
A Formal Model of Program Dependences and Its Implications

for Software Testing, Debugging, and Maintenance

Andy Podgurski †

Lori A. Clarke ‡

†Computer Engineering & Science Department
Case Western Reserve University

Cleveland, Ohio 44106

‡Software Development Laboratory
Computer & Information Science Department

University of Massachusetts
Amherst, Massachusetts 01003

Abstract

A formal, general model of program dependences is presented and used to evaluate several
dependence-based software testing, debugging, and maintenance techniques. Two generalizations
of control and data flow dependence, called weak and strong syntactic dependence, are introduced
and related to a concept called semantic dependence. Semantic dependence models the ability of a
program statement to affect the execution behavior of other statements. It is shown, among other
things, that weak syntactic dependence is a necessary but not sufficient condition for semantic
dependence and that strong syntactic dependence is a necessary but not sufficient condition for a
restricted form of semantic dependence that is finitely demonstrated. These results are then used
to support some proposed uses of program dependences, to controvert others, and to suggest new
uses.

1 Introduction

Program dependences are relationships, holding between program statements, that can be deter-

mined from a program’s text and used to predict aspects of the program’s execution behavior.

There are two basic types of program dependences: “control dependences”, which are features of

a program’s control structure, and “data flow dependences”, which are features of a program’s

use of variables. Informally, a statement s is control dependent on the branch condition c of a

conditional branch statement if the control structure of the program indicates that c potentially

1

1. input (X, Y);

2. if X > Y then

3. Max := X;

else

4. Max := Y;

endif;

5. output (Max);

Figure 1: Max program and its def/use graph

decides, via the branches it controls, whether s is executed or not. For example, in the program of

Figure 1, statements 3 and 4 are control dependent on the branch condition at line 2. Informally, a

statement s is data flow dependent on a statement s′ if data potentially propagates from s′ to s via

a sequence of variable assignments. For example, in the program of Figure 1, statement 5 is data

flow dependent on statement 1, since data potentially propagates from statement 1 to statement 5.

Dependence analysis, the process of determining a program’s dependences, combines traditional

control flow analysis and data flow analysis [Aho86], and hence can be implemented efficiently.

Until recently, most proposed uses of program dependences have been justified only informally,

if at all. Since program dependences are used for such critical purposes as software testing [Lask83,

Kore87, Ntaf84, Rapp85], debugging [Berg85, Weis84], and maintenance [Reps89, Weis84], code

optimization and parallelization [Ferr87, Padu86], and computer security [Denn77],1 this informality

is risky. This paper supplements other recent investigations of the semantic basis for the uses of

program dependences [Cart89, Horw88a, Selk89] by presenting a formal, general model of program

dependences and by using it to evaluate several dependence-based software testing, debugging,

1The term “dependence” is not used in all the references given.

2

and maintenance techniques. The results support certain proposed uses of program dependences,

controvert others, and suggest new ones.

One example of our results involves the use of program dependences to find “operator faults”

in programs. An operator fault is the presence of an inappropriate operator2 in a program

statement. For instance, accidental use of the multiplication operator “*” instead of the addition

operator “+” in the assignment statement “X := Y * Z” results in an operator fault. It would be

useful to be able to automatically detect and locate operator faults; unfortunately, as with many

other semantic questions about programs, the question of whether a program contains an operator

fault or not is undecidable. This paper shows, however, that there is an algorithm, in fact an

efficient one, that detects necessary conditions for an operator fault at one statement to affect the

execution behavior of another statement. These necessary conditions are expressed in terms of

program dependences. Consequently, dependences can be used to help locate the statements that

might be affected by an operator fault at a given statement.

To determine some of the implications of program dependences, we relate control and data

dependence to a concept called “semantic dependence”. Informally, a program statement s is

semantically dependent on a statement s′ if the semantics of s′, that is, the function computed by

s′, potentially affects the execution behavior of s. The significance of semantic dependence is that

it is a necessary condition for certain interstatement semantic relationships. For example, if s and

s′ are distinct statements, then s must be semantically dependent on s′ for an operator fault at

s′ to affect the execution behavior of s. Similarly, some output statement must be semantically

dependent on a statement s for the semantics of s to affect the output of a program.

Three main results are presented in this paper:

1. A generalization of control and data dependence, called “weak syntactic dependence”, is a

2The term “operator” refers to both the predefined operators of a programming language and to user-defined
procedures and functions.

3

necessary condition for semantic dependence

2. A commonly used generalization of control and data dependence, which we call “strong syn-

tactic dependence”, is a necessary condition for semantic dependence only if the semantic

dependence does not depend in a certain way on a program failing to terminate

3. Neither data flow, weak syntactic, nor strong syntactic dependence is a sufficient condition

for semantic dependence

We use these results to evaluate several dependence-based testing, debugging, and maintenance

techniques.

Section 2 defines some necessary terminology and Section 3 defines control, data, and syntactic

dependence. Semantic dependence is informally defined in Section 4 and then related to syntactic

dependence in Section 5. In Section 6, the implications of the results of Section 5 for software testing,

debugging and maintenance are described. In Section 7, related work not already considered in

Section 6 is surveyed. Section 8 presents a summary and discussion of possible future research

directions. In Appendix A, the formal definition of semantic dependence is presented, and the

proofs of the two most significant results of Section 5 are sketched.

2 Terminology

In this section we define control flow graphs, some dominance relations, and def/use graphs.

A directed graph or digraph G is a pair (V (G), A(G)), where V (G) is any finite set and A(G)

is a subset of V (G) × V (G) − {(v, v)|v ∈ V (G)}. The elements of V (G) are called vertices and

the elements of A(G) are called arcs. If (u, v) ∈ A(G) then u is adjacent to v and v is adjacent

from u; the arc (u, v) is incident to v and incident from u. A predecessor of a vertex v is a

vertex adjacent to v, and a successor of v is a vertex adjacent from v. The indegree of a vertex

v is the number of predecessors of v, and the outdegree of v is the number of successors of v.

4

A walk W in G is a sequence of vertices v1v2 · · · vn such that n ≥ 0 and (vi, vi+1) ∈ A(G)

for i = 1, 2, . . . , n − 1. The length of a walk W = v1v2 · · · vn, denoted |W |, is the number n of

vertex occurrences in W . Note that a walk of length zero has no vertex occurrences; such a walk

is called empty. A nonempty walk whose first vertex is u and whose last vertex is v is called a

u–v walk. If W = w1w2 · · ·wm and X = x1x2 · · · xn are walks such that either W is empty, X is

empty, or wm is adjacent to x1, then the concatenation of W and X, denoted WX, is the walk

w1w2 · · ·wmx1x2 · · · xn.

All the types of dependence considered in this paper are directly or indirectly defined in terms

of a “control flow graph”, which represents the flow of control in a sequential, procedural program.

Definition 1 A control-flow graph G is a directed graph that satisfies each of the following

conditions:

1. The maximum outdegree of the vertices of G is at most two3

2. G contains two distinguished vertices: the initial vertex vI , which has indegree zero, and

the final vertex vF , which has outdegree zero

3. Every vertex of G occurs on some vI–vF walk

A vertex of outdegree two in a control flow graph is called a decision vertex, and an arc

incident from a decision vertex is called a decision arc. The set of decision vertices of G is

denoted Vdec(G).

Here, the vertices of a control flow graph represent simple program statements (such as assign-

ment statements and procedure calls) and also branch conditions, while the arcs represent possible

transfers of control between these. The program’s entry point and exit point are represented by

the initial vertex and final vertex, respectively. A decision vertex represents the branch condition

3This restriction is made for simplicity only.

5

of a conditional branch statement. The definition given here of a control flow graph is somewhat

restricted, to simplify the presentation of results. This definition can be used to represent any

procedural program, however, by employing straightforward representation conventions involving

the use of dummy vertices and arcs.

The control flow graph of the program in Figure 1 is shown alongside the program; the anno-

tations to this graph are explained subsequently.

The next three definitions are used in defining types of control dependence.

Definition 2 Let G be a control flow graph. A vertex u ∈ V (G) forward dominates a vertex

v ∈ V (G) iff every v–vF walk in G contains u; u properly forward dominates v iff u %= v and

u forward dominates v.

Definition 3 Let G be a control flow graph. A vertex u ∈ V (G) strongly forward dominates

a vertex v ∈ V (G) iff u forward dominates v and there is an integer k ≥ 1 such that every walk in

G beginning with v and of length ≥ k contains u.

In the control flow graph of Figure 1, v5 (strongly) forward dominates each vertex, whereas

v3 and v4 forward dominate only themselves. In the control flow graph of Figure 2, v5 strongly

forward dominates v4, but v6 does not strongly forward dominate v4, because there are arbitrarily

long walks from v4 that do not contain v6.

While control dependence has been defined in terms of forward dominance before [Denn77,

Ferr87], the use of strong forward dominance for this purpose is apparently new.

We state the following theorem without proof.

