
A Formal Semantics for Verilog-VHDL Simulation Interoperability
 by Abstract State Machine

Hisashi Sasaki, Toshiba Corp., Yokohama Japan hisashi3.sasaki@toshiba.co.jp

Abstract
A formal semantic analysis for Verilog-HDL and VHDL
is provided in order to give the simulation model
especially focusing on signal scheduling and timing
control mechanism. Our semantics is faithful to LRM
and is expected to become a coherent first step for a
future semantic interoperability analysis on multi-
semantic-domain such as Verilog-AMS and VHDL-AMS.
By ignoring the differences of the two simulation cycles,
we can use the common semantic functions and the
common simulation cycle.

1. Introduction

Many formal approaches have been investigated for
VHDL in aiming to give the strict meaning to help
understandings (see the references in [4]). Most of these
works (except a few trials [5,20,21]) were considered
just as theoretical frameworks because they treat only
subsets of VHDL and they are not faithful to the LRM
(Language Reference Manual). The Boerger ’s work [5]
is one of the successful and faithful analysis for almost
full VHDL by ASM (Abstract State Machine), and its
extended works give practical contributions [7,8,9] to
the language validation in VHDL-AMS. Now the
practical importance for standardization is strongly
recognized. For instance, SLDL road map addresses the
formal semantics as their major requirement [17].

On the other hands, there are relatively a few reports for
Verilog-HDL. VHDL Designer’s Reference [1] was the
first comprehensive report to compare VHDL and
Verilog-HDL, but it was a descriptive explanation not
based on a formal method. Gordon [14] appealed the
necessity of formal analysis. But in that time, he didn’t
give a formal semantics yet. It was the first success that
Borrione [15] established the formal model under the
restriction of synchronous designs. But, from the view of
analysis of LRM, their work doesn’t treat simulation
aspect. To overcome this, our paper will establish the
formal simulation semantics for Verilog-HDL with
keeping the semantic interoperability with VHDL.
Recent successive investigations of interoperability were
done in [10,18,19], but they remain still in non-formal

approach. Only one axiomatic description of Verilog
semantics by Fiskio-Lasseter [22] is found as a
potentially competitive to this work. But it has no
attention to the interoperability issue.

There is an essential problem when we try to discuss the
semantics on Verilog-HDL and VHDL. As both are
based on the concepts on the general logic simulation,
they share many fundamental concepts. But in general,
two LRM may use different terms for the identical
concepts in some cases. To treat semantics accurately,
we must prepare two distinct simulation cycles
according to each LRM, and then we should reconfirm
the homomorphism between the two. This ideal
approach is not adopted here because they have the
differences. The queuing of event for two non-blocking
assignments in the same block is different. (This
difference frequently causes the misconception [16].) In
addition, the stratification of simulation cycle of Verilog
is different from the VHDL formulation. By ignoring
these differences, we can exploit the fact that the most
parts of two simulation cycles are same.

We will here extend the ASM approach [5] for a
common semantics of both Verilog-HDL and VHDL. It
is based on the semantics functions, the semantic
predicates and the simulation cycle used in [5] as “the
general semantics” of logic simulator by ignoring the
above differences of the two simulation cycles. There are
five reasons to adopt such an approach. (1) The above
mentioned ideal homomorphism approach seems
cumbersome. It requires the two independent formal
semantics to wrestle with. (2) Our common simulation
cycle is enough to explicitly and simply illustrates the
difference and equivalence between the two. (3) Because
our next target is the semantic comparison between their
extensions, Verilog-AMS [3] and VHDL-AMS [2], the
single common base is desirable. (4) ASM has already
developed semantic models for many languages
including the seeds for forthcoming SLDL such as SDL,
C++, Java etc [13,23]. Our common semantics is
expected be the first step to discuss the issue in multi-
semantic domain environment such as the consistent
and coherent semantic analysis for SLDL. (5) ASM is

easy to learn without any specific knowledge of difficult
formalism.

