
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081926, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Formal Specification Smart-Contract
Language For Legally Binding
Decentralized Autonomous
Organizations

VIMAL DWIVEDI1, ALEX NORTA1, (Member, IEEE), ALEXANDER WULF2, BENJAMIN

LEIDING3, SANDEEP SAXENA4,(Senior Member, IEEE), AND CHIBUZOR UDOKWU1

1Department of Software Science, Tallinn University of Technology, Akadeemia tee 15A, Tallinn, Estonia (e-mail: vimal.dwivedi@taltech.ee,
alex.norta@taltech.ee, chibuzor.udokwu@taltech.ee)
2SRH Hochschule, Berlin, Germany (e-mail: alexander.wulf@srh-hochschule-berlin.de)
3TU Clausthal, Adolph-Roemer-Straße 2A, 38678, Clausthal, Germany (e-mail: benjamin.leiding@tu-clausthal.de)
4Galgotias College of engineering and technology, Greater Noida, India (e-mail:sandeep.research29@gmail.com)

Corresponding author: Vimal Dwivedi (e-mail: vimal.dwivedi@taltech.ee).

ABSTRACT Blockchain- and smart-contract technology enhance the effectiveness and automation of
business processes. The rising interest in the development of decentralized autonomous organizations (DAO)
shows that blockchain technology has the potential to reform business and society. A DAO is an organization
wherein business rules are encoded in smart-contract programs that are executed when specified rules are
met. The contractual- and business semantics are sine qua non for drafting a legally-binding smart contract in
DAO collaborations. Several smart-contract languages (SCLs) exist, such as SPESC, or Symboleo to specify
a legally-binding contract. However, their primary focus is on designing and developing smart contracts
with the cooperation of IT- and non-IT users. Therefore, this paper fills a gap in the state of the art by
specifying a smart-legal-contract markup language (SLCML) for legal- and business constructs to draft a
legally-binding DAO. To achieve the paper objective, we first present a formal SCL ontology to describe the
legal- and business semantics of a DAO. Secondly, we translate the SCL ontology into SLCML, for which
we present the XML schema definition. We demonstrate and evaluate our SLCML language through the
specification of a real life-inspired Sale-of-Goods contract. Finally, the SLCML use-case code is translated
into Solidity to demonstrate its feasibility for blockchain platform implementations.

INDEX TERMS Blockchain, smart contract, decentralized autonomous organization, ontology, smart
contract language, business process, B2B

I. INTRODUCTION

Blockchain technologies have spawned new business oper-
ations and management models since the former overcome
information sharing and resource integration in traditional
business management [1]. The latter have relied on a cen-
tralization model with hierarchical structures, consequently
lacking transparency in inter-organizational processes and
trust among participants. Decentralization is an alternative
way of conducting business where transactions are dis-
tributed and duplicate copies of each transaction are shared
with the participants [2]. Blockchain technologies shift the
notion of transferring decision-making power and -functions
from a single authority to operational units at multiple levels

within an organization. Blockchain is a peer-to-peer digital-
and distributed ledger where records of business operations
are stored in an encrypted manner. Each duplicate record is
distributed to every participant’s ledger and thus, no trust
among the participants is required in a business transac-
tion. Besides, blockchain removes centralized institutions
to validate transactions that are managed by a peer-to-peer
network [3]. The recent development of blockchain technol-
ogy empowers and transforms business activities due to the
decentralization and disintermediation of power structures.
Thus, the immutable traceability of blockchain technology
establishes trust among the collaboration participants and
reduces cost and time in business transactions by eliminating

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081926, IEEE Access

Dwivedi et al.: Smart-contract language

the need for intermediaries [4].
Information exchange is critical in collaboration between

multiple organizations. For example, in a supply chain,
numerous collaborative parties are committed from pro-
duction to delivery, and the integration of processes of
each involved party requires widespread information inter-
change [5]. The lack of consistent information exchange
poses a collaboration challenge for inter-organizational busi-
ness processes [6]. Blockchain technology controls the ex-
ecution of inter-organizational business processes through
smart contracts and enables decentralized autonomous orga-
nizations (DAO) [7]. A DAO is an organization, or corpora-
tion whose business activities are automated as per agreeing
to rules and principles that are specified in programming
code [8]. The recent DAOs (such as The DAO) are controlled
by the software community, seeking to re-implement tra-
ditional decision-making rules through blockchain technol-
ogy [8]. The DAOs‘ regulations and transactions are stored
on a blockchain, which increases the transparency among
stakeholders while the execution of the said DAOs‘ rules is
controlled by programming code.

A smart contract is a digital agreement in which the partic-
ipant’s rights and obligations are specified in a program-code,
including the agreeing rules within which participants carry
out these rights and obligations [9]. The concept of a smart
contract is first time introduced in seminal work [10] by Nick
Szabo in 1997. According to Szabo, “smart contracts can
facilitate all steps of contracting processes“. Thus, the search,
negotiation, performance, adjudication, commitment could
be represented in smart contracts. Still, the Szabo vision has
surged in the last few years due to the increased availability
of IoT devices and the latest evolution of blockchain technol-
ogy, rendering smart contracts a viable business concept [11].
Blockchain provides an encrypted ledger for smart contracts
that are essential for the integrity- and security assurance
of smart-contract executions. Ethereum blockchain1 invented
an ethereum virtual machine (EVM) to execute Turing-
complete scripts and run decentralized applications. The
first implementation of the DAO crowdfunding project, so-
called "The DAO," was developed on April 30, 2016, on the
Ethereum blockchain to provide business solutions [12]. The
idea of implementing "The DAO" was to provide a novel
business model where the investor, or shareholder can run
both commercial and non-profit enterprises without having a
traditional management structure. In the starting phase of its
outset, The DAO obtained the notice from media on growing
the correspondent of 168 million dollars from various in-
vestors to establish the world’s largest crowdfunding project.
This DAO was maliciously misused by an attacker who stole
50 million dollars due to a flaw in the written DAO smart-
contract code. The other core obstacle in the evolution of
The DAO is the appropriate legal foundation. Consequently,
the concept of The DAO failed due to the application of
traditional contract law.

1https://ethereum.org/en/

In our work, we consider DAOs to be virtual enterprises
(VE), where each enterprise is a collaborating part of a net-
work with peers and is governed by smart contracts that limit
the behaviour of each enterprise [13]. Each enterprise is an
autonomous, decentralized, and self-organizing network that
enables a faster and more cost-effective response to market
changes. Enterprises, in the context of DAOs, are peers, or
agents that perform the specific functions required in the
collaboration lifecycle. Humans and software agents can
work together via DAOs, or virtual enterprises [14]. DAOs
use peer-to-peer (P2P) computing without any clouds/servers
in a loosely coupled collaboration lifecycle in which software
agents participate in smart contracting- setup [15], enact-
ment [16], potential rollbacks, and, finally, orderly termina-
tion. This lifecycle facilitates the selection of DAO-provided
and used services, smart-contract negotiations and behaviour
monitoring during enactment with the possibility of breach
management [17]. Participants, or parties involved in organi-
zational collaborations are known as human actors who are
assigned different roles based on the tasks (functions) they
perform in a collaboration [18]. Furthermore, smart objects
such as belief-desire-intention (BDI) agents can be combined
with smart contracts to collaborate as self-aware DAOs [19].

We discover that several workarounds, for example,
SPECS [20], Symboleo [21], SmaCoNat [22], have been pub-
lished in the scientific literature to develop legally-binding
SCLs. The existing research is limited to specify smart legal
contracts only for simple business contracts. However, they
are not feasible to formulate complex collaborative busi-
ness contracts (such as DAOs) in a legally-relevant way.
Therefore, this paper fills the gap by answering the research
question, i.e., how to develop a formal-specification language
for the purpose of legally-binding DAO collaboration. The
contributions of the paper are first the development of a
SCL ontology2 that comprises concepts and properties for
the design of legally relevant DAO collaboration. Secondly,
we translate the SCL ontology into the smart legal contract
markup language (SLCML) for which we give the schema
definition3. SLCML allows to define the specification of
a smart contract (rather than its implementation) for the
purpose of DAO-collaboration. To reduce the complexity
of the main research question and establish a separation of
concerns, we deduce the following sub-research questions.
What is the formal semantics to define the legal aspects for
a business process? What is the machine-readable language
conversion based on the ontology? What is the feasibility-
evaluation approach of the language for a use case?

The structure of the paper is as follows. Section II dis-
cusses the automobile running case for this paper in which
we show the conflict of rights and obligations among the
collaborating parties. Further, we explain the preliminaries,
which prepares the reader to comprehend the subsequent
sections. In Section III, we represent the formally-verified

2shorturl.at/gxFKT
3shorturl.at/uBHR6

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081926, IEEE Access

Dwivedi et al.: Smart-contract language

common SCL ontology with the objective of specifying
each type of legally binding collaborative business smart
contracts. We present the syntax and structure of SLCML in
Section IV describing the translation of contractual concepts
and properties of the SCL ontology into the SLCML schema.
Section V defines the feasibility evaluation of SLCML and
then show the examples of the SLCML, accompanied by a
discussion of proof-of-construction applications. Section VI
discuss the solidity code translation from SLCML code.
Section VII discuss the related work and finally, Section VIII
concludes the paper and discuss the future work.

