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Abstract—This paper conducts a formal study of the shot
boundary detection problem. First, a general formal framework
of shot boundary detection techniques is proposed. Three critical
techniques, i.e., the representation of visual content, the con-
struction of continuity signal and the classification of continuity
values, are identified and formulated in the perspective of pattern
recognition. Meanwhile, the major challenges to the framework
are identified. Second, a comprehensive review of the existing
approaches is conducted. The representative approaches are
categorized and compared according to their roles in the formal
framework. Based on the comparison of the existing approaches,
optimal criteria for each module of the framework are discussed,
which will provide practical guide for developing novel methods.
Third, with all the above issues considered, we present a uni-
fied shot boundary detection system based on graph partition
model. Extensive experiments are carried out on the platform of
TRECVID. The experiments not only verify the optimal criteria
discussed above, but also show that the proposed approach is
among the best in the evaluation of TRECVID 2005. Finally, we
conclude the paper and present some further discussions on what
shot boundary detection can learn from other related fields.

Index Terms—Formal framework, graph partition model, mul-
tiresolution analysis, shot boundary detection, support vector ma-
chine (SVM).

I. INTRODUCTION

R
ECENT advances in multimedia compression technology,

coupled with the significant increase in computer perfor-

mance and the growth of the Internet, have led to the widespread

use and availability of digital videos. The rapidly expanding ap-

plications of videos have spurred the growing demand of new

technologies and tools for efficient indexing, browsing and re-

trieval of video data. The area of content based video retrieval,

aiming to automate the indexing, retrieval and management of

video, has attracted extensive research during the last decade

[1], [2].

Structural analysis of video is a prerequisite step to automatic

video content analysis. Among the various structural levels (i.e.,

frame, shot, scene, etc.), shot level organization has been con-

sidered appropriate for browsing and content based retrieval [3],
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[4]. A shot consists of continuous frame sequences captured by

a single camera action. According to whether the transition be-

tween shots is abrupt or gradual, the shot boundaries can be

categorized into two types: cut (CUT) and gradual transition

(GT). The GT can be further classified into dissolve, wipe, fade

out/in (FOI), etc., according to the characteristics of the dif-

ferent editing effects [5]. Shot boundary detection (SBD), also

known as temporal video segmentation, is the process of identi-

fying the transitions between the adjacent shots. A large number

of SBD methods have been proposed. In the early years, the

methods are usually evaluated on a relatively small data set due

to the lack of large annotated video collections. Since the year

of 2001, the National Institute of Standards and Technology

(NIST) has started a benchmark of content based video retrieval,

i.e., TRECVID [6], in which SBD is one of the evaluation tasks.

NIST provides much larger evaluation data than ever. Dozens of

participants present their SBD approaches for evaluation. The

practice of TRECVID has significantly promoted the progress

of SBD techniques. It reveals that the identification of CUTs has

been somewhat successfully tackled, while the detection of GTs

still remains a difficult problem [6].

Despite the extensive research on concrete SBD techniques,

little attention has been paid to the formal study of the problem.

To our best knowledge, Vasconcelos et al. made the initial ef-

forts to formulate the problem [7]. They developed a Bayesian

formulation for the problem and extended the standard thresh-

olding model to an adaptive and intuitive way. In [8], Lienhart

identified several core techniques underlying the various SBD

schemes and reviewed their roles in detecting CUTs, fades and

dissolves. In [9], Hanjalic analyzed the SBD problem and iden-

tified the major issues that needed to be considered for a suc-

cessful approach. Recent formal study on SBD includes [10] and

[11]. Albanese et al. presented mathematical characterizations

for most common transition effects [10]. Bescós et al. proposed

a unified model centering on the mapping from the feature space

to the space of inter-frame distances and the mapping from the

distances space to the decision space [11]. This model is ca-

pable of covering most of the existing SBD techniques. These

formalizations make the essence of SBD explicit, meanwhile,

they identify the crucial functional components and clarify the

pros and cons of the existing approaches. The formal study will

inevitably guide the development of novel SBD techniques.

However, there is still some work remaining unsolved. First,

we have to say that even the latest formal studies have not been

advanced enough to cover the recent development of SBD tech-

niques, especially for the methods appeared after the year of

2000. For example, all of the previous work has formalized the

decision procedure of SBD as a thresholding model. Neverthe-

less, some recent work (e.g., [12]–[14]) can not be exactly de-

scribed by metrics or thresholds, since their final decisions are

not obtained by thresholding schemes but by machine learning
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methods. Some calculation methods of content discontinuity are

also not covered by the previous formal study. In [12] and [13],

they did not calculate the discontinuity values by by pair-wise

frame comparison but by incorporating context information of

the neighborhood. Second, the previous work, though identified

various specific core techniques, did not evaluate these ones.