Theorem 1 Let G be a control flow graph. For each vertex u ∈ (V (G) − {vF }), there exists a

proper forward dominator v of u such that v is the first proper forward dominator of u to occur on

every u–vF walk in G.

6

1. input (N);

2. Fact := 1;

3. while not N = 0 loop

4. Fact := Fact * N;

5. N := N - 1;

end loop;

6. output ("The factorial is ");

7. output (Fact);

Figure 2: Factorial program and its def/use graph

The “immediate forward dominator” of a decision vertex d is the vertex where all walks leaving

d first come together again. More formally:

Definition 4 Let G be a control flow graph. The immediate forward dominator of a vertex

v ∈ (V (G) − {vF }), denoted ifd(v), is the vertex that is the first proper forward dominator of v to

occur on every v–vF walk in G.

For example, in the control flow graph of Figure 1, v5 is the immediate forward dominator of v2,

v3, and v4. In the control flow graph of Figure 2, v6 is the immediate forward dominator of v3.

Data, syntactic, and semantic dependence are defined in terms of an annotated control flow

graph called a “def/use graph”. For each vertex v in a def/use graph, D(v) denotes the set of

variables defined (assigned a value) at the statement represented by v, and U(v) denotes the set of

variables used (having their values referenced) at that statement. A def/use graph is similar to a

program schema [Grei75, Mann74] and is essentially the program representation used in data flow

analysis [Aho86].

7

Definition 5 A def/use graph is a quadruple G = (G,Σ,D,U), where G is a control flow

graph, Σ is a finite set of symbols called variables, and D:V (G) → P(Σ), U :V (G) → P(Σ) are

functions.4

The def/use graphs of the programs in Figures 1 and 2 are shown alongside the programs.

Definition 6 Let G = (G,Σ,D,U) be a def/use graph, and let W be a walk in G. Then

D(W) =
⋃

v∈W

D(v)

For example, referring to the def/use graph of Figure 1, D(v1v2v3v5) = {Max, X, Y}.

As usual in the static analysis of programs, exactly what constitutes a variable, definition, or

use is sometimes a subtle issue [Aho86]. In the model of computation we adopt (see Section 4),

values are associated with the variables (names) in Σ, and a vertex v can interrogate only the values

of variables in U(v) and modify only the values of variables in D(v). In representing a program

with our formalism, this means that if the statement represented by a vertex v reads or writes a

storage element, or if this is uncertain, then a variable name that denotes the potentially accessed

storage element should be included in U(v) or D(v), respectively. When the accessed storage

element cannot be determined until runtime, it is permissible to include either a distinct name for

each storage element that might be accessed or one name denoting all such elements, provided the

same representation is used consistently. When the same storage element is accessed via different

names in the program, all of these names can be included or a single name can be used in place of

them. These are the conventions usually adopted in static analysis, where, for example, an access

through a pointer is often treated as an access to all the objects that might be pointed to, and an

access to an array element is often treated as an access to the entire array. These conventions are

conservative, in that they may indicate data flow that cannot actually occur, but are safe, in that

they will not fail to indicate any data flow that does occur.

4We denote the power set (set of all subsets) of a set S by P(S).

8

3 Control, Data, and Syntactic Dependence

3.1 Control Dependence

The concept of control dependence is used to model the effect of conditional branch statements

on the behavior of programs. Control dependence is a property of a program’s control structure

alone, in that it can be defined strictly in terms of a control flow graph. Various formal and

informal definitions of control dependence are given in the literature. Usually these are expressed

in terms of “structured” control statements of a particular language or class of languages. Such

definitions have limited applicability, because control statements vary across languages and because

“unstructured” programs occur in practice. Indeed, even judicious use of the goto statement or the

use of restricted branch statements such as Ada’s exit, raise, and return statements can result

in programs that are, strictly speaking, unstructured. It is therefore desirable to have a language-

independent definition of control dependence that applies to both structured and unstructured

programs. Two definitions that satisfy these requirements are those of “weak control dependence”

and “strong control dependence”.

Strong control dependence was originally defined in the context of computer security [Denn77] 5,

and this definition has been used by several authors [Kore87, Padu86, Weis84]. To our knowledge,

it was the first graph-theoretic, language and structure-independent characterization of control

dependence to appear in the literature.

Definition 7 Let G be a control flow graph, and let u, v ∈ V (G). Then u is strongly control

dependent on v iff there exists a v–u walk vWu not containing the immediate forward dominator

of v.

For example, in the control flow graph of Figure 1, the immediate forward dominator of the decision

vertex v2 is v5; therefore v3 and v4 are strongly control dependent on v2. In the control flow graph

5In [Denn77] the concept is called “implicit information flow”.

9

of Figure 2, the immediate forward dominator of the decision vertex v3 is v6; therefore v3, v4, and v5

are strongly control dependent on v3. Note that the statements that are strongly control dependent

on the branch condition of a structured if-then or if-then-else statement are those in its “body”.

The statements that are strongly control dependent on the branch condition of a structured while

or repeat-until loop are the branch condition itself and the statements in the loop’s body.

Weak control dependence [Podg89] is a generalization of strong control dependence in the sense

that every strong control dependence is also a weak control dependence.

Definition 8 Let G be a control flow graph, and let u, v ∈ V (G). Vertex u is directly weakly

control dependent on vertex v iff v has successors v′ and v′′ such that u strongly forward dom-

inates v′ but does not strongly forward dominate v′′; u is weakly control dependent on v iff

there is a sequence v1, v2, . . . , vn of vertices, n ≥ 2, such that u = v1, v = vn, and vi is directly

weakly control dependent on vi+1 for i = 1, 2, . . . , n − 1.

Informally, u is directly weakly control dependent on v if v has successors v′ and v′′ such that if

the branch from v to v′ is executed then u is necessarily executed within a fixed number of steps,

while if the branch from v to v′′ is taken then u can be bypassed or its execution can be delayed

indefinitely.

The essential difference between weak and strong control dependence is that weak control de-

pendence reflects a dependence between an exit condition of a loop and a statement outside the

loop that may be executed after the loop is exited, while strong control dependence does not. For

example, in the control flow graph of Figure 2, v6 is (directly) weakly control dependent on v3

(because v6 strongly forward dominates itself, but not v4), but not strongly control dependent on

v3 (because v6 is the immediate forward dominator of v3). In addition, v3, v4, and v5 are (directly)

weakly control dependent on v3, because each strongly forward dominates v4 but not v6. The

additional dependences of the weak control dependence relation are relevant to program behavior,

because an exit condition of a loop potentially determines whether execution of the loop terminates.

10

The weak and strong control dependence relations for a control flow graph G can be computed

in O(|V (G)|3) time [Podg89].

3.2 Data Flow Dependence

Although several other types of data dependence are discussed in the literature, we require only

data flow dependence [Ferr87, Padu86].

Definition 9 Let G = (G,Σ,D,U) be a def/use graph, and let u, v ∈ V (G). Vertex u is directly

data flow dependent on vertex v iff there is a walk vWu in G such that (D(v)∩U(u))−D(W) %= ∅;

u is data flow dependent on v iff there is a sequence v1, v2, . . . , vn of vertices, n ≥ 2, such that

u = v1, v = vn and vi is directly data flow dependent on vi+1 for i = 1, 2, . . . , n − 1.

Note that if u is data flow dependent on v then there is a walk v1W1v2W2 · · · vn−1Wn−1vn,

n ≥ 2, such that v = v1, u = vn, and (D(vi) ∩U(vi+1))−D(Wi) %= ∅ for i = 1, 2, . . . , n − 1. Such a

walk is said to demonstrate the data flow dependence of u upon v.

Referring to the def/use graph of Figure 1, v3 is directly data flow dependent on v1, because the

variable X is defined at v1, used at v3, and not redefined along the walk v1v2v3; v5 is directly data

flow dependent on v3, because the variable Max is defined at v3, used at v5, and not redefined along

the walk v3v5. It follows that v5 is data flow dependent on v1; the walk v1v2v3v5 demonstrates this

dependence.

The direct data flow dependence relation for a control flow graph can be computed efficiently

using a fast algorithm for the “reaching definitions” problem [Aho86]. The data flow dependence

relation can then be efficiently computed using a fast algorithm for transitive closure [Aho74].

11

3.3 Syntactic Dependence

To evaluate uses of control and data dependence, it is necessary to consider chains of such depen-

dences, that is, sequences of vertices in which each vertex except the last is either control dependent

or data dependent on the next vertex. Informally, there is a “weak syntactic dependence” between

two statements if there is a chain of data flow and/or weak control dependences between the state-

ments, while there is a “strong syntactic dependence” between the statements if there is a chain of

data flow dependences and/or strong control dependences between them. Weak syntactic depen-

dence apparently has not been considered before in the literature; the notion of strong syntactic

dependence is implicit in the work of several authors [Berg85, Denn77, Ferr87, Horw88a, Kore87,

Padu86, Weis84].