II. MOTIVATING EXAMPLE AND PRELIMINARIES

We present the running case from the automobile industry for
legally binding smart-contract elaboration. We assume that a
CarMan produces cars and outsource a significant portion of
the supply chain to partnering counterparties that behave as
service providers, i.e., sellers. Thus, we present the running
case in Section II-A and discuss a conflict scenario of rights
and obligations among the collaborating parties. Next, the
related background literature is described in Section II-B that
prepares the reader for subsequent sections.

A. RUNNING CASE

Blockchain can be applied in the automotive industry, such as
electric vehicle charging stations [23], toll systems [24], etc.
The significant use-case of blockchain is tracking and moni-
toring the vehicle parts in the automotive supply-chain [25].
The P2P DAO-collaboration model is shown in Figure 1,
where a service consumer’s in-house process is a so-called
business network model (BNM) [26]. A BNM embodies
orchestration that is significant to a business setting and
comprises legally binding template contracts, which include
service types with clearly defined roles. The setup phase
of the DAO-collaboration lifecycle includes BNM selection,
populate-module, and negotiate-module for setting up smart-
contracting preliminaries [15]. BNM selection is an ecosys-
tem for developing service types that can be used in tandem
with BNM in a collaborative platform that includes business
processes as a service (BPaaS-HUB) [27] in subsets of the
internal in-house process [28]. A BPaaS-HUB provides a
rapid exploration of business partners for matching services
that focuses on finding collaboration parties, determining
their identity and learning about their offerings and repu-
tation. Our previously developed eSourcing Markup Lan-
guage (eSML) [29] serves as the basis for specifying BNM-
specifications.

The populate-module affirms the contained service offers
against the BNM’s service types as it emerges from the
breeding ecosystem. A proto-contract emerges at the end
of the populate-phase in the DAO-setup lifecycle [15], for
the DAO-participants to begin negotiations. All DAO par-
ticipants collect a smart-contract replica and can vote on
one of three options. DAO participants reach an agreement
and create the smart contract for subsequent roll out and
enactment; a counter offer from only one DAO-participant

causes a business-semantic reversal to the creation of the
negotiate-module; and finally, a disagreement from only one
DAO-participant results in an absolute termination not only
of the contract negotiation but also of the DAO setup. The
negotiation of service type, service offer, and service role is
divided into two stages, which are depicted in [15]. Phase 1
entails the extraction of proto-contracts, while Phase 2 is used
for the consensual establishment of smart contracts. Accord-
ing to [30], agent-based negotiation is rapidly progressing
and enables semi- to fully automated negotiation.

The populate-module matches the implanted service offers
against the BNM’s service types that emerge from the breed-
ing ecosystem. A proto-contract emerges at the end of the
populate-phase in the DAO setup lifecycle [15], indicating to
the DAO-participants to begin negotiations. All DAO partic-
ipants are assigned a smart-contract replica and can vote on
one of three options. DAO participants reach an agreement
and create the smart contract for subsequent roll out and
enactment; a counter offer from only one DAO-participant
causes a business-semantic reversal to the creation of the
negotiate-module; and finally, a disagreement from only one
DAO-participant results in an absolute termination not only
of the contract negotiation but also of the DAO setup. The
negotiation of service types, -offers, and -roles is divided
into two stages, which are depicted in [15]. Phase 1 entails
the extraction of proto-contracts, while Phase 2 is used for
the consensual establishment of smart contracts. According
to [30], agent-based negotiation is rapidly progressing and
enables semi- to fully automated negotiation.

Service offers are matched with service types from
the BNM on the external layer of Figure 1. The dashed
monitorability- and conjoinment arcs [32] show how the pro-
posed conceptual business processes are connected to the ex-
ternal layers, and these can be realised from a technical point
of view with the lightning network [33]. The decentralized
lightning network is suitable for micro-payments, allowing
instant, high volume transactions without delegating custody
of funds to a third party. In Figure 1, the SupTr, SupST,
Shipping are the service providers, i.e., DAO-participants
where SupTr produces the tires, SupST makes the steering
wheels, and Ship is a shipper that delivers the assembled
cars, while the CarMan is a service consumer who assembles
the shipped car parts to manufacture a car. The collaboration
among these entities creates a DAO for manufacturing and
exporting cars. A CarMan organizes an internal business
process according to various perspectives such as process-
control, information-exchange, workforce management, al-
location of means of production, and so on. There is reason
to acquire services from service providers that are manifold,
e.g., the CarMan can not manufacture the tires with a similar
quality, or at a low price per piece, or the production capacity
is not sufficient, or required special know-how is lacking,
and so on. The very top and bottom of Figure 1 depict
the legacy-technology layers where the processes from the
conceptual layers of the service providers are mapped into
smart-contract blockchain systems on the respective internal

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081926, IEEE Access

Dwivedi et al.: Smart-contract language

Tyres sup. X
out

i oLocal Service A

Steering sup. Y

in

oLocal Service B

Shipper Z

in

oLocal Service Ci i

out

Se
rv

ic
e

Pr
ov

id
er

s

Conceptual Layer
External Layer: Service-HUB in Cloudi

Service Offer A

Service Offer B
i

o

o
in

out
Service Offer C

SupTr
SupSt

Shipping
i

in
out

Ca
rM

an
: S

er
vi

ce
 C

on
su

m
er

Service Type A
out

o

Service Type B
out

i

in
o

Service Type C

i

in

o

Tyres sup.

Steering sup.

Shipping

Cardano EOS

Orchestrate Orchestrate Orchestrate

Conceptual Layer

 Legacy-technology Layer

Orchestrate

Project Project
Project

Project

Ethereum

Legacy-
technology Layer

Business Network Model

Tezos

match

match

match

Project Project

Service Type A
out

i o

Service Type B
out

i
in

o
Service Type Ci

in

i
Tyres sup.

Steering sup.

Shipping
o

o

i

o

FIGURE 1. DAO-collaborative automotive supply-chain [31].

legacy-technology layer. The tech space of each layer is
heterogeneous, although our focus is on the internal legacy
layer with the blockchain systems. Thus, on the collaborating
parties’ respective internal legacy-technology layers, diverse
smart-contract blockchain solutions may be used such as
Ethereum, Cardano, EOS, Tezos, etc.

We focus only on market exchanges that flow among
the entities. CarMan publishes the demand through smart
contracts on a blockchain to purchase car parts specifying
several criteria such as delivery dates, price, etc. Service
providers are notified of CarMan’s demand through public
blockchain platforms and submit bids, including the state of
the car parts. To maintain the confidentiality of bid price and
personal data to service providers, a smart contract contains
the rules that cannot be altered and opened before the dead-
line [34]. Furthermore, bids submitted by participants in a
public blockchain can be encrypted before being submitted.
The key to decrypt the bid is held by a software agent that
receives bids. The CarMan chooses then suppliers either
manually, or automatically if their specified requirements are
met, as details of the collaboration are stored on blockchains.
The clauses related to the automotive collaboration are spec-
ified in the respective legacy-technology layers to trigger
specific events. For example, if the SupTr can not deliver
the car tires to CarMan at a defined time, the SupTr is
charged a penalty by smart contracts prior to delivery. In a
conventional supply chain, collaborating entities often have
less, or no oversight of which entities are accountable for

bottlenecks. This oversight is achieved through smart con-
tracts and blockchain technology, where collaborative parties
can monitor and track the status of products and transactions.
Still, we raise legal- and business challenges that may arise
due to the immature SCLs and blockchain technology. For
instance, a smart contract releases the funds (ether, bitcoin,
etc.) automatically after delivering the car tires to the Car-
Man and the delivered product does not match the specified
requirements of CarMan. The car tires are damaged prior to
delivery, and in such a case, CarMan claims compensation,
or exchanges the product. The obligation must be imposed to
fulfill that compensation on the SupTr. Another case assumes
the SupSt sells the steering wheels to CarMan and due to
the Shipper’s conflict, the product is not delivered within the
deadline set by CarMan.

Traditionally, these types of issues can be resolved through
the use of a letter of credit in international trade, in which
the buyer receives a guarantee that the price of the cargo
is not paid unless the seller demonstrates that he fulfills
the obligations assigned to him under their underlying sale
contract. Furthermore, the seller receives his money, and the
bank receives a commission for acting as an intermediary in
this transaction [35]. Still, this payment method faces numer-
ous challenges for being a slow and outdated paper-based
mechanism that requires both parties to exchange and verify
official- and legal documents. Furthermore, this payment
method relies solely on the documents to initiate payment,
rather than the underlying condition of the goods [36]. The
need for ‘physical documentation exchanges,’ along with
the transfer bill of lading and separate correspondence be-
tween many different parties, is what renders paper-based
letters of credit time-consuming. These can be changed by
implementing blockchain, which reduces the time required
for credit transactions by allowing an electronic transfer of
bills of lading and other requested documents and connecting
all parties in a single- and private network, allowing for
immediate updates, and eliminating the long lead time for
back-and-forth communication among the various parties in
letter-of-credit transactions. Still, the properties of contrac-
tual semantics in existing smart-contract languages do not
exist to draft the blockchain-enabled letter of credit.