The reliable evaluation and the optimal criteria for designing

a specific functional component are extremely important for the

practical purpose. It is time to conduct a novel formal study on

SBD. Numerous techniques have been developed and several

comprehensive surveys have been presented to summarize them

[8]–[11], [15]. These efforts have established the foundation of

the further formal study. Meanwhile, the platform of TRECVID

has provided the facilities for the reliable evaluation of various

techniques.

In this paper, we conduct a formal study of the SBD problem.

First, we present a general formal framework for SBD tech-

niques in the perspective of pattern recognition. Three critical

techniques, i.e., the representation of visual content, the con-

struction of continuity signal and the classification of conti-

nuity values, are identified and formulated. Second, we present

a comprehensive review of the existing approaches. In the re-

view, the representative approaches are categorized and com-

pared according to their roles in the formal framework. Based

on the comparison of the existing approaches, optimal criteria

for each module of the framework are discussed. Third, with all

the above issues considered, we present a unified SBD system

based on graph partition model. Extensive experiments are car-

ried out on the platform of TRECVID. The experiments not only

verify the optimal criteria discussed above, but also show that

the proposed approach is among the best in the evaluation of

TRECVID 2005. Finally, we present some further discussions

on what SBD can learn from other related fields.

The remainder of this paper is organized as follows. Section II

presents a formal framework for the SBD techniques. Section III

provides the review of the existing methods. The Section II

and Section III focus on formally analyzing the SBD problem

and identifying the major challenges while designing SBD

system. As an example of the formal framework, we introduce

an SBD system based on graph partition model in Section IV.

In Section V, we carry out some comparative experiments on

the platform of TRECVID to examine the effectiveness of the

proposed system. We conclude this paper and outline the future

possible directions in Section VI.

II. FORMAL FRAMEWORK OF SBD

In this section, we attempt to establish a general formal frame-

work for SBD techniques and point out the major challenges to

the framework. Video is composed of multistreams of informa-

tion, i.e., audio, visual, text, etc.. However, all of the existing

SBD systems recognize shot boundaries according to the transi-

tions of visual content, except [16] which incorporated scripts of

automatic speech recognition (ASR). This is mainly due to the

following two reasons. First, visual content is the major infor-

mation source of videos and it will yield better detection results

for such structure analysis of physical level [1]. Second, the fu-

sion of multimodalities still remains a challenge in the field of

multimedia content analysis [2]. People have not found effective

ways to perform combined and cooperative analysis of multi-

modalities in the cases of heterogeneous and even conflicting

information. In this paper, we will focus on the visual aspect of

videos. Nevertheless, in the framework, the visual information

is abstracted by its features. It is possible to replace visual fea-

ture by other features such as audio. The evidences from multi-

sources can be combined in the way of information fusion (e.g.,

the multiresolution analysis in Section IV).

A. Formal Definition of SBD

In the perspective of visual aspect, video is a kind of three-di-

mensional signal, in which two of them reveal the visual content

in the horizontal and vertical frame direction, and the third one

reveals the variations of the visual content over the time axes.

Neglecting the signal variation along the horizontal and vertical

dimensions, let denote the th frame, where and

indicates the image space. SBD aims to temporally segment the

video into some consecutive shots, i.e., uninterrupted image se-

quences captured by a single camera action. The basic idea of

SBD approaches is to identify the discontinuities of visual con-

tent. No matter what kind of detection techniques, it consists of

three core elements, i.e., the representation of visual content, the

evaluation of visual content continuity and the classification of

continuity values. In the following, we will introduce the for-

malizations of the above three modules, respectively. Note that

the style of the formalizations is similar to that of Bescós et al.

[11], but the content is distinct.

1) Representation of Visual Content: The straightforward ap-

proach to representing the visual content of each frame is to

utilize the image itself. A more popular alternative is to extract

some kind of visual features from each frame and obtain a com-

pact content representation. Let denote the feature of

, where is the feature space. The problem of content rep-

resentation is to seek an appropriate feature extraction method,

formally, to find a mapping from the image space to the fea-

ture space

(1)

There are two major requirements for feature as an appro-

priate content representation, i.e., invariance and sensitivity.

Here, the invariance means that the feature is stable to some

forms of content variation except shot transitions, e.g., rotation

or translation of the picture. Inversely, the sensitivity reflects the

feature’s capability of capturing the details of visual content.