Definition 10 Let G = (G,Σ,D,U) be a def/use graph, and let u, v ∈ V (G). Vertex u is weakly

syntactically dependent (strongly syntactically dependent) on vertex v iff there is a se-

quence v1, v2, . . . , vn of vertices, n ≥ 2, such that u = v1, v = vn, and for i = 1, 2, . . . , n − 1, either

vi is weakly control dependent (strongly control dependent) on vi+1 or vi is data flow dependent on

vi+1.

Since the weak and strong control dependence and data flow dependence relations for a def/use

graph can be computed efficiently, the weak and strong syntactic dependence relations can be

computed efficiently by using a fast algorithm for transitive closure.

Referring to the def/use graph of Figure 2, v6 is weakly syntactically dependent on v5, because

v6 is weakly control dependent on v3 and v3 is data flow dependent on v5; v5 is strongly syntactically

dependent on v1, because v5 is strongly control dependent on v3 and v3 is data flow dependent on

v1. Note that v6 is not strongly syntactically dependent on v5.

12

4 Semantic Dependence

Recall that, informally, a statement s is semantically dependent on a statement s′ if the function

computed by s′ affects the execution behavior of s. In this section, a more precise but still informal

description of semantic dependence is given. The formal definition is presented in Appendix A.

We first informally define the auxiliary terms necessary to define semantic dependence. A

sequential procedural program can be viewed abstractly as an interpreted def/use graph. An

interpretation of a def/use graph is an assignment of partial computable functions to the vertices

of the graph. The function assigned to a vertex v is the one computed by the program statement

that v represents; it maps values for the variables in U(v) to values for the variables in D(v) or,

if v is a decision vertex, to a successor of v. An interpretation of a def/use graph is similar to an

interpretation of a program schema [Grei75, Mann74]. An operational semantics for interpreted

def/use graphs is defined in the obvious way, with computation proceeding sequentially from vertex

to vertex along the arcs of the graph, as determined by the functions assigned to the vertices. A

computation sequence of a program is the sequence of states (pairs consisting of a vertex and

a function assigning values to all the variables in the program) induced by executing the program

with a particular input. An execution history of a vertex v is the sequence whose ith element is

the assignment of values held by the variables of U(v) just before the ith time v is visited during

a computation. An execution history of a vertex in an interpreted def/use graph abstracts the

“execution behavior” of a program statement.

A more precise description of semantic dependence can now be given:

Definition 11 (Informal) A vertex u in a def/use graph G is semantically dependent on a

vertex v of G if there are interpretations I1 and I2 of G that differ only in the function assigned

to v, such that for some input, the execution history of u induced by I1 differs from that induced by

I2.6

6The formal definition of semantic dependence, given in Appendix A, contains conditions to ensure that a semantic

13

For example, if the branch condition X > Y in the program of Figure 1 were changed to X < Y,

then the program would compute the Min function instead of the Max function. Hence, for all

unequal values of X and Y, this change demonstrates that vertex v5 of the def/use graph of Figure 1

is semantically dependent on vertex v2. As another example, if the statement N := N - 1 in the

program of Figure 2 were changed to N := N - 2, the while-loop would fail to terminate for the

input N = 5, preventing statement 6 from executing. Hence, this change demonstrates that vertex

v6 of the def/use graph of Figure 2 is semantically dependent on vertex v5.

Note that a pair of execution histories that demonstrate a semantic dependence can differ in

two ways: (a) the histories have corresponding entries that are unequal and (b) one history is

longer than the other. Informally, the semantic dependence is said to be finitely demonstrated

if either:

1. Condition (a) holds; or

2. Condition (b) is demonstrated by finite portions of the computation sequences that caused

the execution histories

Semantic dependence demonstrated by a pair of halting computations is, of course, finitely demon-

strated. For example, the semantic dependence of vertex v5 upon vertex v2 in the def/use graph

of Figure 1 is finitely demonstrated, because the Min and Max functions are defined for all pairs

of integers. The semantic dependence of vertex v6 upon vertex v5 in the def/use graph of Figure 2

is not finitely demonstrated, because the only way v5 can affect the execution behavior of v6 is by

determining whether execution of the cycle v3v4v5v3 terminates. Note that even nonterminating

computations can finitely demonstrate semantic dependence, via their finite initial segments. For

example, despite the fact that it makes the program fail to terminate, changing the statement N :=

N - 1 in the program of Figure 2 to N := N - 2 finitely demonstrates that vertex v5 of the pro-

dependence is not caused by the value of the function assigned to a vertex being undefined for some input. This is
done to avoid trivial semantic dependences. When we informally refer to (the semantics of) one program statement
affecting the execution behavior of another statement, this restriction is implied.

14

gram’s def/use graph is semantically dependent on itself, because the change alters the argument

to the second execution of statement 5 for the input N = 5.

5 Relating Semantic and Syntactic Dependence

In software testing, debugging, and maintenance, one is often interested in the following question:

When can a change in the semantics of a program statement affect the execution be-

havior of another statement?

This question is, however, undecidable in general. Dependence analysis, like data flow analysis,

avoids problems of undecidability by trading precision for (efficient) decidability. During depen-

dence analysis, programs are represented by def/use graphs, which contain limited semantic in-

formation but are easily analyzed. Dependence analysis allows semantic questions to be answered

“approximately”, because a program’s dependences partially determine its semantic properties. To

evaluate the usefulness of dependence analysis in “approximately” answering the question above,

we frame the question in terms of def/use graphs, by asking “When is one statement semantically

dependent on another?”. This leads to our main results.

(The proofs of Theorems 2 and 4 below are sketched in Appendix A. The proofs of Theorems 3

and 5 are given informally with the theorems. Formal versions of all these proofs are found in

[Podg89].)

Theorem 2 Let G = (G,Σ,D,U) be a def/use graph, and let u, v ∈ V (G). If u is semantically

dependent on v then u is weakly syntactically dependent on v.

It was shown in Section 4 that vertex v6 in the def/use graph of Figure 2 is semantically

dependent on vertex v5. This is reflected by the fact that v6 is weakly syntactically dependent on

v5, as shown in Section 3.3. However, v6 is not strongly syntactically dependent on v5.

15

Theorem 3 Strong syntactic dependence is not a necessary condition for semantic dependence.

The next theorem shows that strong syntactic dependence does have semantic significance. The

theorem in fact justifies some informally-posed applications of dependence analysis (see Section 6).

Theorem 4 Let G = (G,Σ,D,U) be a def/use graph, and let u, v ∈ V (G). If u is semantically

dependent on v and this semantic dependence is finitely demonstrated then u is strongly syntactically

dependent on v.

It was shown in Section 4 that vertex v5 in the def/use graph of Figure 1 is semantically dependent

on vertex v2 and that this semantic dependence is finitely demonstrated. This is reflected by the

fact that v5 is strongly syntactically dependent on v2 (v5 is directly data flow dependent on v3,

which is strongly control dependent on v2).

Theorem 5 Neither direct data flow dependence nor data flow dependence is a sufficient condition

for semantic dependence.

In the def/use graph of Figure 3, vertex vF is directly data flow dependent on vertex v2.

However, vF is not semantically dependent on v2. This is because no computation of any program

with this def/use graph visits both v2 and vF , since the “loop control variable” σ is not redefined

in the cycle v1v2v1.

Corollary 1 Neither weak nor strong syntactic dependence is a sufficient condition for semantic

dependence.

Figure 4 shows the dependence relations considered in this paper, ordered by set inclusion.

There is an arrow from a relation R1 to a relation R2 if R1 ⊆ R2.

16

Figure 3: Direct data flow dependence without semantic dependence

6 Implications of the Results

The results of Section 5 support the following general conclusions about the use of dependence

analysis to obtain information about relationships between program statements:

1. The absence of weak syntactic dependence between two statements precludes all relationships

between them that imply semantic dependence

2. The absence of strong syntactic dependence between two statements does not necessarily

preclude all relationships between them that imply (non finitely-demonstrated) semantic de-

pendence

3. The absence of strong syntactic dependence between two statements precludes all relationships

between them that imply finitely demonstrated semantic dependence

4. The presence of direct data flow dependence, data flow dependence, or weak or strong syntac-

tic dependence between two statements does not necessarily indicate any relationship between

the statements that implies semantic dependence

17

Figure 4: Relationships of dependence types

18

Conclusion 1 follows from Theorem 2; any relationship between two statements that implies se-

mantic dependence also implies weak syntactic dependence. Conclusion 2 follows from Theorem 3

and Theorem 4; non finitely-demonstrated semantic dependence does not imply strong syntactic

dependence. Conclusion 3 follows from Theorem 4; any interstatement relationship that implies

finitely demonstrated semantic dependence also implies strong syntactic dependence. Finally, con-

clusion 4 follows from Theorem 5 and Corollary 1.