In this paper, we will formulate the semantic rules by
considering on the following. (1) an explicit illustration
of delay mechanism (inertial delay, modified transport
delay, pure transport delay). (2) a signal waveform,
which is composed by a single pair of value and current
time. (3) a separation of thread of control (or a
suspension of user-defined process) which triggers
simulation kernel. It characterizes the non-blocking and
blocking statements. (4) an override property of signal
driver for continuous assignment and de-assignment
statements. (5) a generation of user-defined process by
fork-join statement. But we will not want to treat the
data type issues and the signal resolution mechanism
here. VHDL assumes packages should be responsible to
implementation details how to resolve conflicted signals,
while Verilog-HDL includes the resolution mechanism
in advance as a predefined environment.

This paper is organized as follows: At first, we will
review the basic notations to prepare formal discussion
based on [5]. Next, the semantic rules for both Verilog
and VHDL will be given in order to compare them.
Finally we shall conclude this paper.

2. Basic Notations

We describe here the minimum amount of non-trivial
predicates and functions as general semantic objects of
logic simulator by ASM. See [5] for more details.
l driver(P, S): the driver of the signal S in the

process P , which will be processed by the
simulation kernel.

l active(d): the boolean predicate to indicate the
active status of driver d

l Waveform: the list of value-time pair to denote the
scheduled signal as waveform.

l d |< t : the function |< yields the driver containing
transactions in driver d which have time
component is less than time t

l ^ : the concatenation of sub-list
l < >: an empty list
l value(E) : the value of expression E
l first(L), last(L): first/last element of list L
l suspended(P): the boolean predicate to indicate the

suspended status of process P
l Tc: the current time of simulation
l reject: the function of pulse rejection to implement

inertial delay.
l timeout(P): the time when the process P expected

to be resumed.

l waiting(S) : the set of processes which are sensitive
to the signal value change of S

l waitcond(P) : the current wait condition of process
P

3. Formal Model

The simulation cycle of our common model is identical
to the one found in [5]. We ignore the two differences:
(1) the queuing order for two non-blocking assignments
in the same block, and (2) the stratification of Verilog
simulation cycle (five regions of the simulation queue).

3.1 Processing Statements

In order to concentrate on the essential behavioral
semantics of VHDL’93, we assume that the control flow
of each sequential iterative process is determined by the
environment, which provides the dynamic changes of
values for the external function program_counter. The
program_counter of each process is initialized by
pointing to the first statement of that process. After
having processed the last statement it returns to the first
statement again. Then we formulate this as follows:
 if Process does < statement >
 then <execution by abstract state machine>.

3.2 Signal Assignments

We recall the rules for VHDL [5].
l P2: TRANSPORT DELAY (non-blocking assignment)
if Process does
< S <= transport Expr1 after Time1, ... , Exprn after Timen >
then if Time1 = 0
 then driver(Process, S) := Waveform
 active(driver(Process, S)) := true
 else driver(Process, S) :=
 (driver(Process, S)|< (Tc + Time1)^Waveform
where Waveform = <(X1, Time1’), ... , (Xn, Timen’)>
∧ Timej’ = Timej + Tc ∧ Xj = value(Exprj)
l P3: INERTIAL DELAY (non-blocking assignment)
if Process does
< S <= inertial Expr1 after Time1, ... Exprn after Timen >
then
 if Time1 = 0
 then driver(Process, S) := Waveform
 active(driver(Process, S)) := true
 else driver(Process, S) :=
 first(driver(Process, S)) ^reject(driver’, X1)^Waveform
where Waveform = < (X1, Time1’), ... , (Xn, Timen’) >
∧ Timei’ = Timei + Tc ∧ Xi = value(Expri)
∧ driver’ = tail(driver(Process, S) |< (Time1 + Tc))
reject(TransList, Val) ≡
 if TransList = <> ∨ value(last(TransList)) ≠ Val
 then return <>

 else
 return reject(front(TransList, Val))^last(TransList)