Generally speaking, the rougher the feature is, the stronger

the invariance is. For example, color coherent vector is more

sensitive than color histogram, since color coherent vector is

a refinement of color histogram which incorporates the spatial

information of color distribution [17]. The sensitivity is a

reverse aspect of invariance. The more details the feature can

capture, the more sensitive it is, since the feature can even

reflect the tiny changes of visual content. With the invariance,

the feature within shots remains relatively stable, while with

the sensitivity, the feature between different shots exhibits

considerable change. The tradeoff between invariance and
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sensitivity must be taken into account to achieve a satisfying

detection performance.

2) Construction of Continuity Signal: The common practice

of identifying the transitions between shots is to first calculate

the continuity (similarity) or discontinuity (distance) values of

adjacent features (In this paper, we adopt the continuity signal,

which is just an inverse of the discontinuity signal of the related

literature [8], [9]). In this way, the visual content flow is trans-

formed into a 1-D temporal signal. In the ideal situation, the

continuity signal within the same shot always keeps large mag-

nitudes, while drops to low values surrounding the positions of

shot transitions. Unfortunately, the temporal signal obtained by

inter-frame comparison of features is not always stable enough

to various disturbances such as abrupt illumination variation and

large object/camera movement. A better way is to not only con-

sider inter-frame variations but also incorporate the variations

within the neighborhood of the particular position, i.e., contex-

tual information. Formally, let denote the space of continuity

values and be the content continuity between and .

The procedure of continuity signal calculation is to construct a

mapping from the Cartesian product of feature space to the con-

tinuity value space

(2)

where and denotes

the radius of the involved neighborhood when calculating

the content continuity between and . In the early

approaches, usually equals 1, that is, only the inter-frame

continuity is evaluated. While in some recent work, values of

are adopted to incorporate contextual information as

reviewed in Section III. Note that in (2) we have assumed the

video content flow is transformed to a 1-D continuity signal.

To our best knowledge, all of the existing approaches conform

to the assumption. However, this is not the only solution. We

can design some vectorial continuity signals to reflect content

variation. In Section IV, we will introduce a module named

Construction of Multiresolution Graph as an example. The

following presentation will continue using the assumption of

1-D signal for the convenience of explanation.

3) Classification of Continuity Values: Given the 1-D tem-

poral signal of content variation, the final critical issue is to clas-

sify the boundaries from the nonboundaries or identify the types

of the transitions. This procedure is also a mapping but from the

Cartesian product of continuity value space to the decision

space . Let denote the type of transitions (or non-

boundary) between and , the mapping of decision can be

indicated as

(3)

where and is the radius

of the neighboring continuity values required by the classifier.

In most cases, is adopted, that is, only the amplitude of

is used to determine whether a transition occurs between and

. In some recent approaches [12], [13], the nearby temporal

pattern of the continuity signal is considered while judging the

presence or absence of shot transition, i.e., . In the per-

spective of Bayesian decision theory, the optimal mapping can

be obtained as

(4)

in which indicates the posterior probability of the

transition type being given the observation . The mapping

obtained according to (4) is the so-called minimum error rate

classifier. How to construct a mapping with the minimum error

rate is the core problem of machine learning theory. Generally

speaking, there are two different ways to model , namely gen-

erative and discriminative classifiers. In generative classifiers,

the class conditional probability and prior probability

are first modeled and Bayes rule is then applied to infer

the posterior probability . The examples of generative

classifiers for SBD include [7], [9], [18]. While in discrimina-

tive classifiers, the posterior probability is straight-

forwardly assumed in some functional form, and then the pa-

rameters of the function are estimated from the training data.

The popular thresholding scheme is the simplest discriminative

classifier, in which is assumed as the step function and the

threshold is the unique parameter. Other applications of discrim-

inative classifiers for SBD include [12]–[14]. The comparison of

generative classifiers versus discriminative ones is an interesting

topic of machine learning field, an in-depth discussion can refer

to [19].

B. Major Challenges to the Formal Framework

To achieve satisfactory detection performance, special atten-

tion has to be paid to deal with several challenges to the above

framework. Usually, the following three issues, i.e., the detec-

tion of GTs, the elimination of disturbances caused by abrupt il-

lumination change or large object/camera movement, have been

found the major challenges to current SBD techniques. How to

conquer these challenges are the major difficulties while con-

structing the mappings in the proposed formal framework.

1) Detection of Gradual Transitions: As mentioned in

Section I, although the detection of hard CUTs has been

tackled, the detection of GTs remains a difficult problem.