Note that conclusion 1 implies that the weak syntactic dependence relation for a program is

an “upper bound” for (contains) any relation on the program’s statements that implies semantic

dependence. Similarly, conclusion 3 implies that the strong syntactic dependence relation for a

program bounds any relation on the program’s statements that implies finitely demonstrated se-

mantic dependence. Since the syntactic dependences in a program can be computed efficiently,

these bounds can be determined easily and used to narrow the search for statements having certain

important relationships. For example, if an operator fault at a statement s affects the execution

behavior of a statement s′, this demonstrates that s′ is semantically dependent on s; therefore, only

those statements that are weakly syntactically dependent on s could be affected by an operator

fault at s. Consequently, weak syntactic dependences can be used to help locate statements that

can be affected by an operator fault at a given statement. Of course, whenever a relation R on the

statements of a program implies finitely demonstrated semantic dependence, the strong syntactic

dependence relation for the program is a “tighter” bound on R than the weak syntactic dependence

relation is.

In the sequel, we use the results of Section 5 to evaluate the semantic basis for several pro-

posed uses of dependences in testing, debugging, and maintenance and to suggest new uses. The

results suggest that some proposed uses are mistaken, but provide partial justification, in terms of

facilitating search, for other uses.

19

6.1 Dependence-Coverage Criteria

In software testing, a dependence-coverage criterion is a test-data selection rule based on

“covering” or “exercising” certain program dependences. Several coverage criteria have been defined

that call for exercising the data flow dependences in a program [Fran87, Lask83, Ntaf84, Rapp85];

these are called “data flow coverage criteria”. They require the execution of program walks7 that

demonstrate certain data flow dependences. One rationale for the data flow coverage criteria is that

they facilitate the detection of incorrect variable definitions [Lask83, Rapp85], which may be caused

by mistaken use of operators and/or variable names. Another is that they facilitate the detection

of faults that cause missing and spurious data flow dependences [Lask83]. These two rationales are

related, since an incorrect variable definition can cause missing or spurious data flow dependences.

In Section 6.1.1 below we use the results of Section 5 to evaluate the use of dependence coverage

criteria for the detection of those incorrect variable definitions that arise from operator faults. In

Section 6.1.2, we use the results of Section 5 to evaluate the use of dependence coverage criteria for

the detection of faults that cause missing and spurious dependences.

6.1.1 Detection of Operator Faults

The data flow coverage criteria address operator faults by exercising data flow dependences upon

potentially faulty variable definitions. This may cause erroneous values produced by an operator

fault to propagate, via the sequence of assignments represented by a data flow dependence, and

produce an observable failure. The data flow coverage criteria differ with regard to the number

and type of data flow dependences exercised and with regard to the number of walks executed that

demonstrate a given dependence. For example:

• Rapps and Weyuker’s All-Defs criterion [Rapp85] exercises one direct data flow dependence,

if possible, upon each variable definition in a program

7That is, sequences of statements corresponding to walks in a program’s control flow graph.

20

• Rapps and Weyuker’s All-Uses and All-DU-Paths criteria [Rapp85] exercise all direct data

flow dependences in a program

• Laski and Korel’s Strategy II [Lask83] exercises all direct data flow dependences, but exercises

them in combination

• For a fixed k, Ntafos’s Required k-Tuples criterion [Ntaf84] exercises all chains of k direct

data flow dependences; that is, all sequences of k + 1 vertices such that each vertex in the

sequence except the last is directly data flow dependent on the next

It is plausible that the propagation of erroneous values via data flow dependences alone is

sufficiently common to make data flow coverage criteria worthwhile, even though, by conclusion 4,

the fact that a statement s is data flow dependent on a faulty statement s′ does not imply that

an erroneous value propagates from s′ to s. However, when an operator fault causes a conditional

statement to make an incorrect branch, control dependence can be critical to the ability of the

fault to affect the execution behavior of a particular statement. For example, changing the branch

predicate X > Y in the program of Figure 1 to X < Y changes the number of times statement 3

is executed for the inputs X = 5, Y = 2 because statement 3 is strongly control dependent on

statement 2. Hence, no coverage criterion based only on exercising data flow dependences can, in

general, exercise all the syntactic dependences associated with erroneous information flow produced

by operator faults. Correspondingly, it is easily seen that data flow dependence is not a necessary

condition for even finitely demonstrated semantic dependence.

Some of the data flow coverage criteria mentioned above, such as the All-Uses and Required

k-Tuples criteria, incorporate limited forms of control dependence coverage. However, even these

criteria do not exercise all syntactic dependences associated with the erroneous information flow

produced by operator faults, because the types of syntactic dependences they exercise are still re-

stricted. For any sequence of the letters “C” and “D”, it is simple to construct an example of finitely

demonstrated semantic dependence for which the corresponding strong syntactic dependence is re-

21

alized by only one chain of direct data flow dependences and direct strong control dependences,

whose ith dependence is a direct strong control dependence (direct data flow dependence) if the

ith letter of the sequence is “C” (is “D”). This means that, in general, almost arbitrarily complex

chains of data flow and control dependences may have to be exercised to reveal operator faults.

As noted at the beginning of Section 6, it follows from conclusions 1 and 3 that syntactic

dependences provide a nontrivial bound on the set of statements that can be affected by an operator

fault at a given statement. One might think that to remedy the aforementioned weakness of the

data flow coverage criteria it is only necessary to extend them to exercise all syntactic dependences

upon a potentially faulty definition, instead of just data flow dependences. However, the number of

tests required to adequately exercise all syntactic dependences can be impractically large, for the

following reasons:

• The number of syntactic dependences in a program can be quadratic in the number of state-

ments

• A given syntactic dependence may be demonstrated by many program walks (even infinitely

many), only one of which is associated with erroneous information flow

• Erroneous information flow via a particular syntactic dependence may depend not only on

which walk is executed, but also on the particular input used

At the very least, the bounds on erroneous information flow that are implied by a program’s

syntactic dependences can be used to filter out test data, selected without regard to the depen-

dences, that cannot possibly reveal certain faults. More ambitiously, it may be possible to base test

data selection on the determination of syntactic dependences, by analyzing individual syntactic

dependences to determine which dependences, which walks demonstrating them, and which inputs

executing these walks are most likely to be associated with erroneous information flow. Implement-

ing this approach might require the development of techniques for more precise semantic analysis

22

of programs and for acquiring reliable statistical information about programmer error-making be-

havior.

6.1.2 Detection of Dependence Faults

Dependence analysis has something to say about other kinds of faults besides operator faults. A

dependence fault is a fault causing different dependences to exist in an incorrect version of a

program than in the correct program. A dependence fault may cause either “missing” or “spurious”

dependences or both. A dependence is missing if it occurs in the correct program but not the faulty

one; it is spurious if the reverse is true. For example, if the wrong variable name, say X, is used on

the left hand side of an assignment statement, this makes every use of X reached by this definition

of X spuriously data flow dependent on it. This fault may also cause data flow dependences upon

definitions killed by the erroneous definition of X to be missing from the faulty program, although

missing and spurious dependences do not always accompany each other. Dependence faults may also

involve control dependence, as when a statement is erroneously placed in the body of a conditional

branch statement, causing a spurious control dependence. In a sense, dependence faults are the

complement of operator faults. Operator faults change only the semantics of a single statement;

they do not change a program’s def/use graph. Under certain assumptions, it can be shown that

any fault that does change a program’s def/use graph changes the program’s syntactic dependences

as well, and is therefore a dependence fault.

The data flow coverage criteria address dependence faults by exercising potentially spurious

data flow dependences. To evaluate the soundness of this approach, it is necessary to relate the

semantic and syntactic effects of dependence faults. The results of Section 5 do this for certain types

of dependence faults. If a fault causes the function computed by a statement s to be erroneously

relevant to the execution behavior of a statement s′, it follows from Theorems 2 and 4 that s′ is

syntactically dependent on s, since s′ is semantically dependent on s. If this syntactic dependence

exists only by virtue of the fault, then it is spurious. A fault may also cause the function computed

23

by a statement to be erroneously irrelevant to the execution behavior of another statement, with

the result that a syntactic dependence between the statements is missing by virtue of the fault.

By conclusions 1 and 3, if a statement s is not syntactically dependent on a statement s′, then

the semantics of s′ is irrelevant to the execution behavior of s. Thus, the presence or absence of

syntactic dependences may be evidence of erroneous semantic relationships.

Exercising syntactic dependences, as the data flow coverage criteria do, may reveal when the

function computed by one statement is erroneously relevant on the execution behavior of another

statement, by exercising a spurious syntactic dependence associated with this fault and thereby

eliciting the fault’s effects. Of course, it is not sure to. Exercising syntactic dependences may also

reveal when the function computed by a statement is erroneously irrelevant to the execution behav-

ior of another statement, particularly if, as is often the case, missing syntactic dependences caused

by this fault are accompanied by spurious ones. However, because the data flow coverage criteria

exercise only restricted types of syntactic dependences, the results of Section 5 imply that these

criteria do not necessarily exercise all missing and spurious syntactic dependences. In the absence

of additional information, the only way to remedy this is to exercise every syntactic dependence

in a program. For the reasons given in Section 6.1.1, we believe that this approach is untenable.

