
mal account. All an intruder is able to learn from the zero-knowledge proof

spk(S;P ;φ;Stmt) ,

are the public values P , the signed statement Stmt, and the fact that the proved
property φ holds on S and P . The idea is thus that the intruder cannot distin-
guish two such terms that differ only in the S part and this would reflect that the
intruder can only observe those properties that are deliberately released by the
respective participant. Things are indeed tricky, however. Note that throughout
our formalization, for simplicity, we have used deterministic functions, i.e., when
a user performs several times the same zero-knowledge proof or verifiable encryp-
tion with exactly the same arguments, the result will exactly be the same—and
this can indeed be observed. It is not difficult to include a fresh random value into
every relevant function as an additional argument, and this correctly models the
non-deterministic behavior of the real operations. Given non-deterministic func-
tions, one can indeed formally define what it means that two terms are unequal
but not distinguishable for the intruder and based on that prove the privacy.
Unfortunately, this is beyond the scope of the current automated verification
tools.

6 Conclusions

Experimental Results. The goal of our formalization is a model that is well
suited for automated protocol verification tools. We have developed this model in

14



interaction with experiments on the tool OFMC [26]. However, our formalization
does not dependend on OFMC and we have initial results also with other tools
of the AVIPSA/AVANTSSAR platform [3] (into which OFMC is integrated)
and that share with OFMC the common input languages IF and ASLan. We
have modeled an e-Commerce scenario that uses Identity Mixer protocols as
building blocks as described in Section 5. The tools of the AVISPA platform
can verify this scenario within minutes. Also, for the variant that ommits the
intended verifier in zero-knowledge proofs the tools can detect the classical Mafia-
attack (cf. Section 3) within seconds.

Related Work. The SPK notation that we have used in this paper was inspired
by the notation for the cryptographic protocols of Camenisch and Stadler [16].
We have slightly adapted the use here, explicitly denoting the values that are
revealed and moreover denoting only those secret values that one must prove
to posses. Another difference is the use of a proof identifier rather than a proof
statement; this is to enable that we can exploit pattern matching in tools. In fact,
one may use as the proof identifier a term that encodes the proof statement in
some way, but the tools cannot interpret these terms (and only check for equality
of these terms). Related to the original notation, Bangerter et al. [8] show how
to derive automated zero-knowledge proofs from this. The modeling of non-
interactive zero-knowledge proofs has independently been studied by Backes et
al. [7]. Their approach is mainly based on algebraic properties: they use explicit
verify-operations that can be applied by the receiver to the received proof terms
and that explicitly check for certain conditions. This algebraic formalization
is very involved and easily leads to non-termination of the verification tool,
ProVerif [11], that they use. To avoid the non-termination, the algebraic theory
has to be carefully adapted and to make this encoding still manageable, it is
generated by a special compiler. For all these difficulties, the authors have turned
to a type-system approach [6].

Li, Zhang, and Deng [23] give a similar formalization of an old version of Iden-
tity Mixer that seems to work fine in ProVerif. Indeed, their model works at a
deeper level of cryptographic detail than that of Backes et al. [7]—which requires
an even more complex algebraic theory. However, Li el al. [23] has a fundamental
mistake in the handling of algebraic properties in verification tools: implicitly, all
function symbols are interpreted in the free algebra in ProVerif and even encod-
ing just those properties of exponentation that are needed for Diffie-Hellman is
far from trivial [22]. For this reason, Li et al. [23] accidentally arrive at a model
that cannot make any progress at all—on which all kinds of safety and privacy
properties trivially hold.

From all this, one may get the wrong impression that algebraic properties
in general thwart practical protocol verification. In fact the noted tools OFMC
and ProVerif can handle algebraic properties and with Maude-NPA there is even
a protocol verifier based on the algebraic specification framework Maude [21].
However, a declarative formalization of zero-knowledge proofs does not fall into
the fragments of algebraic reasoning that can be handled well (such as convergent
rewrite theories), and therefore require a quite technical encoding [7].

15



Resumee. We thus see as our main contribution to define a model of zero-
knowledge proofs that does not require algebraic properties at all. This is of
big advantage when using the two most successful methods in protocol verifi-
cation: the constraint-based approach [2] implemented in tools like OFMC and
the stateless over-approximation approach of tools like ProVerif. Moreover it en-
ables the use of successful tools like SATMC [5] that do not support algebraic
properties at all.

The key idea to achieve that is to use pattern matching to describe the receiv-
ing of zero-knowledge protocols. This is analogous to the problem of modeling
decryption in a Dolev-Yao style black-box model of cryptography: instead of a
property that says that encryption and decryption cancel each other out, we use
pattern matching for decryption, i.e. honest agents accept only messages that are
encrypted with the expected key (plus an appropriate intruder deduction rule for
decrypting messages). We thus obtain a formal model of zero-knowledge proofs
that is both declarative and efficient. This enables us to use zero-knowledge
proofs as a primitive of security protocols in formal verification just like any
other standard cryptographic primitive such as symmetric encryption.