Now, we shall provide the semantic rules for various
assignment statements in Verilog-HDL. For procedural
assignments, delay mechanism is transport delay. For
continuous assignment, delay mechanism is inertial
delay. Note that all rules use the waveform
SingleWaveform instead of Waveform. In the rule VP1,
blocking behavior is implemented by the immediate
transfer of control thread to simulation kernel: the
execution of suspended(Process) := true. Accurately
speaking, our model is almost faithful to the LRM
because #0 blocking assignment should be processed as
an inactive event. To get full faithfulness, simulation
kernel must be updated (but fortunately our rule has
effectively equivalent behavior in almost cases without
the update). Additionally the (modified) transport delay
suggests that S is a register.
l VP1: blocking assignment
if Process does < S = # Time Expr >
then
 if Time = 0
 then driver(Process, S) := SingleWaveform
 active(driver(Process, S)) := true
 timeout(Process) := Tc
 suspended(Process) := true
 else driver(Process, S) :=
 (driver(Process, S)|< Time’)^SingleWaveform
 timeout(Process) := Time + Tc
 suspended(Process) := true
 where SingleWaveform = < (X, Time’) >
 ∧ Time’ = Time + Tc ∧ X = value(Expr)
 ∧ driver’ =tail(driver(V-Process, S) |< (Time + Tc))
The rule VP1 explicitly specifies the suspension of
process by the assignment suspended(Process) := true,
but the rule VP2 has no such suspension. This reflects
the non-blocking property. We don’t need the Verilog
stratification of event queue because this predicates
controls the event: instead of the stratification, kernel
invocation gives the processing order of queue
indirectly.
l VP2: non-blocking assignment
if Process does < S <= # Time Expr >
then
 if Time = 0
 then driver(Process, S) := SingleWaveform
 active(driver(Process, S)) := true
 else driver(Process, S) :=
 (driver(Process, S)|< Time’)^SingleWaveform
 where SingleWaveform = < (X, Time’) >
 ∧ Time’ = Time + Tc ∧ X = value(Expr)

Since Verilog-HDL has only the concept of the
concurrent behavior for continuous assignments, we try
to virtually define a sequential concept for continuous

assignments, and then derive the actual semantic rule
based on it. The virtual sequential concept adopts
inertial delay mechanism, therefore, the rule VP3 uses
the reject function of P3, which suggests S is a net.
l VP3: (sequential) continuous assignment
if Process does < assign S = # Time Expr >
then
 if Time = 0
 then driver(Process, S) := SingleWaveform
 active(driver(Process, S)) := true
 else driver(Process, S) :=
 first(driver(Process ,S))̂ reject(driver’, X1)̂ SingleWaveform
where
 SingleWaveform = < (X, Time’) >
∧ Time’ = Time + Tc ∧ X = value(Expr)
∧ driver’ = tail(driver(Process, S) |< (Time + Tc))
Then the actual continuous assignment is finally given
by the following equivalent process:
 always @(<list of signals in Expr>) begin
 <sequential continuous assignment>
 end

There is no counterpart of procedural continuous
assignment and its corresponding de-assignment
statement in VHDL. To re-load the previous driver for
future de-assign statement, saved_driver(Process, S) is
introduced. The priority over assignments is
implemented by the re-load. The procedure remove_all
removes all the values of the drivers driver(Process, S)
to be resolved and reset it empty. Thus the pure
transport delay is implemented. (The rule VP2 specifies
the modified transport delay by the signal resolution
mechanism.) The force and release procedural
statements can be formulated by the similar way.
l VP4: procedural continuous assignment
if Process does < assign # Time S = Expr >
then
 begin
 saved_driver(Process, S) := driver(Process, S)
 remove_all(driver(Process, S))
 driver(Process, S) :=
 first(saved_driver(Process, S))^SingleWaveform
 active(driver(Process, S)) := true
 end
where SingleWaveform = < (X, Time’) >
∧ Time’ = Time + Tc ∧ X = value(Expr)
l VP5: procedural continuous de-assignment
if Process does < deassign S >
then
 driver(Process, S) := saved_driver(Process, S)
 active(driver(Process, S)) := true

A disconnect statement is the signal assignment of null
waveform which represents the special driving element
of “absence”. It is similar to the procedural continuous
assignment above but it has no reconstruction
functionality of the previous value for the driver.

l P10: disconnect
 if Process does < disconnect S after Time >
 then begin
 saved_driver(Process, S) := driver(Process, S)
 remove_all(driver(Process, S))
 if Time = 0
 then driver(Process, S) := NullWaveform
 active(driver(Process, S)) := true
 else driver(Process, S) :=
 saved_driver(Process, S)^NullWaveform
 end
 where NullWaveform = < (null, Time’) >
 ∧ Time’ = Time + Tc
Finally, we note that intra-assignments including @
timing control can be treated by the interpretation of
equivalent process described in the LRM p.118. (see
VP13.)