Nevertheless, determination of syntactic dependences might be used to guide more discriminating

methods for detecting dependence faults, in ways similar to those proposed in Section 6.1.1 for the

detection of operator faults.

6.2 Anomaly Detection

A program anomaly is a syntactic pattern that is often evidence of a programming error, irre-

spective of a program’s specification [Fosd76] — for example, a variable being used before it has

been defined. Korel [Kore87] proposes using program dependences for the detection of “useless”

statements, a type of anomaly detection. Useless statements are ones that cannot influence the

output of a program and can be removed without changing the function the program computes.

24

Korel claims that a statement is useless if there is no output statement strongly syntactically

dependent upon it.

Korel did not prove this informal claim. Nevertheless, conclusion 3 supports a version of it:

if no output statement in a program is strongly syntactically dependent on s, then the semantics

of s is irrelevant to the values of variables output by the program. This is because if a change to

the semantics of s affected the value of a variable output at statement s′, then this would finitely

demonstrate that s′ was semantically dependent on s. A change to the semantics of a statement can

affect the output of a program in ways that imply non finitely-demonstrated semantic dependence,

however. By conclusion 2, non finitely-demonstrated semantic dependence might not be accompa-

nied by strong syntactic dependence. In the factorial program of Figure 2, changing the branch

condition of the while-loop to N = N causes the loop to execute forever; consequently, statement 6

is not executed. Thus vertex v6 of the program’s def/use graph is semantically dependent on vertex

v3. However, this semantic dependence is not finitely demonstrated, and v6 is not strongly syn-

tactically dependent on v3. Hence, the fact that an output statement is not strongly syntactically

dependent on a statement s does not imply that the semantics of s is irrelevant to the behavior

of the output statement. However, if no output statement in a program is weakly syntactically

dependent on s then, by conclusion 1, the semantics of s is irrelevant to the program’s output.

6.3 Debugging and Maintenance

In both software debugging and maintenance, it is often important to know when the semantics of

one statement can affect the execution behavior of another statement. In debugging, one attempts

to determine what statement(s) caused an observed failure. In maintenance, one wishes to know

whether a modification to a program will have unanticipated effects on the program’s behavior; to

determine this, it is helpful to know what statements are affected by the modified ones and what

statements affect the modified ones. There are no general procedures for determining absolute

answers to these questions, but dependence analysis can be used to answer them approximately.

25

In his work on program slicing, Weiser proposes that program dependences be used to determine

the set of statements in a program — called a “slice” of the program — that are potentially relevant

to the behavior of given statements [Weis79, Weis82, Weis84]. Weiser demonstrates how program

slices can be used to locate faults when debugging. He claims that if an incorrect state is observed

at a statement s, then only those statements that s is strongly syntactically dependent upon could

have caused the incorrect state. He argues that by (automatically) determining those statements

and then examining them the debugging process can be facilitated.

While most investigators who proposed uses for program dependences made no attempt to

justify these uses rigorously, Weiser [Weis79] did recognize the need to do this for the use of

dependences in his program slicing technique, and he attempted to provide such justification via

both mathematical proofs and a psychological study. To this end, Weiser implicitly defined a type

of semantic dependence and examined its relationship to syntactic dependence. Unfortunately, the

mathematical part of Weiser’s work is flawed. In his dissertation [Weis79], Weiser states a theorem

similar to Theorem 2.8 In his attempted proof of this theorem, Weiser actually assumes, without

proof, that strong syntactic dependence is a necessary condition for semantic dependence. Besides

being very close to what Weiser is trying to prove, this assumption is false. Weiser does not address

the issue of formal justification for slicing in his subsequent writings.

If a program failure observed at one statement is caused by an operator fault at another state-

ment, it follows from conclusion 1 that the search for the fault can be facilitated by determining

weak syntactic dependences, since the statement where the failure was observed is weakly syntac-

tically dependent upon the faulty statement. If the failure implies finitely demonstrated semantic

dependence, it follows from conclusion 3 that strong syntactic dependence can be used to help

locate the fault. However, if the failure implies a semantic dependence that is not finitely demon-

strated, then strong syntactic dependence cannot necessarily be used to locate the fault. This is

illustrated by the example in Section 6.2. Hence, for locating operator faults, Weiser’s use of strong

8The theorem is stated in terms of Weiser’s problematic “color dominance” characterization of control dependence,
which he abandoned in his later writings on slicing, in preference to strong control dependence.

26

syntactic dependence in slicing is justified only when the faults cause failures that finitely demon-

strate semantic dependence. In his thesis [Weis79], Weiser does not restrict the type of semantic

dependence he attempts to localize with slicing to be finitely demonstrated. In [Weis84], however,

Weiser defines slicing for terminating programs only. In general, of course, faulty programs may

fail to terminate, so this restriction limits the applicability of slicing.

The implications of conclusions 1–4 for maintenance are similar to those for debugging. If a

modification involves only the semantics of a single statement, then, by conclusions 1 and 3, only

those statements that are syntactically dependent on the statement to be modified could be affected

by the modification. Similarly, only those statements that a modified statement is syntactically

dependent on could be relevant to the behavior of the modified statement.

7 Other Related Work

In this section we briefly survey related work, not considered above, on the use of program depen-

dences in testing, debugging, and maintenance.

Bergeretti and Carré [Berg85] present a variant of dependence analysis, called “information flow

analysis”, that applies to structured programs. They suggest several uses for it, including testing

and debugging. They define, by structural induction on the syntax of a programming language,

three information flow relations that are similar to strong syntactic dependence.

Recently, several papers have investigated the semantic basis for proposed uses of program

dependences [Cart89, Horw88a, Horw88b, Reps89, Selk89]. Some of these papers address the use

of dependences in software debugging and maintenance. Horwitz et al [Horw88a] present a theorem

that characterizes when two programs with the same dependences compute the same function. Reps

and Yang [Reps89] use a version of this result to prove two theorems about program slicing. One of

these states that a slice of a program computes the same function as the program itself on inputs

for which the computations of both the program and its slice terminate. The second theorem states

27

that if a program is decomposed into slices, the program halts on any input for which all of the

slices halt. The latter two theorems are used by Horwitz et al [Horw88b] to justify an algorithm

for integrating versions of a program.

This paper differs in three respects from the other recent work on the semantic basis for the

use of dependences. First, the other work does not address the concept of semantic dependence.

Second, while the results in those papers are proved for a simple, structured programming language,

we adopt a graph-theoretic framework for our results, similar to that in [Weis79], that makes them

applicable to programs of any procedural programming language and to unstructured programs as

well as structured ones. Third, this paper considers the semantic significance of both weak and

strong control dependence, while the above papers consider only strong control dependence.

8 Conclusion

In summary, we have presented several results clarifying the significance of program dependences

for the execution behavior of programs. We have shown that two generalizations of both control

and data flow dependence, called weak and strong syntactic dependence, are necessary conditions

for certain interstatement relationships involving the effects of program faults and modifications.

This implies that weak and strong syntactic dependences, which can be computed efficiently, may

be used to guide such activities as test data selection and program debugging. On the other hand,

we have also shown that neither data flow nor syntactic dependence is a sufficient condition for the

interstatement relationships in question. This result discourages the use of such dependences, in the

absence of additional information, as evidence for the presence of these relationships. Finally, we

have shown that strong syntactic dependence is not a necessary condition for some interstatement

relationships involving program nontermination, and this suggests that some proposed uses of strong

syntactic dependence in debugging and anomaly detection are unjustified.

There are several possible lines of further investigation related to the use of program dependences

28

in testing, debugging, and maintenance. For example, our results could be usefully extended

to provide information about the effects of larger classes of faults and program modifications.

Another possible line of investigation is the development of testing methods that exploit the fact

that syntactic dependence bounds the statements that are affected by certain types of faults. For

example, Morell [More84], Richardson and Thompson [Rich88], and Demillo et al [DeMi88] propose

test data selection methods that might be adapted to do this, since their methods are based on

determining conditions for erroneous program states to occur and then propagate to a program’s

output. A third possible line of investigation is the development of more sophisticated semantic

analysis techniques to complement dependence analysis.

A Appendix: Sketch of the Proofs of Theorems 2 and 4

The proofs of Theorems 2 and 4 are lengthy, so we only sketch them here; complete proofs are

found in [Podg89].

To describe the proofs of Theorems 2 and 4, it is necessary to present the complete definition

of semantic dependence. This definition uses some notation that we now informally define. An

interpretation I of a def/use graph G = (G,Σ,D,U) is triple (D, F,N). D is the set of objects

which serve as the inputs, outputs, and intermediate results of a computation, and is called the

domain of I. F is function that associates with every vertex v ∈ V (G) a partial recursive function

F (v) that maps an assignment of values for the variables in U(v) to an assignment of values for the

variables in D(v). F represents the ability of a program statement to alter the value of variables.