B. PRELIMINARIES

In the previous section, we discuss the challenges in writing
collaborative smart contracts for the supply chain where
parties’ rights and obligations must be specified. To formal-
ize the contractual- and business-collaboration concepts and
properties, an ontology is a suitable means to conceptualize
the knowledge of a particular domain [37], and is used to
overcome the conceptual inconsistencies in the blockchain
domain [38]. The ontology is a composition of triple sen-
tences, and the latter incorporates purpose, relationship, and
object, which allows the practitioner to understand the re-
lationship of concepts in a particular domain. Humans with
informatics skills and machines can understand the expressed
domain knowledge and information in an ontology. Both can

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081926, IEEE Access

Dwivedi et al.: Smart-contract language

interact with the ontology by explicitly defining the type of
concepts, or constraints of its use. We employ the Protégé
tool [39] for developing the SCL ontology, which is an
open-source ontology editor and comprises a VOWL [40]
graphical interface to visualize the relationship among con-
cepts. For checking the inconsistencies of ontologies and
identifying the subsumption relationships between classes,
the HermiT-tool reasoner is employed [41]. Next, we use
the Liquid studio tool for mapping the ontological concepts
and properties into XML schema. Liquid studio4 provides an
advanced toolkit for XML and JSON development along with
the data mapping and transformation tools (such as XSLT-,
XQuery editor etc.), comprising the graphical XML schema
editor for visualizing, authoring and navigating complex
XML schema. The former provides an interactive logical
view of the XML schema, enabling intuitive editing while
retaining the ability to use all aspects of the W3C XML
schema standard.

Next, we discuss the required set of concepts and prop-
erties for specifying a legally-relevant and contractual-based
collaboration specification language.

III. ONTOLOGICAL CONCEPTS AND PROPERTIES

We develop the SCL ontology comprising the concepts and
properties that allow the formulation of smart contracting
DAO collaboration in a legally-relevant perspective. We ex-
pand the set of concepts and properties for the SCL ontology,
considering our prior work about the collaboration-model
in [29]. In our previous work, the eSourcing framework
is defined to specify and verify harmonized B2B process
collaborations [42]. Based on the concept of eSourcing, the
eSourcing ontology [29] is designed to configure collabo-
rating parties and their services in a decentralized, contrac-
tual collaboration model. Still, the eSourcing ontology lacks
legally relevant contractual properties as proposed by the
SCL ontology. A contract in the SCL ontology and SLCML
includes the legal elements of contractual collaboration, i.e.,
the rights, obligations, and performances. Rights are fun-
damental normative regulations for what is permitted, or
owed to individuals under the legal system, social convention
or ethical theory. Contract obligations are those duties for
which each partner in a contract agreement is legally liable.
Performance of the Contract means that the parties have
fulfilled their respective obligations under the contract. In this
paper, we only discuss the legal aspects of the SCL ontology
and the rest about the collaboration model, we refer the reader
to [29] for further information about the collaboration model.

Since contracts can be of different types, the realm and
range of each type differ vastly. Expressing the entire spec-
trum of contracts in a single ontology is difficult as the latter
is too large and diverse in nature to be of practical use. A
multi-tiered contract ontology that progressively moves from
abstract to specific meta data definitions to stratifications
is proposed to capture the full range of business-related

4Liquid Studio | Home

contracts within a unified model. The two layers of the
multi-tier SCL ontology is identified as presented below;
other extensions and layers might be possible. The upper
core layer depicts the broad configuration of smart contracts
applicable over most of the widespread types of contracts.
The fundamental concepts such as rights, obligations, and
roles are considered building blocks for defining all types
of business contracts, as presented in Figures 2 and 3. The
specific domain layer is a collection of various contract-type
ontologies such as employment contracts, sale of goods, etc.
Each contract-type inherits every fundamental characteristic
of the upper-layer and then specializes in the particular
knowledge specific to the contract domain, as presented in
Figure 4.

Role

- acceptedActivity.string

- authority.string

Contract

+ ID.int

+ contractType.string

Actor

+ identification.int

- capacity.varchar

- authentication.string

+ update(ID):

- delete(ID)

- insert(ID)

counterRole

0..* 0..*

Consideration

+ description.varchar

+ value.varchar

+ unit.int

+certifiedCode.int

+considerationType.string

hasRole

0..*

0..*

has

0..*

0..*

contractingParty

0..*

1..*

mustHave1..*

0..*

TermsandCondition

mustSpecify

0..*

1..*

TimeFrame

+ validFrom.Date

+ validTime.Date

+NoticePeriod.Date

+Performanceperiod.Date

validity

0..*

0..*

Right

+Rightholder.string

+Benificiary.string

+RightType.varchar

defines0..* 0..*

Prohibitions

defines0..*

0..*

Obligation

+ObligationState.varchar

+FullfilledState.string

+Owner.string

+Obligor.string

defines

0..*

0..*

NonPerformance

+PerformanceEventType.string

+PerformanceState.string

+Acceptedeventfailure.string

RemedialRightinvoked()

0..*0..*

OccurOutside

FIGURE 2. Outline for the upper-level smart-contract ontology.

A. UPPER CORE LAYER OF SMART CONTRACTS

We illustrate the upper core layer of legally-relevant smart-
contract DAOs depicted in Figures 2 and 3 through the
business-case scenario. Assuming a running-case scenario
from Section II-A where SupTr and SupST promise to pro-
vide the tires and steering wheels respectively to CarMan
and on the other hand, the latter promises to return the
sum of money. The promise is a declaration of commitment
to perform some act, or to perform certain actions, e.g.,
supplies tires and steering wheels. When the promises are
made with legal intent to substantiate in any judiciary, the
former becomes a legal obligation. The legal testimonials of
the promises (viz. obligations) originate from the contracting
parties (viz. actors) are specified in the contracts, comprising
details of composing the obligations, admitted limits, and
performance measures such as time, venue, etc. Actors are
the offeror, offeree, and mediators who perform their roles
specified in smart contracts. In our running example, CarMan
is an offeror who has the buyer’s role, and SupTr, SupST
is the offeree who has the service provider’s role. CarMan
creates an offer to buy the tires and steering wheels to SupTr
and SupSt, respectively. A smart contract is legally binding
if the contracting parties have the necessary capacity, or
competence to enter into the contract [43]. If a party is unable

VOLUME 4, 2016 5

https://www.liquid-technologies.com/xml-studio

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081926, IEEE Access

Dwivedi et al.: Smart-contract language

to understand the contract, or is presumed to be unable to
do so, the party lacks the competence, or capacity to enter
into a contract. A person lacks legal capacity who is insane,
or under a certain age, for example, may be considered
incompetent to enter into a contract. Several collaborating
DAOs, such as SupTr, SupSt, and CarMan, must have legal
capacity. A DAOs’ legal status was recently established in
Wyoming 5.

A consideration is a benefit that must be negotiated be-
tween the parties and is the principal cause for a party to enter
into a contract. A consideration must be valuable (at least to
the parties) and must be exchanged for performance. Tires
and steering wheels, for example, are contract considerations
for which CarMan, SupTr, and SupSt have entered into a
contract. The delivery of tires and steering wheels, as well
as transfer of ownership, constitute a performance of the
sales contract. Considerations are also just a commitment
to fix a leaky roof, or a pledge not to do something 6. A
consideration equally occurs if CarMan signs a contract with
SupTr under which CarMan does not order other brands of
tires except Goodyear, and SupTr pays CarMan $500 per
year for adhering to this agreement. The promise of the
sellers, i.e., the sale of the tires and steering wheels, is an
obligation that is fulfilled when the real business activities
of supplying the tires and steering wheels are carried out in
return for money. CarMan is a beneficiary, or claimant who
receives the consideration, or is the individual to whom the
business operations are performed. Finally, smart contracts
specify the terms and conditions under which the agreed per-
formances are carried out. Typically, contractual performance
takes place as stipulated and agreed in the contracts. If the
performance is not enforced within the expected timeframe,
or executed inadequately, the obligation state becomes unful-
filled. On behalf of the promised party, the occurrence of the
non-performance event stimulates certain pre-agreed rights.
Assume that the SupTr does not deliver the tires to CarMan
under the terms and conditions agreed upon. CarMan seeks a
remedy for a penalty, or interest; or may prefer to terminate
as per the contract. Alternatively, CarMan may refrain from
any punishing actions and resolve the conflict in a calming
manner with mutual consensus on how to proceed. The
service provider is obligated to fulfill any type of remedy
(i.e., reconciliatory promise) as requested by the CarMan.
The reconciliatory promise is considered to complete the
initial commitment.

We present a simple case study above, where we observe
that obligations may trigger further obligations and rights. In
the same way, rights may activate new obligations, etc. In
the next section, we will discuss the obligation types that are
extracted from the upper-layer ontology.

5DAO | Legal status
6Consideration | Legal Definition

Obligation

+ObligationId.int

+ObligationState.varchar

+FullfilledState.string

+Owner.string

+Obligor.string

Right

+Rightholder.string

+Benificiary.string

+RightType.varchar

1..*

1..*

includes

Performance

+ PerformanceID.int

+ PerformanceType.string

+DelegationAllowed.Boolean

+ PerformanceState(ID)

fullfilled1..*

0..*

0..*

0..*unfullfilled NonPerformance

+PerformanceEventType.string

+PerformanceState.string

+Acceptedeventfailure.string

RemedialRightinvoked()

ObligationType

ObligationState

InherentRight ConditionalRight PerformanceState PerformanceEventType

FIGURE 3. Rights and obligations.