3.3 Procedural Timing Controls

At first we recall the rules for VHDL [5].
l P4: WAIT FOR
 if Process does < wait for Time >
 then timeout(Process) := Time + Tc
 suspended(Process) := true
l P5: WAIT ON
 if Process does < wait on Signals >
 then
 suspended(Process) := true
 if S ∈Signals
 then waiting(S) := waiting(S) ∪ { Process }
l P6: WAIT UNTIL
 if Process does < wait until Expr >
 then
 waitcond(Process) := Expr
 suspended(Process) := true
 if S ∈condsignals(Expr)
 then waiting(S) := waiting(S) ∪ { Process }
l P7: WAIT FOREVER
 if Process does < wait >
 then suspended(Process) := true

Now, we shall describe the semantic rules for Verilog-
HDL. Denote E as a event expression in Verilog-HDL.
Also we intentionally overload an implicit signal
semantics for E to help the coherent description with
VHDL.
l VP6: # Time (Delay Specification)
 if Process does < # Time >
 then timeout(Process) := Time + Tc
 suspended(Process) := true
l VP7: Triggering event S
 if Process does < - > (E) >
 then
 driver(Process, E) := <not E, Tc >
 active(driver(Process, E)) := true
l VP8: @(E)
 if Process does < @(E) >

 then
 waitcond(Process) := Expr
 suspended(Process) := true
 if S ∈condsignals(Expr)
 waiting(S) := waiting(S) ∪ { Process }
l VP9: @(posedge E)
 if Process does < @(posedge E) >
 then
 waitcond(Process) := Expr
 suspended(Process) := true
 if S ∈condsignals(Expr)
 then waiting(S) := waiting(S) ∪ { Process }
 where Expr = positive_edge_expr(E)
The function positive_edge_expr gives the expression
Expr which is the conditional S=’1’ to detect a positive
edge of E. The rule VP10 for negative edge is similarly
defined.
l VP10: @(negedge E)
 if Process does < @(posedge E) >
 then
 waitcond(Process) := Expr
 suspended(Process) := true
 if S ∈condsignals(Expr)
 then waiting(S) := waiting(S) ∪ { Process }
 where Expr = negative_edge_expr(E)
l VP11: Wait(Expr)
 if Process does < wait(Expr) >
 then
 if Value(Expr) = false
 then
 waitcond(Process) := Expr
 suspended(Process) := true
 if S ∈condsignals(Expr)
 then waiting(S) := waiting(S) ∪ { Process }
The Expr is the expression to represent the wait
conditional. Note that in Verilog-HDL, Process is not
suspended when Value(Expr) = true. In the case of
VHDL, the wait statement always causes the suspension
of the process because the rules P4-P7 don’t contain
such a test of Value(Expr). This difference of operation
promotes the accurate understanding for the difference
in concept in such an obvious way.

3.4 Verilog-HDL Specific Statements

A fork-join statement and an intra-assignment with @
timing control are Verilog-HDL specific functionality.
l VP12: Fork & join
 if Process does < fork Statement1, ... join) >
 then begin
 create subProcess(Process) ;
 choose Pi : subProcess(Process)
 Pi does < Statementi >
 end choose ;
 destroy subProcess(Process) ;
 end

The fork-join construct generates a new thread of
control, so we introduce the creation and destruction of
processes. Fork functionality is represented by the
choose construct of ASM.
l VP13: S <= @ Event Expr
 if Process does < S <= @ Event Expr >
 then begin
 create subProcess(Process) ;
 execute subProcess(Process) ;
 destroy subProcess(Process) ;
 end

The dynamic creation, execution and destruction are
performed by generating an instantaneous process.
(Note that wait on Event or @(Event) suspends the
execution until the Event occurs.) Such a process
subProcess(Process) is defined by the following
equivalent process:
 (VHDL) (Verilog-HDL)
 process
 begin begin
 temp = Expr; temp = Expr ;
 wait on Event ; @(Event)
 S <= temp ; S <= temp ;
 wait ; end
 end ;

4. Conclusions and Further Studies

 We have provided the first faithful and common formal
semantics for Verilog-HDL and VHDL in focusing on
signal scheduling and timing control statements. Our
model helps the accurate understanding on the semantic
interoperability not only for IC designers but CAD
engineers, especially for standardization contributors. It
also reduces the learning time by avoiding us from
wrestling with two distinct formal model. Finally our
result also suggests that the further improvement of
deeper semantic interoperability could be attainable at
the intermediate level language [11]. We would like to
extend this work for their AMS-extensions.