N is a function that associates with every decision vertex d ∈ Vdec(G) a function N(d) mapping

an assignment of values for the variables in U(d) to a successor of d. N represents the ability of a

branch condition of a conditional branch statement to determine the order of statement execution.

The pair P = (G, I) is called a program. The computation sequence induced by executing P on

an input d ∈ DΣ is denoted CP(d) = {(vi, val i)}.9 The execution history of v ∈ V (G) induced by

9The symbol DΣ denotes the set of functions from Σ into D.

29

CP(d) is denoted HP(v, d), and its ith element, if it exists, is denoted HP(v, d)(i).

We are now ready to present the formal definition of semantic dependence.

Definition 12 Let G = (G,Σ,D,U) be a def/use graph, and let u, v ∈ V (G). Vertex u is seman-

tically dependent on vertex v iff there exist interpretations I1 = (D, F1, N1) and I2 = (D, F2, N2)

of G and an input d ∈ DΣ such that, letting P1 = (G, I1) and P2 = (G, I2), both of the following

conditions are satisfied:

1. For all w ∈ V (G) − {v}, F1(w) = F2(w) and if w ∈ Vdec(G) then N1(w) = N2(w)

2. Either of the following conditions is satisfied:

(a) There is some i ≥ 1 such that HP1
(u, d)(i) and HP2

(u, d)(i) are both defined but are

unequal

(b) HP1
(u, d) is longer than HP2

(u, d), and either CP2
(d) = {(vi, val i)} is infinite or it visits

some vertex vi from which u is unreachable

I1, I2, and d are said to demonstrate that u is semantically dependent on v. If condition 1 holds

and either condition 2(a) holds or both of the following conditions are true:

1. HP1
(u, d) is longer than HP2

(u, d)

2. u is unreachable from some vertex of CP2
(d)

then I1, I2, and d are said to finitely demonstrate that u is semantically dependent on v.

The last part of condition 2(b) may be unintuitive. It requires that if a semantic dependence is

demonstrated by the fact that one execution history is longer than another, then the computation

sequence corresponding to the shorter history must be infinite or must contain a vertex from

which the dependent vertex is unreachable. This requirement prevents a semantic dependence

30

from being demonstrated solely as the result of the divergence of a function assigned to a vertex.

Such divergence can cause an execution history to be shorter than it would be if the divergence

did not occur, by terminating a computation. The reason this possibility is disallowed is that if it

were not, then each vertex would be semantically dependent on every other vertex from which it

is reachable via an acyclic initial walk (path), trivializing the semantic dependence relation. If the

shorter of two execution histories demonstrating a semantic dependence corresponds to either an

infinite computation or to a computation containing a vertex from which the dependent vertex is

unreachable, then divergence at a vertex either does not occur or is irrelevant to the demonstration

of the dependence, respectively.

The proofs of Theorems 2 and 4 have the following basic form. First, a graph-theoretic structure

is defined which represents the potential flow of data to a vertex v along an initial walk Wv in a

def/use graph G. This structure is called the “context” of v with respect to Wv. It is then shown

that in any execution of a program with def/use graph G, the arguments to an execution of v (that

is, the values of the variables in U(v)) are completely determined by its context. Next, necessary

conditions for semantic dependence are given in terms of walks and contexts. These are obtained

by analyzing the pair of possibly infinite “walks” executed by a pair of interpretations and an input

that demonstrate semantic dependence. Finally, these conditions are used to prove Theorems 2

and 4. We now describe each of these steps in more detail.

The context CON (v,Wv) of a vertex v with respect to an initial walk Wv in a def/use graph

G = (G,Σ,D,U) is a directed tree (technically an “in-tree” [Hara69]) that represents the cumulative

flow of data to v along W . CON (v,Wv) contains a distinguished vertex of outdegree zero, called

its sink. Each vertex of CON (v,Wv) is labelled with a vertex of G and each arc of CON (v,Wv)

is labelled with a variable of Σ. CON (v,Wv) is defined inductively as follows. If W is empty then

CON (v,Wv) consists of a single vertex labelled “v”. Otherwise, CON (v,Wv) consists of

1. A sink s labelled “v”

31

2. For each variable σ ∈ U(v) such that W = XuY with σ ∈ D(u)−D(Y), a copy of CON (u,Xu)

and an arc from its sink to s labelled “σ”

To see the significance of a context CON (v,Wv), notice that if G represents a “real” program P

then CON (v,Wv) is analogous to the set of symbolic values held by the variables of U(v) after the

instruction sequence I(W) of P corresponding to W is symbolically executed [Clar81] (equivalently,

executed under a Herbrand interpretation [Grei75, Mann74]). These symbolic values define the

actual values of the variables in U(v), as functions of the inputs to P, when I(W) is executed

normally; hence, the symbolic values determine the actual ones. In the same way, the interpretation

of the vertex labels of the context CON (v,Wv) determines the values of the variables in U(v) when

W is executed for a given input and (abstract) interpretation of G. This is demonstrated formally

by induction on the length of W .

To state necessary conditions for semantic dependence in terms of walks and contexts, it is

necessary to introduce three auxiliary concepts: “hyperwalks”, “consistency”, and “reciprocal con-

sistency”. Since program computations may fail to terminate, it is necessary to consider infinite

“walks” in def/use graphs; a hyperwalk in a def/use graph G is sequence of vertices that is either

an ordinary walk or an infinite one. A hyperwalk W is consistent if there are no two occurrences

of a decision vertex d in W that have the same context but are followed by different successors of

d. This notion is analogous to the notion of path consistency in program schema theory [Grei75].

Because the context CON (d,Xd) determines the values of the variables in U(d) when Xd is exe-

cuted, and hence determines the branch taken at d, an executable hyperwalk must be consistent.10

Reciprocal consistency is similar to consistency, but is a necessary condition for a pair of hyperwalks

to be executed by a pair of interpretations I1 and I2 that differ at only one vertex — such as a

pair of interpretations that demonstrate semantic dependence. A pair of hyperwalks W and X is

10It can also be shown that every consistent hyperwalk is executed by some interpretation, using what is essentially
a Herbrand interpretation of a def/use graph.

32

reciprocally v-consistent if

W = W1uu′W2 and X = X1uu′′X2 and u′ %= u′′

implies that either CON (u,W1u) %= CON (u,X1u) or that CON (u,W1u) contains a vertex la-

belled “v”. Intuitively, if W and X are executed by I1 and I2, respectively, the only way that

CON (u,W1u) = CON (u,X1u) can hold is if v is the vertex whose interpretation differs between

I1 and I2 and data flows from v to u via CON (u,W1u) and CON (u,X1u).

Having defined contexts, hyperwalks, consistency, and reciprocal consistency, and having es-

tablished their relevance to program execution, it is possible to establish necessary conditions for

semantic dependence in terms of walks and contexts.

Theorem 6 Let G = (G,Σ,D,U) be a def/use graph and u, v ∈ V (G). Then u is semantically

dependent on v iff there exist initial hyperwalks W and X in G such that each of the following is

true:

1. W and X are algorithmically listable; and

2. W and X are consistent and reciprocally v-consistent; and

3. At least one of the following conditions holds:

(a) W = W1uW2 and X = X1uX2, where u occurs the same number of times in W1u as

in X1u, and where either CON (u,W1u) %= CON (u,X1u) or CON (u,W1u) contains a

vertex other than its sink that is labelled “v”

(b) W contains more occurrences of u than X does, and either X is infinite or X contains

a vertex from which u is unreachable

It is interesting to note that these conditions are also sufficient for semantic dependence

[Podg89], although this fact is not used in proving the results stated in Section 5. Condition 1

33

of Theorem 6, which means that there are some (possibly nonterminating) algorithms for listing

W and X, is required for proving the sufficiency of the conditions but not for proving the results

of Section 5; hence, we do not discuss it further.

To prove that the conditions of Theorem 6 are necessary for semantic dependence, one lets the

hyperwalks W and X of the theorem be the walks executed by interpretations I1 and I2 of G,

respectively, that, in conjunction with some input d, demonstrate that u is semantically dependent

on v. Since these walks are executed by I1, I2, and d, they must be consistent and reciprocally v-

consistent, for the reasons given above; hence W and X satisfy condition 2 of Theorem 6. Note that

condition 3 of Theorem 6 mirrors condition 2 of the definition of semantic dependence; however, the

former condition is syntactic, whereas the latter is semantic. Let P1 = (G, I1) and P2 = (G, I2).

Suppose that condition 2(a) of the definition of semantic dependence is satisfied:

There is some i ≥ 1 such that HP1
(u, d)(i) and HP2

(u, d)(i) are defined and unequal.