B. SPECIFIC DOMAIN LAYER

The contract statements are informative, declarative, or per-
formative, as discussed in [44], [45]. Informative statements
recognise several details, such as the identity of the parties,
which law can be enforced, the subject matter of the contract,
and so on. Declarative statements express the intention, or
condition that changes the state through the performance of
the specified conditions. The former are usually of several
kinds, such as rights, obligations and prohibitions. Obli-
gations are mandatory statements in contracts that include
the obligation owner who is the recipient of the obligation
and the obligor, or debtor who performs the obligation. The
obligor, or debtor is obliged to execute the obligation con-
dition once and only once in each execution of the contract.
Similar to the obligations, rights have right holders and bene-
ficiaries, while the rights are performed by the rights holders.
The execution of right is optional and may be performed
under specific circumstances depending on the performance
of obligations. Prohibitions are statements describing which
action should not be taken, or which actions are unacceptable
to either party, or both parties.

The obligations are bound to their performative and non-
performative events in order to fulfill the former. Based
on the nature of the obligations’ fulfillment execution, the
latter is categorized as primary, reciprocal, conditional, and
secondary, as shown in Figure 4. Primary obligations are
fulfilled if the primary objectives of the contract are met.
For example, the primary obligation of SupTr and CarMan
is fulfilled when SupTr delivers the tires in accordance with
the contract, or CarMan accepts and pays for tires as ordered.
The reciprocal obligation may in itself be the primary obliga-
tion, but the former is also the obligation that the counterparty
is required to perform in response to the execution of the lat-
ter. For example, the CarMan obligation to pay is reciprocal
to the SupTr obligation to deliver and vice versa. The CarMan
obligation to pay is also a primary obligation of the former.
A conditional obligation does not need to be triggered in the
ordinary course of events. Most of the remedial rights and
obligations fall into this category. For example, if CarMan

6 VOLUME 4, 2016

https://www.coindesk.com/wyoming-dao-llc-law-passed
http://www.duhaime.org/LegalDictionary/C-Page4.aspx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081926, IEEE Access

Dwivedi et al.: Smart-contract language

LegalAct

PerformanceEventType

maybe

0..*

0..* BusinessEventLegal EconomicAct

ProcessEvent

Management

performs

0..*

0..*

Reconciliatary

PerformanceEventType isA MoralAct

0..*

0..*

isA

0..*

0..*

isA

0..*

0..*

maybe

performs
0..*

0..*

Moral

0..*

0..*

isA

ObligationType

0..*

0..*

isA

0..*

0..* isAMonetary

executiontypes

Primary
executiontype

Reciprocal

0..*

0..*
isA

NonMonetry

Conditional

0..*0..* maybe

Secondary

0..* 0..*

fulfilledby

isA

0..*

0..*

0..*

1..*

performs

executiontype

executiontype

FIGURE 4. Specific domain layer.

does not receive the tires and steering wheels within a spec-
ified time frame, CarMan may seek compensation for failed
delivery. Correspondingly, the service provider is obligated to
deliver the good in addition to an extra penalty fee. Finally, a
secondary obligation is a sub-part of a primary obligation and
may be activated for additional commitment. For example,
SupSt and SupTr are also committed to packaging services
that are not legally bound to provide such services.

We also categorize obligations into legal-, business-, and
ethical obligations based on the contextual nature of the obli-
gation that requires a particular type of performance. Every
declaration in the business contract is legally enforceable and
also has legal consequences. Nevertheless, the category of
legal obligation is proposed in order to differentiate obliga-
tions that require certain specific legal actions to be taken in
order to fulfill the latter. Similarly, business obligations are
legally binding to categorize those obligations that are specif-
ically related to the performance of the business. Business
obligations are classified into monetary and non-monetary
obligations. Monetary obligations, e.g., late-payment charges
are those dealing with economic, or financial consequences.
Furthermore, not all business obligations necessarily have to
be financial commitments. Commitments such as CarMan
sends orders to buy the steering wheels after contracting,
or SupSt is required to arrange for the carrier and notify
CarMan, etc., require a business execution. Obligations be-
tween CarMan and SupSt, such as tire replacement, logistics
carrier arrangement, etc., have no economic implications and
we consider these types of obligations to be non-monetary
obligations. Legal norms often directly refer to moral- and
ethical principles 7. The contracting parties are thus, legally-
and morally obligated to assist their services. For example,
service providers are legally- and morally obligated to ar-
range for the pickup of car components from their premises.
Next, we convert the concepts and properties of the SCL

7International chamber of commerce | Home

ontology into a machine-readable language, i.e., SLCML,
for which links are provided in Section I to download the
complete ontology and SLCML schema definition.

IV. SLCML: A CONTRACT SPECIFICATION LANGUAGE

The extended SCL ontology comprises the legal concepts
and properties of contractual business DAO collaboration.
Further, the ontology is verified by the Hermit-reasoner [46],
and for the proof-of-concept, the former is translated into
a machine-readable language termed SLCML. Our previ-
ously developed eSourcing Markup Language (eSML) is
implemented on the basis of eSourcing ontology, in which
our focus was incorporating a smart-contract collaboration
configuration. The development of the eSourcing ontology
and eSML answers three key contractual questions, i.e.,
who-, where-, and what-concepts. Who-concepts identify
the contracting parties and where-concepts distinguish the
basic aspects of the electronic-contract context, and finally
what-concepts define the exchanged values and the related
conditions. For further details, we refer to the reader [29].
Still, the legal elements of contracts in SCL are critical
for forming a legally binding smart contract. Therefore, we
first enhance eSourcing ontology with a law researcher8 and
provide a mature SCL ontology for the advancement of DAO-
based smart-contract collaboration. The next step is to map
the extended concepts and properties of the SCL ontology
into the eSML language for which we use Liquid Studio
Tool9 as an XML schema editor for writing XML documents.
The enlarged version of eSML, we call the SLCML. Next, we
only discuss the extension part of SLCML, which is not part
of the eSML foundation, and provide the link for the reader
to download the complete SLCML schema in Section I.

Next, we present the SLCML schema of the upper-level
smart contract in Section IV-A. The schema for defining
the domain specific contractual properties are presented in
Section IV-B.

A. UPPER-LEVEL SMART-CONTRACT DEFINITION

The code extract in Listing 1 defines the legal elements
described in the upper layer of legally relevant smart-contract
DAOs. The element role in Line 4 defines the role of par-
ties that may be the buyer, the seller, etc., as discussed
in Section III. The contractual considerations, along with
the variable types, are set out in Line 6 of Listing 1. The
value of minOccurs and maxOccurs in Line 6 shows the
amount of consideration required for a legally binding smart
contract. In order to specify the terms and conditions in the
smart contract, we define the terms_and_conditions

element in Line 8. The terms and conditions comprise the
rights, obligations, prohibitions, and timeframes for which
the custom-variable terms and conditions-definition type are
defined as shown in Listing 2. Line 8 of the Listing 1

8Alexander Wulf contributed to this paper by supporting the creation
of the smart contract law ontology with his legal expertise. He did not
contribute towards the written text of the paper.

9Liquid Studio | Home

VOLUME 4, 2016 7

https://iccwbo.org/resources-for-business/incoterms-rules/incoterms-2020/
https://www.liquid-technologies.com/xml-studio

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081926, IEEE Access

Dwivedi et al.: Smart-contract language

defines the description of the contracting party, followed by
the custom type company_info which includes the name
of the contracting party, the type of legal organization, the
company contact information, and so on.

1 <xs:element name="contract">

2 <xs:complexType>

3 <xs:sequence>

4 <xs:element name="role" type="

variables_def_section" minOccurs="0" maxOccurs

="unbounded"/>

5 <xs:element name="consideration" type=

"variables_def_section" minOccurs="1"

maxOccurs="unbounded"/>

6 <xs:element name="terms_and_conditions

" type="terms_and_condition_definition"

minOccurs="0" maxOccurs="unbounded"/>

7 <xs:element name="party" type="

company_info" maxOccurs="unbounded" />

8 <xs:element name="mediator" type="

company_info" minOccurs="0" maxOccurs="

unbounded" />

9 </xs:sequence>

10 <xs:attribute name="contract_id" type=

"xs:ID" />

11 <xs:attribute name="global_language"

type="xs:string" />

12 <xs:attribute name="web_service_uri"

type="xs:string" />

13 </xs:complexType>

14 </xs:element>

Listing 1. Upper layer of the smart-contract schema.

The code extract in Listing 2 is part of the terms and condi-
tions that define the rules and regulations governing the per-
formance of the parties, as discussed in Section III. The rights
of the elements are defined in Line 3 along with the custom
type, i.e., the right_type by which the parties can con-
figure the types of right. The minOccurs and maxOccurs

show that parties must choose at least one rights. Terms and
conditions may be subject to prohibitions and the definition
of prohibitions and are described in Line 4. Line 5 specifies
the obligations, along with the obligation_category,
by which the parties may configure several obligations, as
shown in Listing 5. Finally, time_frame is defined in Line
6 that shows the expiry of the terms and conditions.