This is practically illustrated by our verification of two scenarios based on
Identity Mixer. In fact, it is a further contribution that we provide a formal model
of Identity Mixer which itself is a building-block for complex applications, e.g. in
e-Commerce and e-Government. This model provides an important intermediate
step between very high-level, technology-neutral specifications such as CARL [14]
and the cryptographic details of the actual Identity Mixer implementation.

We finally note that there have been several proposals for formalizing privacy
goals in the black-box model, see for instance Abadi and Fournet [1]. These
models are quite difficult for automated analysis, though there are some new
ideas [20,19]. Further investigation is left for future work.

References

1. M. Abadi and C. Fournet. Private authentication. Theoretical Computer Science,
322(3):427–476, 2004.

2. R. Amadio and D. Lugiez. On the reachability problem in cryptographic protocols.
InProceedings of Concur’00, LNCS 1877, pages 380–394. Springer-Verlag, 2002.

3. A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. H.
Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron.
The AVISPA Tool for the Automated Validation of Internet Security Protocols
and Applications. In CAV, volume 3576 of LNCS, pages 281–285. Springer, 2005.

4. A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. T. Abad. Formal
Analysis of SAML 2.0 Web Browser Single Sign-On: Breaking the SAML-based
Single Sign-On for Google Apps. In FMSE 2008. ACM Press, 2008.

5. A. Armando and L. Compagna. SAT-based Model-Checking for Security Protocols
Analysis. International Journal of Information Security, 7(1):3–32, 2008.

6. M. Backes, C. Hritcu, and M. Maffei. Type-checking zero-knowledge. In ACM

Conference on Computer and Communications Security, pages 357–370, 2008.

16



7. M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-calculus
and automated verification of the direct anonymous attestation protocol. In IEEE

Symposium on Security and Privacy, pages 202–215, 2008.
8. E. Bangerter, J. Camenisch, S. Krenn, A.-R. Sadeghi, and T. Schneider. Automatic

generation of sound zero-knowledge protocols. Cryptology ePrint Archive, 2008.
9. E. Bangerter, J. Camenisch, and A. Lysyanskaya. A Cryptographic Framework for

the Controlled Release Of Certified Data. In Security Protocols, 2004.
10. M. Bellare and O. Goldreich. On defining proofs of knowledge. In CRYPTO ’92,

Lecture Notes in Computer Science, pp. 390–420. Springer-Verlag, 1992.
11. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In

CSFW 2001, pages 82–96. ieeecoso, 2001.
12. M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its ap-

plications (extended abstract). In STOC, pages 103–112, 1988.
13. J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anony-

mous credentials with optional anonymity revocation. In Eurocrypt 2001.
14. J. Camenisch, S. Mödersheim, G. Neven, F.-S. Preiss, and D. Sommer. A card

requirements language enabling privacy-preserving access control. In SACMAT,
pages 119–128. ACM, 2010.

15. J. Camenisch, D. Sommer, and R. Zimmermann. A general certification framework
with application to privacy-enhancing certificate infrastructures. In SEC. 2006.

16. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In CRYPTO’97, LNCS 1294, pages 410–424. Springer-Verlag, 1997.

17. I. Cervesato, A. D. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad. Breaking
and fixing public-key Kerberos. Information and Computation, 206(2–4), 2008.

18. D. Chaum. Blind signatures for untraceable payments. In Advances in Cryptology

- Crypto ’82, pages 199–203. Springer-Verlag, 1983.
19. V. Cheval, H. Comon-Lundh, and S. Delaune. Automating security analysis: sym-

bolic equivalence of constraint systems. In IJCAR’10, LNAI. Springer-Verlag.
20. V. Cortier, M. Rusinowitch, and E. Zalinescu. Relating two standard notions of

secrecy. In CSL’06, volume 4207 of LNCS, pages 303–318. Springer.
21. S. Escobar, C. Meadows, and J. Meseguer. A rewriting-based inference system for

the NRL protocol analyzer and its meta-logical properties. Theoretical Computer

Science, 367(1-2):162–202, 2006.
22. R. Ksters and T. Truderung. Using proverif to analyze protocols with diffie-hellman

exponentiation. IEEE CSF, 0:157–171, 2009.
23. X. Li, Y. Zhang, and Y. Deng. Verifying anonymous credential systems in applied

pi calculus. In CANS, pages 209–225, 2009.
24. J. K. Millen and G. Denker. Capsl and mucapsl. Journal of Telecommunications

and Information Technology, 4:16–27, 2002.
25. S. Mödersheim. Models and Methods for the Automated Analysis of Security Pro-

tocols. PhD-thesis, ETH Zürich, 2007.
26. S. Mödersheim and L. Viganò. The open-source fixed-point model checker for

symbolic analysis of security protocols. In Fosad 2007–2008–2009, LNCS, 2009.
27. S. Mödersheim and L. Viganò. Secure Pseudonymous Channels. In Proceedings of

Esorics’09, LNCS 5789, pages 337–354, 2009.
28. C. P. Schnorr. Efficient signature generation for smart cards. Journal of Cryptology,

4(3):239–252, 1991.

17


	A Formal Model of Identity Mixer Mixer 