Let W = W1uW2 and X = X1uX2, where u occurs exactly i times in W1u and X1u. Suppose v is

not a vertex label in CON (u,W1u). Intuitively, then, data does not flow along W1 from v to the last

occurrence of u in W1u. Since v is the only vertex whose interpretation changes between I1 and I2,

and since the interpretation of the vertex labels of CON (u,W1u) and CON (u,X1u) determines the

values of the variables in U(u) when W1u and X1u, respectively, are executed for a particular input,

CON (u,W1u) %= CON (u,X1u). Otherwise, we would have HP1
(u, d)(i) = HP2

(u, d)(i). If v is a

vertex label in CON (u,W1u), then it is possible that CON (u,W1u) = CON (u,X1u), since different

data could flow from v to u via this context under I1 than under I2. Thus, if condition 2(a) of the

definition of semantic dependence is satisfied then condition 3(a) of Theorem 6 is also satisfied.

On the other hand, suppose that condition 2(b) of the definition of semantic dependence is

satisfied:

HP1
(u, d) is longer than HP2

(u, d), and either CP2
(d) is infinite or it visits a vertex from

34

which u is unreachable.

Then clearly condition 3(b) of Theorem 6 is satisfied. If condition 2(c) of the definition of semantic

dependence is satisfied, then we may reverse the roles of W and X to obtain the same result.

Having established Theorem 6, we show that various subconditions of condition 3 of the theorem,

taken together with condition 2, imply various types of syntactic dependence. We assume henceforth

that condition 2 is satisfied by W and X.

It is easy to see that if condition 3(a) of Theorem 6 is satisfied by W and X because CON (u,W1u)

contains a vertex other than its sink that is labelled “v”, then u is data flow dependent on v. This

is because the head of an arc of CON (u,W1u) is directly data flow dependent on its tail, as is clear

from the definition of a context. The other subcondition of 3(a), CON (u,W1u) %= CON (u,X1u),

implies that u is strongly syntactically dependent on v, but this is more difficult to see. The proof

of this fact is a pivotal element in establishing the results of Section 5, since a generalization of

condition 3(a) arises in considering condition 3(b).

Let us refer to the subcondition CON (u,W1u) %= CON (u,X1u) of condition 3(a) in Theorem 6

as subcondition 3(a)′. The first step in showing that 3(a)′ implies that u is strongly syntactically de-

pendent on v is to show that 3(a)′ implies that some vertex label of CON (u,W1u) or CON (u,X1u)

is strongly control dependent on a decision vertex d having kth occurrences in W1u and X1u that

are followed by different successors. Intuitively, d makes branches that cause CON (u,W1u) and

CON (u,X1u) to differ. Since u is data flow dependent on the vertex labels of its contexts, u is

strongly syntactically dependent on d. The existence of d is established by Lemma 1 below. Since

W and X are reciprocally v-consistent, it follows either that d is data flow dependent on v or that

the initial walks W1,1d and X1,1d of the lemma, which are shorter than W1u and X1u, themselves

satisfy the hypothesis of the lemma. Since strong syntactic dependence is a transitive relation, it

is evident that an inductive proof that u is strongly syntactically dependent on v can be framed

using the lemma. The formalization of this proof is relatively straightforward; hence we focus on

35

the lemma and its proof.

Lemma 1 Let G = (G,Σ,D,U) be a def/use graph with u ∈ V (G), and let W1u and X1u be initial

walks in G containing the same number of occurrences of u. If CON (u,W1u) %= CON (u,X1u), then

there is a vertex d ∈ V (G) such that a vertex-label of CON (u,W1u) or CON (u,X1u) is strongly

control dependent on d and such that W1u = W1,1dd′W1,2 and X1u = X1,1dd′′X1,2, where d′ %= d′′

and d occurs equally often in W1,1d and X1,1d.

This lemma is proved by assuming that no such vertex d exists, and then showing that this

implies that W1u and X1u have a special structure which precludes u having different contexts with

respect to them, which would of course be a contradiction. More precisely, we show, by induction

on the length of the longer of W1u and X1u, that if there is no such vertex d then there are walks

R0, R1, . . . , Rn, S1, S2, . . . , Sn, and T1, T2, ..., Tn satisfying each of the following conditions:

1. W1u = R0S1R1S2R2 · · ·SnRn

2. X1u = R0T1R1T2R2 · · ·TnRn

3. For i = 1, 2, . . . , n, Ri begins with ifd(ri−1), where ri−1 is the last vertex of Ri−1, and ifd(ri−1)

does not occur in Si or Ti

4. For i = 1, 2, . . . , n, the first vertex of SiRi is different from the first vertex of TiRi

It follows that for i = 1, 2, . . . , n, Si and Ti consist of vertices that are strongly control dependent on

ri−1. It is not difficult to show, using induction and the transitivity of strong control dependence,

that if a vertex label of CON (u,W1u) or CON (u,X1u) occurred in Si or Ti, then we could let d

in the statement of Lemma 1 be some rj, where j < i, to obtain a contradiction. Intuitively, this

means that the only part of W1u that is relevant to the structure of CON (u,W1u), namely the

subsequence R0, R1, . . . , Rn, is identical to the only part of X1u that is relevant to the structure

of CON (u,X1u). This implies that the two contexts are identical — which we show formally

36

by induction on the length of W1u, exploiting the inductive definition of a context. Since this

contradicts the hypothesis of the lemma, we conclude the lemma is true. This concludes our sketch

of the proof that condition 3(a) of Theorem 6 implies that u is strongly syntactically dependent on

v.

Suppose that condition 3(b) of Theorem 6 is satisfied by W and X. This condition is the

disjunction of two subconditions, which we will denote 3(b)′ and 3(b)′′. Subcondition 3(b)′ is

W contains more occurrences of u than X does, and X is infinite

while subcondition 3(b)′′ is

W contains more occurrences of u than X does, and X contains a vertex from which u

is unreachable

We show that 3(b)′ implies, in conjunction with condition 2 of Theorem 6, that u is weakly syntac-

tically dependent on v (it may or may not be strongly syntactically dependent on v) and that 3(b)′′

implies that u is strongly syntactically dependent on v. We now sketch these proofs, beginning

with that of the second result.

Suppose that subcondition 3(b)′′ is satisfied. To deal with this case, we prove Lemma 2 below.

Note that if we identify the vertex u of 3(b)′′ with the vertex w of the lemma and let the walks Y w

and Zx of the lemma be appropriate prefixes of W and X, respectively, then the lemma applies.

The reciprocal v-consistency of W and X implies that either the vertex d of the lemma is data

flow dependent on v, which implies that u is strongly syntactically dependent on v, or the walks

Y1d and Z1d of the lemma satisfy the hypothesis of Lemma 1. Since Y1d and Z1d are shorter than

Y w and Zx, respectively, this allows us to frame an inductive proof that u is strongly syntactically

dependent on v, similar to that discussed with regard to subcondition 3(a)′ of Theorem 6.

Lemma 2 Let G be a control flow graph, w, x ∈ V (G), and Y w and Zx walks in G. If (1) w is

37

unreachable from x, (2) Y w and Zx begin with the same vertex, and (3) w has more occurrences

in Y w than in Zx, then there is a vertex d such that (a) w is strongly control dependent on d, (b)

Y w = Y1dd′Y2, and (c) Zx = Z1dd′′Z2, where d′ %= d′′ and d has the same number of occurrences

in Y1d as in Z1d.

The proof of this lemma implicitly demonstrates that if no such vertex d exists, then Y w and

Zx have a special structure similar to that discussed above in regard to the proof of Lemma 1,

although the proof of Lemma 2 proceeds directly instead of by contradiction. It is shown that if

R is the longest common prefix of Y w and Zx then Y w = RY ′w and Zx = RZ ′x, where the first

vertex of Y ′w is different from that of Z ′x. If w is strongly control dependent on the last vertex r

of R then we may let d = r. Suppose that w is not strongly control dependent on r. It is shown

that in this case ifd(r), the immediate forward dominator of r, occurs in both Y ′w and Z ′x. Thus,

Y ′w = Y1ifd(r)Y2 and Z ′x = Z1ifd(r)Z2, where ifd(r) does not occur in Y1 or Z1. Each vertex

in Y1 and Z1 is strongly control dependent on r, so w cannot occur in either walk. This implies

that there are more occurrences of w in ifd(r)Y2 than in ifd(r)Z2. Since these walks satisfy the

hypothesis of Lemma 2 and are shorter than Y w and Zx, respectively, we may frame an inductive

proof of the lemma. By assuming the truth of the lemma for ifd(r)Y2 and ifd(r)Z2, we conclude

that ifd(r)Y2 = S1dd′S2 and ifd(r)Z2 = T1dd′′T2, where d %= d′′ and d has the same number of

occurrences in S1d as in T1d. The vertex d must also have the same number of occurrences RY1S1d

as in RZ1T1d — for otherwise d occurs in Y1 or Z1 and so is strongly control dependent on r, which,

by the transitivity of strong control dependence, implies that w is strongly control dependent on r.