1 <xs:complexType name="

terms_and_conditions_definition">

2 <xs:sequence>

3 <xs:element name="right" type="right_type"

minOccurs="1" maxOccurs="unbounded" />

4 <xs:element name="prohibitions" type="xs:

string" minOccurs="0" />

5 <xs:element name="obligation" type="

obligation_category" minOccurs="1" maxOccurs="

unbounded" />

6 <xs:element name="time_frame" type="

variables_def_section" minOccurs="0" />

7 </xs:sequence>

8 </xs:complexType>

Listing 2. Schema definition of terms and conditions.

variables_def_section is a common variable at-
tribute that contains properties used for all simple- and com-
plex variables in SLCML and defined in Listing 3. The string
type is needed to define the string data items. For instance,

the role of the contracting party may be defined in string type.
The boolean data type is required to support the definition of
boolean contract data items. For example, the contract may
be legally binding or not, and this is defined by the boolean
data type. The integer datatype stores numerical values of
contract-id and considerations. Special data types such as
money_type and event_type define specific contractual ac-
tivities. For example, the money_type defines the amount of
money from a specific currency, and event_type defines the
event that may occur during the contract.

1 <xs:complexType name="variables_def_section">

2 <xs:sequence maxOccurs="unbounded">

3 <xs:choice>

4 <xs:element name="string_var" type

="string_type" />

5 <xs:element name="real_var" type="

real_type" />

6 <xs:element name="integer_var"

type="integer_type" />

7 <xs:element name="boolean_var"

type="boolean_type" />

8 <xs:element name="date_var" type="

date_type" />

9 <xs:element name="time_var" type="

time_type" />

10 <xs:element name="event_var" type=

"event_type" />

11 <xs:element name="money_var" type=

"money_type" />

12 <xs:element name="

external_resource_reference_var" type="

external_resource_reference_type" />

13 <xs:element name="

list_of_events_var" type="list_of_events_type"

/>

14 <xs:element name="

list_of_strings_var" type="

list_of_strings_type" />

15 <xs:any namespace="targetNamespace

" />

16 </xs:sequence>

17 </xs:complexType>

Listing 3. Common variable attributes.

B. OBLIGATION-TYPE DEFINITION

The obligation_category consists of the obli-

gation_type, obligation_state, performance

and non-performance specified in Listing 4. The el-
ement obligation_type along with custom variable
obligation_type-_definition is specified in Line
3 by which several obligations are configured. The obli-

gation_state is defined in Line 4 to monitor the contract
fulfillment process via which an obligation can pass through.
In the code example of Listing 4 the definition of obli-

gation_type_definition is omitted. The obligation
state depends on the performance and non-performance con-
ditions defined in Line 5.

1 <xs:complexType name="obligation_category">

2 <xs:sequence>

3 <xs:element name="obligation_type" type="

obligation_type_definition" minOccurs="1"/>

4 <xs:element name="obligation_state" type="

obligation_state_definition" minOccurs="1"/>

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081926, IEEE Access

Dwivedi et al.: Smart-contract language

5 <xs:element name="performance" type="

variables_def_section" minOccurs="1" maxOccurs

="unbounded"/>

6 <xs:element name="non-performance" type="

variables_def_section" minOccurs="0" maxOccurs

="unbounded"/>

7 </xs:sequence>

8 </xs:complexType>

Listing 4. Schema of obligations category.

Listing 5 is an example of obligation types from which
the parties can configure at least one-, or more obligations.
The legal obligation is defined in Line 3 along with the
string variable type. Business obligations have monetary and
non-monetary implications for which monetary and non-

monetary elements are defined in Lines 4 and 5. Similarly,
Line 6 defines the moral obligation along with the string
type. We follow a similar approach to define the rest of the
obligations, as shown in Listing 5.

1 <xs:complexType name="obligation_type_definition">

2 <xs:sequence>

3 <xs:element name="legal" type="xs:

string" minOccurs="0" />

4 <xs:element name="monetary" type="xs:

string" minOccurs="0" />

5 <xs:element name="non-monetary" type="

xs:string" minOccurs="0" />

6 <xs:element name="moral" type="xs:

string" minOccurs="0" />

7 <xs:element name="Primary" type="xs:

string" minOccurs="0" />

8 <xs:element name="Secondary" type="xs:

string" minOccurs="0" />

9 <xs:element name="Conditional" type="

xs:string" minOccurs="0" />

10 <xs:element name="reciprocal" type="xs

:string" minOccurs="0" />

11 <xs:element name="reconciliatory" type

="business_event_types" minOccurs="0" />

12 </xs:sequence>

13 </xs:complexType>

Listing 5. Schema of the type of obligation.

V. FEASIBILITY EVALUATION

For our automotive running case, we briefly discuss the
SLCML code examples based on the presented SLCML
schema in the previous section. Listing 6 shows an example
of defining a legally-binding contract that has a unique ID
and can not be changed throughout the contract enforcement.
Line 2 defines the public key of the CarMan wallet and the
same hold for the SupSt and SupTr wallet in Line 6 and
Line 10, respectively. The name of the parties, i.e., CarMan,
SupSt, and SupTr, are defined in Line 3, 7, respectively.
CarMan has the service consumer’s role described in Line 4.
The same applies to SupSt and SupTr, which have the role of
the service provider specified in Lines 8 and 12 respectively.
Considerations of contracts, such as tires and steering wheels,
are presented in Line 14 and 15, for which the parties agree
to enter into a contract. Next, terms and conditions include
the obligations and rights that are defined in Listing 7 and 8
respectively.

1 <contract contract_id="Id1">

2 <party address="03 m6">

3 <name> CarMan </name>

4 <role> Service consumer </role>

5 </party>

6 <party address="32 x7">

7 <name> SupSt </name>

8 <role> Steering wheels provider </role

>

9 </party>

10 <party address="31 x7">

11 <name> SupTr </name>

12 <role> Tires provider </role>

13 </party>

14 <consideration> Tires </consideration>

15 <consideration> Steering wheels </

consideration>

16 <terms_and_conditions>

17 <obligation/>

18 <right/>

19 <prohibitions/>

20 </terms_and_conditions>

21 </contract>

Listing 6. Contract instantiation for the automotive running case.

Listing 7 shows an example of the CarMan obligation to
renumerate money for tires and steering wheels. The obliga-
tion has a name and unique ID that monitors performance,
and we consider that to be a monetary obligation. Line 3 en-
ables the obligation state, which means that CarMan receives
orders, i.e., tires and steering wheels, and that CarMan has an
active obligation to pay money to service providers. SupTr
and SupSt are the beneficiaries of the obligations as shown
in Line 5 and Line 6 respectively, and CarMan is the obligor
who is obliged to perform this obligation as set out in Line 7.
We assume that no third party, or mediators are involved in
this obligation. The to-do obligation has legal implications
for which the CarMan has to act by actually paying the
money. The preconditions for the obligations are set out in
Line 13 and Line 14, for which CarMan and service providers
sign contracts (Act1) and (Act2) and CarMan receives tires
and steering wheels. The performance type is the payment
that needs to be transferred from CarMan to SupSt and SupSt
wallet addresses. Besides, the performance object is defined
as the buy with the qualifiers, which is paid for a specific
amount within the deadline. The rule_ conditions

specify the time limit for payment and the purchase-payment
plan are set out in Line 18. Finally, a reference is added to
the obligation in which a remedy for late payment exists. If
CarMan fails to pay the money within the time limit then
CarMan has to transfer a defined monetary amount to SupTr.

1 <obligation_rule tag_name ="paying_invoices"

rule_id ="0001" changeable ="false" monetary =

"true">

2 <state> enabled </state>

3 <parties>

4 <beneficiary> SupTr (31 x7) </beneficiary>

5 <beneficiary > SupSt (31 x7) </beneficiary>

6 <obligor> CarMan (03 m6) </obligor>

7 <third_party> nil </third_party>

8 </parties>

9 <obligation_type>

10 <legal_obligation> to-do </legal_obligation>

11 </obligation_type>

12 <precondition>

13 act1 (signed)& Tires (transferred)

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081926, IEEE Access

Dwivedi et al.: Smart-contract language

14 </precondition>

15 <precondition>

16 act2 (signed) & Steering wheels (transferred

)

17 </precondition>

18 <performance_type>

19 payment (03 m6,31 x7, buy)

20 </performance_type>

21 <performance_type>

22 payment (03 m6,32 x7, buy)

23 </performance_type>

24 <performance_object>

25 invoice (buy, amount)

26 <performance_object>

27 <rule_conditions>

28 date (before delivery of tires)

29 </rule_conditions>

30 <remedy>

31 late_payment_interest (amount,03 m6 ,31 x7)

32 </remedy>

33 </obligation_rule>

Listing 7. Obligation example for paying car parts.

The code extract of Listing 8 comprises intersecting pro-
visions with the obligation. The rights and obligations are
related, which means that if one party poses its rights, the
corresponding party is obliged to adhere. Similar to the
obligation in Listing 7, the rights have a beneficiary who can
be benefited from the right and an obligor who can enable
the right. For example, CarMan receives the defective tires,
and in that case, CarMan is the owner of the right to claim
the replacement of damaged tires. Consequently, the SupTr
is obliged to replace the latter.

1 <right_rule tag_name ="Car‘s_component_replacement

" rule_id ="0002" changeable ="true" monetary

="false">

2 <state> enabled </state>

3 <parties>

4 <beneficiary>

5 CarMan (31 x7)

6 </beneficiary>

7 <obligor>

8 SupTr (03 m6)

9 </obligor>

10 <third_party>

11 nil

12 </third_party>

13 </parties >

14 <right_type>

15 <conditional_right>

16 claim

17 </conditional_right>

18 </right_type>

19 <precondition>

20 act1 (signed)& car‘s components (

transferred)

21 </precondition>

22 <performance_type>

23 replace (defective car‘s component)

24 </performance_type>

25 <action_object>

26 car‘s component (brand, type,

serial_number)

27 </action_object>

28 <rule_conditions>

29 deadline (date)

30 </rule_conditions>

31 <remedy>

32 late_replacement_interest (amount, 31

x7)

33 </remedy>

34 </right_rule>

35

Listing 8. Right example for replacing a broken car‘s component.