5. References

[1] J-M. Berge et.al, chapter 9, Verilog and VHDL, in VHDL
Designer’s Reference, pp.231-317, Kluwer Academic
Publishers, 1992.

[2] IEEE 1076.1 Working Group, Definition of Analog and
Mixed Signal Extensions to IEEE Standard VHDL,
(Integrated Draft of VHDL-AMS) April 17, 1998.
http://www.vhdl.org/analog/wwwpages/documentation.html

[3] OVI, Verilog-AMS Language Reference Manual, Analog
& Mixed-Signal Extensions to Verilog HDL, Version
1.1.1, March 20, 1998. (for evaluation)
http://www.ovi.org/VA-TSC/index.htm

[4] Carlos D. Kloos, et al., Formal Semantics for VHDL,
1995, Kluwer Academic Publishers.

[5] Egon Boerger et al., A Formal Definition of an Abstract
VHDL’93 Simulator by EA-Machines, in Formal
Semantics for VHDL, pp.107-139, Kluwer Academic
Publishers, 1995.
http://www.eecs.umich.edu/gasm/hardware.htm#vhdl

[6] Natividad Martinez Madrid, et al., A semantic model for
VHDL-AMS, CHARME’97, October 1997.

[7] Hisashi Sasaki, et al., Semantic Validation of VHDL-AMS
by Abstract State Machine, pp.61-68, IEEE/VIUF
BMAS97, October, 1997. http://katayama-
www.cs.titech.ac.jp/~sasaki/vhdl_ams/

[8] Takeshi Sasaki, et al., Semantic Analysis of VHDL-AMS
by Attribute Grammar, FDL’98. September 1998.

[9] Tom Kazmierski, A formal description of VHDL-AMS
analogue systems, DATE’98, pp. 916-920.

[10] Victor Berman, Standard Verilog-VHDL Interoperability,
pp.2-9, OVI/IEEE 3rd. Int. Verilog HDL Conference, 1994.

[11] John Willis (Editor), AIRE / CE: Advanced Intermediate
Representation with Extensibility / Common Environment,
IIR Specification Version4.4 (Trial Implementation Draft
of 12/15/97) Including Digital VHDL & VHDL-AMS
Support.

[12] IEEE Standard Hardware Description Language Based
on the Verilog Hardware description Language, IEEE Std
1364-1995. 14 October 1996.

[13] Uwe Glaesser et al., Abstract State Machine Semantics
of SDL, Journal of Universal Computer Science, vo.3,
no.12, 1997, pp.1382-1414.
http://www.eecs.umich.edu/gasm/proglang.html#sdl

[14] Mike Gordon, The Semantic Challenge of Verilog-HDL,
LICS’95, 1995. http://www.cl.cam.ac.uk/users/mjcg/

[15] Dominique. Borrione, et al., An approach to Verilog-
VHDL interoperability for synchronous designs,
CHARME’97. October 1997. http://www-tima-
vds.imag.fr/Publications/Charme97.ps

[16] Clifford E. Cummings, Verilog Non-blocking
Assignments Demystified, IVC/VIUF March, 1998.

[17] David L. Barton, System Level Design Section of the
Industry Standards Roadmap, July 8, 1998.
http://www.inmet.com/SLDL/sysroad/index.html

[18] John Willis et al., Verilog: Dialect of VHDL ?, VIUF
Spring 1996, pp.239-244.

[19] Douglas J. Smith, VHDL & Verilog Compared &
Contrasted – Plus Modeled Example Written in VHDL,
Verilog and C, DAC’96.

[20] Serafin Olcoz, A Formal Model of VHDL Using Colored
Petri Nets, in [4]

[21] Ralf Reetz et al., A Flow Graph Semantics of VHDL: A
Basis for Hardware Verification with VHDL, in [4].

[22] John Fiskio-Lasseter, A Formal Description of
Behavioral Verilog Based on Axiomatic Semantics, Tech.
Rep. TR-98-04, Univ. of Oregon, 25 August, 1998.
http://www.cs.uoregon.edu/~johnfl/thesis/

[23] http://www.eecs.umich.edu/gasm/papers.html