To demonstrate the implications of subcondition 3(b)′ of Theorem 6 it is necessary to introduce a

new type of control dependence, called “exit dependence”. The exit dependence relation represents

the potential ability of a loop exit condition to determine whether a statement outside the loop is

executed, by determining whether the loop terminates.

Definition 13 Let G be a control flow graph, and let u, v ∈ V (G). Vertex u is exit dependent

38

on vertex v iff there is a cycle C and a walk vWu in G such that v occurs in C and such that Wu

is vertex-disjoint from C.

For example, in the def/use graph of Figure 2, vertex v7 is exit dependent on vertex v3, as can

be seen by letting u = v7, v = v3, C = v3v4v5v3, and uWv = v3v6v7.

In [Podg89], it is shown that the weak control dependence relation of a control flow graph G is

the transitive closure of the union of the exit dependence and strong control dependence relations

of G. That is, the existence of a chain of exit dependences and strong control dependences from u

to v indicates u is weakly control dependent on v, and conversely if u is weakly control dependent

on v then such a chain exists. We very briefly describe the basis for this result. A preliminary step

in establishing the result is showing that the strong control dependence relation is the transitive

closure of the “direct strong control dependence” relation.

Definition 14 Let G be a control flow graph, and let u, v ∈ V (G). Vertex u is directly strongly

control dependent on vertex v iff v has successors v′ and v′′ such that u forward dominates v′

but u does not forward dominate v′′.

The similarity between this definition and that of direct weak control dependence is obvious, as

is the similarity between the definition of weak control dependence and the characterization of

strong control dependence in terms of direct strong control dependence. The difference between

direct weak and direct strong control dependence, and therefore between weak and strong control

dependence, is that u can be directly weakly control dependent on v because there are infinite walks

not containing u that begin with one successor of v but no such walks that begin with the other

successor. It can be shown that any such infinite walk contains a cycle that demonstrates that u is

exit dependent on either v or some vertex strongly control dependent on v.

Suppose now that subcondition 3(b)′ of Theorem 6 is satisfied by W and X, along with condi-

tion 2 of that theorem. The following lemma, which is proved by an argument similar to those used

39

to establish Lemmas 1 and 2, shows that subcondition 3(b)′ reduces to condition 3(a) of Theorem 6.

Lemma 3 Let G be a control flow graph with w ∈ V (G), and let Y w and Z be hyperwalks in G

such that Y w and Z begin with the same vertex, w has more occurrences in Y w than in Z, Z is

infinite, and w is reachable from every vertex in Z. Then there is a vertex d ∈ V (G) such that each

of the following is true:

1. Either w is strongly control dependent on d, w is exit dependent on d, or there is a vertex

x ∈ V (G) such that x is strongly control dependent on d and such that w is exit dependent

on x

2. Y w = Y1dd′Y2 and Z = Z1dd′′Z2, where d′ %= d′′ and d has the same number of occurrences

in Y1d as in Z1d

Because the weak syntactic dependence relation for G is the transitive closure of the union of

the exit dependence and strong control dependence relations for G, the vertex w of the lemma is

weakly control dependent on the vertex d whose existence the lemma asserts. Suppose that w is

identified with the vertex u of subcondition 3(b)′, and that the lemma is applied to Z = X and a

prefix of Y w of W that contains more occurrences of u than X does. Then either the vertex d whose

existence the lemma asserts is data flow dependent on v and therefore u is weakly syntactically

dependent on v, or the walks Y1d and Z1d satisfy the hypothesis of Lemma 1. Thus, using the

fact that strong syntactic dependence is transitive and implies weak syntactic dependence, we can

frame an inductive proof that u is weakly syntactically dependent on v.

References

[Aho74] Aho, A. V., Hopcroft, J. E., and Ullman, J.D. The Design and Analysis of Computer

Algorithms. Addison-Wesley, Reading, Massachusetts 1974.

40

[Aho86] Aho, A. V., Sethi, R., and Ullman, J.D. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, Reading, Massachusetts 1986.

[Berg85] Bergeretti, J. F. and Carré, B. A. Information-flow and data-flow analysis of while-

programs. ACM Transactions on Programming Languages and Systems, Vol. 7, No. 1,

January 1985, pp. 37–61.

[Cart89] Cartwright, R. and Felleisen, M. The semantics of program dependence. Proceedings of

the SIGPLAN ’89 Conference on Programming Language Design and Implementation,

Association for Computing Machinery, New York, 1989, pp. 13–27.

[Clar81] Clarke, L. A. and Richardson, D. J. Symbolic evaluation methods – implementations

and applications. Computer Program Testing, B. Chandrasekaran and S. Radicchi

Eds., North Holland, 1981, pp 65–102.

[DeMi88] DeMillo, R.A., Guindi, D.S., King, K.N., McCracken, W.M., and Offutt, A.J. An

extended overview of the Mothra software testing environment. Proceedings of the

Second Workshop on Software Testing, Verification and Analysis, Banff, Alberta, July

1988, pp. 142–151.

[Denn77] Denning, D. E. and Denning, P. J. Certification of programs for secure information

flow. Communications of the ACM, Vol. 20, No. 7, July 1977, pp. 504–513.

[Ferr87] Ferrante, J., Ottenstein, K. J., and Warren, J. D. The Program Dependence Graph

and its use in optimization. ACM Transactions on Programming Languages and Sys-

tems, Vol. 9, No. 5, July 1987, pp 319–349.

[Fosd76] Fosdick, L. D. and Osterweil, L. J. Data flow analysis in software reliability. ACM

Computing Surveys, Vol. 8, No. 3, September 1976, pp. 306–330.

[Fran87] Frankl, P. G. The use of data flow information for the selection and evaluation of

software test data. Doctoral Thesis, New York University, New York, 1987.

41

[Grei75] Greibach, S. A. Theory of Program Structures: Schemes, Semantics, Verification.

Springer-Verlag, Berlin, 1975.

[Hara69] Harary, Frank. Graph Theory. Addison-Wesley, Reading, Massachusetts, 1969.

[Horw88a] Horwitz, S., Prins, J., and Reps, T. On the adequacy of program dependence graphs

for representing programs. Proceedings of the Fifteenth ACM Symposium on Principles

of Programming Languages, Association for Computing Machinery, New York, 1988,

pp. 146–157.

[Horw88b] Horwitz, S., Prins, J., and Reps, T. Integrating non-interfering versions of programs.

Proceedings of the Fifteenth ACM Symposium on Principles of Programming Lan-

guages, Association for Computing Machinery, New York, 1988, pp. 133–145.

[Kore87] Korel, B. The program dependence graph in static program testing. Information Pro-

cessing Letters 24, January 1987, pp. 103–108.

[Lask83] Laski, J. W. and Korel, B. A data flow oriented program testing strategy. IEEE

Transactions on Software Engineering, Vol. SE-9, No. 3, May 1983, pp. 347–354.

[Mann74] Manna, Z. Mathematical Theory of Computation. McGraw-Hill, New York, 1974.

[More84] Morell, L. J. A theory of error-based testing. Doctoral thesis, University of Maryland,

College Park, Maryland, 1984.

[Ntaf84] Ntafos, S. C. On Required Element Testing. IEEE Transactions on Software Engi-

neering, Vol. SE-10, No. 6, November 1984, pp. 795–803.

[Padu86] Padua, D. A. and Wolfe, M. J. Advanced compiler optimizations for supercomputers.

Communications of the ACM, Vol. 29, No. 12, December 1986, pp. 1184–1201.

[Podg89] Podgurski, Andy. The significance of program dependences for software testing, de-

bugging, and maintenance. Doctoral dissertation, Computer and Information Science

Department, University of Massachusetts, Amherst, 1989.

42

[Rapp85] Rapps, S. and Weyuker, E. J. Selecting software test data using data flow information.

IEEE Transactions on Software Engineering, Vol. SE-11, No. 4, April 1985, pp. 367–

375.

[Reps89] Reps, T. and Yang, W. The semantics of program slicing. Technical report, University

of Wisconsin-Madison, 1989.

[Rich88] Richardson, D. J. and Thompson, M. C. The RELAY model of error detection and its

application. Proceedings of the Second Workshop on Software Testing, Verification,

and Analysis, IEEE Computer Society, Los Angeles, California, 1988.

[Selk89] Selke, R. P. A rewriting semantics for program dependence graphs. Conference Record

of the 16th ACM Symposium on Principles of Programming Languages, Association

for Computing Machinery, New York, 1989, pp. 12–24.

[Weis79] Weiser, M. Program slices: formal, psychological, and practical investigations of an

automatic program abstraction method. Doctoral dissertation, University of Michigan,

Ann Arbor, Michigan, 1979.

[Weis82] Weiser, M. Programmers use slices when debugging. Communications of the ACM,

Vol. 25, No. 7, July 1982, pp. 446–452.

[Weis84] Weiser, M. Program slicing. IEEE Transactions on Software Engineering, Vol. SE-10,

No. 4, July 1984, pp. 352–356.

43