Again, we assume that the rights have a name and ID as
defined in Line 1. As the service providers have a right to
waive the right, for example, the SupTr can convince the
CarMan the parts were defective during logistics without his
fault. The rights can be changed during the execution of the
contract and the compensation is set to false if the SupTr
agrees to replace the tires. The state of right is enabled for
immediate enactment, and the parties are defined similarly as
in Listing 7. The right-type is set to conditional-right, and the
CarMan uses that right as a claim for the replacement of the
tires. The right’s precondition is to have the contract signed
and the parts delivered to the CarMan. The performance type
is set to replace the tires described as a performance object
with a brand, type, and serial number. After enabling this
right, the corresponding obligation on the SupTr must be
fulfilled under the specified deadline; otherwise, the CarMan
claims the remedy payment of a specific amount.

To date, several online dispute resolutions such as on-
line arbitration, crowd-sourced dispute resolution, and Al-
powered resolutions have been proposed in the event that par-
ties do not resolve their disputes themselves [47]. Blockchain
communities developed arbitration systems to resolve dis-
putes quickly and efficiently in line with appropriate norms
and recognized equitable principles. Sagewise’s technol-
ogy 10, for example, is incorporated into a smart contract
through a coded provision in which consumers pre-set spe-
cific parameters, including when and how long the smart
contract execution should be delayed, and who resolves any
disputes that may arise. As a result, if a dispute arises, this
clause allows a party to halt contract execution and activate
the Sagewise dispute resolution mode. After that, the party
can select from a variety of dispute resolution processes for
resolving smart-contract issues and enforcing online judg-
ments.

In the following Section, we will demonstrate how to
translate SLCML code into Solidity.

VI. SLCML TO SOLIDITY-CODE TRANSLATION

Our starting point is the SLCML code corresponding to our
running case generated in Listing 6, 7, 8. The Solidity use
case code in Section VI was not generated by the tool, but
it is anticipated that it will be generated once the tool is
implemented. The transformation rules can be used to trans-
late SLCML code to a choreography model, which is then
translated to Solidity code using a Caterpillar [48]. Cater-
pillar is an open-source Blockchain-based BPM system that
converts business processes modelled in BPMN into smart
contracts written in Solidity language. Still, we do not discuss
the transformation rules because they are beyond the scope
of the paper. We only discuss the Solidity code presented

10Sagewise | Dispute resolution

10 VOLUME 4, 2016

https://dailyhodl.com/2018/05/11/sagewise-puts-focus-on-blockchain-immutability-and-dispute-resolution/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081926, IEEE Access

Dwivedi et al.: Smart-contract language

in Listing 9 that contains an excerpt from the generated
smart contract. To begin the task execution with rights and
obligations, our smart contract, “Automotive_SupplyChain”
contains four events and four solidity functions. Lines 3 to
8 of Listing 9 represent global variables and data pertaining
to the process state is stored on-chain. As defined in lines
9 to 17, the list of SupSt, CarMan and SupTr variables is
declared in struct, which can be accessed with a single pointer
name throughout the contract. In Line 18, a further event
for performance type, i.e., tires supply, is implemented, con-
taining parameters such as tires quantity, CarMan address,
and SupTr address to which track the delivery of tires and
steering wheels. Similarly, an event for performance type,
i.e., steering wheels, is implemented in Line 19, along with
the wheel quality, CarMan address, and SupSt address, which
track the delivery of wheels. Lines 20 to 23 implement
the notifyObligationBreach event and associated function for
tracing SupTr and SupSt obligations. Similarly, an event for
rights is introduced in Lines 28-30 in the event that a party
seeks compensation. Following that, a modifier precondition
is used to release the product if the payment is received before
the deadline.

1 pragma solidity ^0.4.16;

2 contract Automotive_SupplyChain{

3 uint public role;

4 uint funds;

5 uint tires_quantity;

6 uint steering_wheels_quantity;

7 uint public consideration;

8

9 struct CarMan{address Carman; uint role; }

10 struct SupSt {address SupST; uint role; }

11 struct SupTr{address SupST;uint role; }

12 event tires_Supply (uint _quanity, address CarMan,

address SupTr);

13 event steering-wheels_Supply (uint _quanity,

address CarMan, address SupST);

14 event notifyObligationBreach (*Define Type*
obligaton, address contract);

15 function notify(*Define Type* obligaton, address

CarMan){

16 //TODO: Implement code to notify obligation

breach for target contract address

17 notifyObligationBreach(obligation type,

contract);}

18 function release(uint Tire_quanity, address

CarMan){

19 // TOD: Implement code to release tires to

the CarMan. }

20 function release(uint steering_wheel_quanity,

address CarMan){

21 // TOD: Implement code to release steering

wheels to the CarMan. }

22 event claimParcel(*Define type* right, address

contract);

23 function replace_parcel(*Define type* right,

address contract){

24 //TODO: Implement code to activate right for

target contract address }

25 modifier precondition(){

26 //Check the condition

27 uint beneficiary;

28 uint obligor;

29 if(!paybeforedeadline){

30 release(tier_quantity, CarMan);

31 producer.send(funds); }

32 else

33 { _; } } }

34 // TODO: check precondition for steering wheels.

Listing 9. Automotive supply chain.

VII. RELATED WORK

Existing SCLs such as Solidity, Serpent and so on are devel-
oped from an IT perspective where the programmer writes a
machine-readable code without the knowledge of the contract
domain. Still, we observe that existing research focuses on
the development of SCLs to specify legally binding smart
contracts. In [20], researchers propose a specification lan-
guage (SPESC) to define the configuration of a smart contract
(rather than its implementation) for the purpose of collabo-
rative design. In SPESC, smart contracts are considered to
be a combination of IT experts, domain practitioners and
business, or financial transactions. Using SPESC, real-world
contract utilities, such as the role of the party, the set of terms
and conditions, etc., can be specified in smart contracts. Nev-
ertheless, SPESC does not address many aspects of contracts,
such as obligation states, categories of rights and obligations,
etc., but instead focuses on modelling legal relations (legal
positions). In [21], researchers propose a formal specifica-
tion language (Symboleo) reflecting obligations and powers,
using domain concepts and axioms. Symboleo specifications
include rights and obligations that can be monitored on a
run-time basis. In addition, formal semantics is introduced
to describe the life-cycle of contracts, obligations and au-
thorities on the basis of state charts. Symboleo is sufficiently
expressive to represent many types of real-life contracts, but
Symboleo does not express the concepts and properties of
collaborative contracts.

In [49], the researcher addresses the challenges of for-
malizing contracts written in natural languages in machine-
readable languages. In addition, the contract modeling lan-
guage (CML) is proposed for modelling and specifying un-
structured legal contracts covering a wide range of common
contract situations. CML specifies a natural-language com-
parable clause grammar that resembles real-world contracts,
but this research does not address transaction rules and is
not sufficient to formalise any type of contracts (viz. domain
completeness).

In [22], researchers argue that human contract intentions
are mostly defined in natural-language, which is easy to
understand but highly ambiguous and subject to interpreta-
tion. In addition, a methodology is proposed to develop a
high-level specification that achieves common understanding
through natural-language phrases and is compiled directly
into machine instructions. Still, this research focuses mainly
on the readability and safety of smart contracts and does
not express the collaborative contractual suitability and com-
pleteness of the domain. In [50], researchers find it difficult
to implement smart contracts due to the complexity and
heterogeneity of the underlying platforms. In addition, the
blockchain-independent smart-contract modelling language
(called iContractML) is proposed to relieve developers’ stress

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081926, IEEE Access

Dwivedi et al.: Smart-contract language

TABLE 1. Evaluation our specification language against existing SCLs.

SCL CC∗ LS∗ DC∗ TR∗

SLCML + + + +
SPESCS - + - +
ADICO - + - +
Symboleo - + + +
CML - + - +
SmaCoNat - + - +
iContractML - - + +
ContracT - + + -
BPSL + - + -

∗ CA [Contractual collaboration] | LS [Legal semantics] | DC [Domain
completeness]
∗ TR [Transaction rules]

from addressing the particular complexity of blockchains.
CML allows blockchain developers to focus on the business
process rather than the syntax details of each blockchain
platform. The focus and scope of CML is completely dif-
ferent from our research. Attributes Deontic AIm Conditions
(ADICO) [51] is a DSL developed in Scala that converts
domain-specific constructs of smart contracts to simpler con-
cepts. In [52], a contracT tool has been developed that anno-
tates the legal-contract text using a legal-contract ontology.
Still, the proposed ontology is not mature enough to develop
collaborative smart contracts. This study [53] develops a
framework for dynamic binding of parties to collaborative
process roles and an appropriate language for binding pol-
icy specifications. The proposed language is equipped with
Petri-net semantics, which enables the verification of policy
consistency.

The above information is described in Table 1 and the
essential aspect is shown when thinking about developing
SCLML. To evaluate the SCLs, we score them with ’+’ or
’-’ operators for each of the four parameters. The former
indicates that the SCL has a specific property, whereas the
latter indicates that the property does not exist in the cor-
responding SCL. The result of the table shows that a lot of
research is being done in the area of legal smart-contract
specification. Still, we address the gap that the solutions
address in immaturely, revealing that existing methodologies
are limited to the design of all types of real-world contracts.
For example, the prior research is not sufficient to specify
collaborative- and legally binding smart contracts.

VIII. CONCLUSION

This paper presents the ontological concepts and properties
that are critical for developing legally-binding DAOs. We
extend our previous work in which the specification of DAO
collaboration is discussed and only show the legal element
for this paper, which is essential for specifying legal DAOs.
An ontology is developed in the OWL language and verified
through the HermiT reasoner. The ontology is an input for the
development of the SLCML. We map the extended concepts

and properties of the SCL ontology into the eSML language.
The enlarged version of eSML, we call the SLCML. For
this paper, we only discuss the extension part of SLCML,
which is not part of the eSML foundation. We provide a code
example based on an automotive case study that ensures the
language comprises collaborative legal concepts on the basis
of semantic clarity.

We discover that the multi-tiered SCL ontology captures
the full range of legally binding business-related contracts in
a unified model. The upper-core layer depicts the broad con-
figuration of smart contracts applicable to most widespread
types of contracts. The specific domain layer is the collection
of different types of contracts, such as employment contracts,
sale of goods, etc. Blockchain-based smart-contract technol-
ogy could be used to address the core issues that arise in the
context of temporary employment [54], in order to safeguard
employees and prevent competition from being distorted in
favor of corporations that aim to exploit illegal workers.
Each type of contract inherits all the core functions of the
upper layer and then specializes in the particular knowledge
specific to the contract domain. SLCML adopts a real-life
contracting foundation where collaborating parties use their
legal properties in decentralized collaborations. SCLML is
implemented based on our previously developed eSourcing
Markup Language (eSML) in which our focus is incorporat-
ing a smart-contract collaboration configuration.

As future work, we aim that the contract ontology can
be further developed to achieve domain completeness. In
addition, we plan to develop a tool-supported process to
transform SLCML contract specification into smart-contract
code, e.g., Solidity, and to carry out more case studies with
SLCML in blockchain research projects. A formal analysis
approach to the specification of SLCML could be developed;
we plan to build a translator for the automatic conversion of
SLCML instantiations into a larger set of blockchain-based
language.

REFERENCES

[1] Xiongfeng Pan, Xianyou Pan, Malin Song, Bowei Ai, and Yang Ming.
Blockchain technology and enterprise operational capabilities: An empir-
ical test. International Journal of Information Management, 52:101946,
2020.

[2] Paul Vigna and Michael J. Casey. The Age of Cryptocurrency: How
Bitcoin and Digital Money Are Challenging the Global Economic Order.
St. Martin’s Press, Inc., USA, 2015.

[3] Christian Catalini and Joshua S. Gans. Some simple economics of the
blockchain. Communications of the ACM, 63(7):80–90, June 2020.

[4] Yan Chen and Cristiano Bellavitis. Blockchain disruption and decen-
tralized finance: The rise of decentralized business models. Journal of
Business Venturing Insights, 13:e00151, 2020.

[5] Claudio Di Ciccio, Alessio Cecconi, Marlon Dumas, Luciano García-
Bañuelos, Orlenys López-Pintado, Qinghua Lu, Jan Mendling, Alexander
Ponomarev, An Binh Tran, and Ingo Weber. Blockchain support for
collaborative business processes. Informatik Spektrum, 42(3):182–190,
May 2019.

[6] Rik Eshuis, Alex Norta, and Raoul Roulaux. Evolving process views.
Information and Software Technology, 80:20 – 35, 2016.

[7] Alex Norta. Designing a smart-contract application layer for transacting
decentralized autonomous organizations. In Mayank Singh, P.K. Gupta,
Vipin Tyagi, Arun Sharma, Tuncer Ören, and William Grosky, editors,
Advances in Computing and Data Sciences, pages 595–604, Singapore,
2017. Springer Singapore.

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081926, IEEE Access

Dwivedi et al.: Smart-contract language

[8] Madhusudan Singh and Shiho Kim. Chapter four - blockchain technology
for decentralized autonomous organizations. In Shiho Kim, Ganesh Chan-
dra Deka, and Peng Zhang, editors, Role of Blockchain Technology in IoT
Applications, volume 115 of Advances in Computers, pages 115 – 140.
Elsevier, 2019.

[9] N. Diallo, W. Shi, L. Xu, Z. Gao, L. Chen, Y. Lu, N. Shah, L. Carranco,
T. Le, A. B. Surez, and G. Turner. egov-dao: a better government
using blockchain based decentralized autonomous organization. In 2018
International Conference on eDemocracy eGovernment (ICEDEG), pages
166–171, 2018.

[10] Nick Szabo. Formalizing and securing relationships on public networks.
First Monday, 2(9), Sep. 1997.

[11] Orlenys López-Pintado, Luciano García-Bañuelos, Marlon Dumas, Ingo
Weber, and Alexander Ponomarev. Caterpillar: A business process ex-
ecution engine on the ethereum blockchain. Software: Practice and
Experience, 49(7):1162–1193, 2019.

[12] Christoph Jentzsch. Decentralized autonomous organization to automate
governance. White paper, November, 2016.

[13] Nanjangud C. Narendra, Alex Norta, Msury Mahunnah, Lixin Ma, and
Fabrizio Maria Maggi. Sound conflict management and resolution for
virtual-enterprise collaborations. Service Oriented Computing and Ap-
plications, 10(3):233–251, Sep 2016.

[14] L. Sterling and K. Taveter. The art of agent-oriented modeling. 2009.
[15] Alex Norta. Creation of smart-contracting collaborations for decentralized

autonomous organizations. In Raimundas Matulevičius and Marlon Du-
mas, editors, Perspectives in Business Informatics Research, pages 3–17,
Cham, 2015. Springer International Publishing.

[16] Alex Norta. Establishing distributed governance infrastructures for en-
acting cross-organization collaborations. In Alex Norta, Walid Gaaloul,
G. R. Gangadharan, and Hoa Khanh Dam, editors, Service-Oriented
Computing – ICSOC 2015 Workshops, pages 24–35, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

[17] Alex Norta, Anis Ben Othman, and Kuldar Taveter. Conflict-resolution
lifecycles for governed decentralized autonomous organization collabora-
tion. In Proceedings of the 2015 2nd International Conference on Elec-
tronic Governance and Open Society: Challenges in Eurasia, EGOSE ’15,
page 244–257, New York, NY, USA, 2015. Association for Computing
Machinery.

[18] Chibuzor Udokwu and Alex Norta. Deriving and formalizing requirements
of decentralized applications for inter-organizational collaborations on
blockchain. Arabian Journal for Science and Engineering, Mar 2021.

[19] Alex Norta. Self-aware smart contracts with legal relevance. In 2018
International Joint Conference on Neural Networks (IJCNN), pages 1–8,
2018.

[20] X. He, B. Qin, Y. Zhu, X. Chen, and Y. Liu. Spesc: A specification
language for smart contracts. In 2018 IEEE 42nd Annual Computer
Software and Applications Conference (COMPSAC), volume 01, pages
132–137, 2018.

[21] S. Sharifi, A. Parvizimosaed, D. Amyot, L. Logrippo, and J. Mylopoulos.
Symboleo: Towards a specification language for legal contracts. In 2020
IEEE 28th International Requirements Engineering Conference (RE),
pages 364–369, 2020.

[22] E. Regnath and S. Steinhorst. Smaconat: Smart contracts in natural
language. In 2018 Forum on Specification Design Languages (FDL), pages
5–16, 2018.

[23] Fabian Knirsch, Andreas Unterweger, and Dominik Engel. Privacy-
preserving blockchain-based electric vehicle charging with dynamic tariff
decisions. Computer Science - Research and Development, 33(1-2):71–79,
September 2017.

[24] B. Xiao, X. Fan, S. Gao, and W. Cai. Edgetoll: A blockchain-based
toll collection system for public sharing of heterogeneous edges. In
IEEE INFOCOM 2019 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 1–6, 2019.

[25] Shuchih Ernest Chang, Yi-Chian Chen, and Ming-Fang Lu. Supply chain
re-engineering using blockchain technology: A case of smart contract
based tracking process. Technological Forecasting and Social Change,
144:1 – 11, 2019.

[26] T. Ruokolainen, S. Ruohomaa, and L. Kutvonen. Solving service ecosys-
tem governance. In 2011 IEEE 15th International Enterprise Distributed
Object Computing Conference Workshops, pages 18–25, 2011.

[27] A. Norta and L. Kutvonen. A cloud hub for brokering business processes
as a service: A "rendezvous" platform that supports semi-automated back-
ground checked partner discovery for cross-enterprise collaboration. In
2012 Annual SRII Global Conference, pages 293–302, 2012.

[28] R. Eshuis, A. Norta, O. Kopp, and E. Pitkänen. Service outsourcing with
process views. IEEE Transactions on Services Computing, 8(1):136–154,
2015.

[29] Alex Norta, Lixin Ma, Yucong Duan, Addi Rull, Merit Kõlvart, and Kuldar
Taveter. eContractual choreography-language properties towards cross-
organizational business collaboration. Journal of Internet Services and
Applications, 6(1), April 2015.

[30] Raz Lin and Sarit Kraus. Can automated agents proficiently negotiate with
humans? Communications of the ACM, 53(1):78–88, 2010.

[31] Nanjangud C. Narendra, Alex Norta, Msury Mahunnah, Lixin Ma, and
Fabrizio Maria Maggi. Sound conflict management and resolution for
virtual-enterprise collaborations. Service Oriented Computing and Ap-
plications, 10(3):233–251, October 2015.

[32] Alex Norta and Paul Grefen. Discovering patterns for inter-organizational
business process collaboration. International Journal of Cooperative
Information Systems, 16(03n04):507–544, 2007.

[33] Jian-Hong Lin, Kevin Primicerio, Tiziano Squartini, Christian Decker, and
Claudio J Tessone. Lightning network: a second path towards centralisa-
tion of the bitcoin economy. New Journal of Physics, 22(8):083022, aug
2020.

[34] Yi-Hui Chen, Shih-Hsin Chen, and Iuon-Chang Lin. Blockchain based
smart contract for bidding system. In 2018 IEEE International Conference
on Applied System Invention (ICASI), pages 208–211, 2018.

[35] Xiang Hong Li. Blockchain-based cross-border e-business payment
model. In 2021 2nd International Conference on E-Commerce and Internet
Technology (ECIT), pages 67–73, 2021.

[36] Emad Mohammad Al-Amaren, CTBM Ismail, and MZBM Nor. The
blockchain revolution: A gamechanging in letter of credit (l/c). Interna-
tional Journal of Advanced Science and Technology, 29(3):6052–6058,
2020.

[37] Alexander Maedche and Steffen Staab. Ontology learning for the semantic
web. IEEE Intelligent systems, 16(2):72–79, 2001.

[38] Joost de Kruijff and Hans Weigand. Understanding the blockchain using
enterprise ontology. In Eric Dubois and Klaus Pohl, editors, Advanced
Information Systems Engineering, pages 29–43, Cham, 2017. Springer
International Publishing.

[39] Mark A Musen et al. The protégé project: a look back and a look forward.
AI matters, 1(4):4, 2015.

[40] Steffen Lohmann, Stefan Negru, and David Bold. The protégévowl
plugin: Ontology visualization for everyone. In Valentina Presutti, Eva
Blomqvist, Raphael Troncy, Harald Sack, Ioannis Papadakis, and Anna
Tordai, editors, The Semantic Web: ESWC 2014 Satellite Events, pages
395–400, Cham, 2014. Springer International Publishing.

[41] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang.
Hermit: an owl 2 reasoner. Journal of Automated Reasoning, 53(3):245–
269, 2014.

[42] Alex Norta and Rik Eshuis. Specification and verification of harmo-
nized business-process collaborations. Information Systems Frontiers,
12(4):457–479, April 2009.

[43] Guido Governatori, Florian Idelberger, Zoran Milosevic, Regis Riveret,
Giovanni Sartor, and Xiwei Xu. On legal contracts, imperative and
declarative smart contracts, and blockchain systems. Artificial Intelligence
and Law, 26(4):377–409, Dec 2018.

[44] Ronald M Lee and Sandra Donaldson Dewitz. Facilitating international
contracting: Al extensions to edi. International Information Systems,
1(1):94–123, 1992.

[45] Yao-Hua Tan and W. Thoen. Modeling directed obligations and per-
missions in trade contracts. In Proceedings of the Thirty-First Hawaii
International Conference on System Sciences, volume 5, pages 166–175
vol.5, 1998.

[46] I Horrocks, B Motik, and Z Wang. The hermit owl reasoner. volume 858,
pages 245–269. CEUR Workshop Proceedings, 2012.

[47] Amy Schmitz and Colin Rule. Online dispute resolution for smart
contracts. Journal of Dispute Resolution, 2019(2):103–126, 2019.

[48] Orlenyslp. orlenyslp/caterpillar, 2019.
[49] Maximilian Wöhrer and Uwe Zdun. Domain specific language for smart

contract development. In IEEE International Conference on Blockchain
and Cryptocurrency, 2020.

[50] Mohammad Hamdaqa, Lucas Alberto Pineda Metz, and Ilham Qasse.
Icontractml: A domain-specific language for modeling and deploying
smart contracts onto multiple blockchain platforms. In Proceedings of the
12th System Analysis and Modelling Conference, SAM ’20, page 34–43,
New York, NY, USA, 2020. Association for Computing Machinery.

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3081926, IEEE Access

Dwivedi et al.: Smart-contract language

[51] C. K. Frantz and M. Nowostawski. From institutions to code: Towards
automated generation of smart contracts. In 2016 IEEE 1st International
Workshops on Foundations and Applications of Self* Systems (FAS*W),
pages 210–215, 2016.

[52] Michele Soavi, Nicola Zeni, John Mylopoulos, and Luisa Mich. Contract –
from legal contracts to formal specifications: Preliminary results. In Jānis
Grabis and Dominik Bork, editors, The Practice of Enterprise Modeling,
pages 124–137, Cham, 2020. Springer International Publishing.

[53] Orlenys López-Pintado, Marlon Dumas, Luciano García-Bañuelos, and
Ingo Weber. Dynamic role binding in blockchain-based collaborative busi-
ness processes. In Paolo Giorgini and Barbara Weber, editors, Advanced
Information Systems Engineering, pages 399–414, Cham, 2019. Springer
International Publishing.

[54] Andrea Pinna and Simona Ibba. A blockchain-based decentralized system
for proper handling of temporary employment contracts. In Advances in
Intelligent Systems and Computing, pages 1231–1243. Springer Interna-
tional Publishing, November 2018.

IX. ACKNOWLEDGMENTS

This article is based on research from the Erasmus+ Strate-
gic Partnerships Project - 2018-1-RO01-KA203-049510
"Blockchain for Entrepreneurs - a non-traditional Industry
4.0 curriculum for Higher Education".

VIMAL DWIVEDI is a Ph.D. student and early
stage researcher of the blockchain technology
group at Tallinn University of Technology. He
received his masters degree in Information tech-
nology from Indraprashta university, Delhi. He has
worked as assistant professor of Information Tech-
nology in India. Vimal has (co-)authored 4 pub-
lications in conference proceedings. His research
interests are semantics and ontology development,
and legally-relevant smart contract languages de-

velopment for blockchains.

ALEX NORTA is currently a principal investi-
gator at the Blockchain Technology Group and
a research member at the Faculty of Software
Science/TalTech in Tallinn/Estonia and was ear-
lier a researcher at the Oulu University Secure-
Programming Group (OUSPG) after having been
a postdoctoral researcher at the University of
Helsinki, Finland. He received his M.Sc. degree
(2001) from the Johannes Kepler University of
Linz, Austria, and his Ph.D. degree (2007) from

the Eindhoven University of Technology, The Netherlands. His Ph.D. thesis
was partly financed by the IST project CrossWork, in which he focused on
developing the eSourcing concept for dynamic inter-organizational business
process collaboration. His research interests include business-process col-
laboration, smart contracts, blockchain technology, e-business transactions,
service-oriented computing, software architectures, software engineering,
ontologies, security, multi-agent systems, distributed business-intelligence
mining, e-learning, Agile software engineering, production automation,
enterprise architectures, e-governance. For the blockchain-tech startups
Qtum.org, their respective whitepapers and also serves as an advisor for
several other blockchain-tech startups such as Cashaa.

ALEXANDER J. WULF is a professor of busi-
ness law at the Berlin School of Management. His
research interests are the application of empirical
methodology to the study of law, the interdepen-
dence of law and economics and the relevance of
law and legal institutions for the behaviour of busi-
nesses. His research focuses particularly on the
empirical analysis of European Union commercial
law.

BENJAMIN LEIDING was born in Rostock, Ger-
many. He received his B.Sc. degree in computer
science in 2015 from the University of Rostock,
Germany. Subsequently, he received the M.Sc.
degree in Internet Technologies and Information
Systems in 2017 as well as the Ph.D. degree in
computer science in 2020 from the University of
Goettingen, Germany. He is currently a Post Doc-
toral Research Fellow at the Clausthal University
of Technology. His research interests include the

machine-to-everything Economy (M2X Economy), the Circular Economy,
distributed systems, and digital identities.

SANDEEP SAXENA , PhD from NIT Durgapur,
west Bengal andworking as Associate Professor in
a reputed engineering institute Galgotias College
of Engineering & Technology, Greater Noida. I
had completed my B.Tech in CSE from UPTU
Lucknow and MS in Information Security from
IIIT Allahabad. I have more than 12 Years, Teach-
ing Experience. I had performed the role of a key
member in 6 International Conferences as Orga-
nizing Secretary/Organizing Chair/Session Chair.

I had written 3 technical books for UP Technical University, Lucknow, and
published multiple research papers in reputed international journals and
conferences. I had published 8 international Conferences and 2 SCIE, 9
Patent published, 2 Scopus, and 6 other published in International journals.
I am also participating in multiple professional societies like IEEE (Senior
Member), IAASSE (Senior Member), CSI, and CRSI.

CHIBUZOR UDOKWU is an external Ph.D. stu-
dent of TalTech in the blockchain technology
group. He received his masters degree in Soft-
ware Science, TalTech. He has consulted and
help in designing several blockchain applications
for different startups. Chibuzor has published
and co-authored several scientific papers in the
blockchain space. His research interests are se-
mantics and ontology development, design and
development of blockchain systems, blockchain

use-cases and applications in organizations.

14 VOLUME 4, 2016