In [20], Lienhart presents an in-depth analysis on why the

detection of GTs is more difficult than that of CUTs in the

perspective of the temporal and spatial interrelation of the

two adjacent shots. Here, from a different point of view, we

summarize three reasons why it is difficult. First, GTs include

various special editing effects, including dissolve, wipe, FOI,

etc.. Each effect results in a distinct temporal pattern over the

continuity signal curve. Second, GTs exhibit varying temporal

duration, probably from three to dozens of frames. During

a GT, although the continuity values of intra-frame features

are usually smaller than those of within shots, they are not as

significantly low as those of hard CUTs. Finally, the temporal

patterns of GTs are similar to those caused by object/camera

movement, since both of them are essentially processes of

gradual visual content variation.

2) Disturbances of Abrupt Illumination Change: Most of

the content representation methods are based on the color fea-

ture, in which luminance is a basic element. Abrupt illumination
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changes such as flashlights within shots often cause significant

discontinuities of inter-frame feature, which is often mistaken

for shot boundaries. Several illumination-invariant features and

similarity metrics have been proposed to deal with the problem.

However, these methods usually face a difficult dilemma, that

is, illumination-invariant methods can certainly remove some

disturbances of illumination change but they also lose the infor-

mation of illumination change which is critical in characterizing

the variation of visual content.

3) Disturbances of Large Object/Camera Movement: Be-

sides shot transitions, object/camera movements also lead to the

variations of visual content. Sometimes, the abrupt motion will

cause similar continuity values to those of hard CUTs. Most of

the times, the persistent slow motion will result in temporal pat-

terns over continuity signal curve similar to those of GTs. It

is difficult to distinguish the motion from the shot boundaries

only using color features, since the behaviors of content varia-

tion are similar. The possible ways to handle the difficulties in-

clude adopting motion-compensated features or incorporating

the features of motion activity.

III. SURVEY OF THE EXISTING APPROACHES

With the emergence of numerous SBD approaches, several

excellent surveys have been presented [8], [9] [15], [21]–[23]. In

this section, we do not attempt to present an exhaustive enumer-

ation of the existing methods but focus on categorizing and ana-

lyzing them in the guide of the formal framework of Section II.

Especially, some recent advances of SBD have been covered to

complement the previous surveys. The methods discussed here

will be categorized according to theirs roles in the formal frame-

work. The pros and cons of various methods are identified by

comparing the techniques of the same role, meanwhile, the op-

timal criteria of developing each separate module are discussed.

A. Methods of Visual Content Representation

There have been an intensive research on the representa-

tion approaches of visual content. Various techniques such

as pixel-based [24]–[26], histogram [15], edge [27], motion

[28], and even the mean and standard deviation of intensities

[22] have been proposed. The comparison and evaluation of

these methods are one of the focuses of previous surveys. In

[8], [9], [15], [21], the performances of various approaches

were evaluated. Different from other surveys, Lefèvre et al.

concentrated on comparing the computational complexity of

various approaches [23]. Several experimental evaluations

have shown that the simple histogram feature usually is able to

achieve a satisfactory result while some complicated features

such as edge can not outperform the simple feature [15], [22].

In the following, we will concentrate on analyzing the tradeoff

between the invariance and the sensitivity of various represen-

tation approaches.

The pixel-based method is the simplest method of con-

structing the mapping , which maps each image to itself.

Obviously, this is the most sensitive method, since it has cap-

tured any details of the frame. To speed the efficiency of pixel-

based methods, several methods, known as visual rhythm [29],

[30] or spatio-temporal slice [31], subsampled the pixels from

the particular positions of each frame to represent the visual

content. People have found that the pixel-based approach is

somewhat sensitive to local or global movement. To handle the

drawbacks, several variants of pixel-based method have been

proposed. For example, Zhang et al. proposed to smooth the

images by a 3 3 filter before performing the pixel comparison

[26]. Color histogram, which captures the ratio of various color

components or scales, is a popular alternative of the pixel-based

methods. Since the color histogram does not incorporate the

spatial distribution information of various colors, it is more

invariant to local or small global movements than pixel-based

methods. However, it is not expressive enough to distinguish

the shots within the same scene. A better tradeoff between

pixel and global color histogram methods can be achieved by

block-matching methods, in which each frame is divided into

several nonoverlapping blocks and the histogram feature or

others of each block are extracted [32].

The aforementioned features mainly reflect the color intensi-

ties of visual content. Features describing the structural infor-

mation of each frame are also proposed. For example, Zabih

et al. proposed an edge change ratio (ECR) method to perform

SBD [27]. In the so-called ECR method, Canny edge detector

is employed to calculate the edge map of each frame, i.e., the

structural representation of the visual content. Lienhart com-

pared the ECR-based hard CUT detection against histogram

based methods. The experiments reveal that ECR usually do not

outperform the simple color histogram methods, but are com-

putationally much more expensive [22]. Despite this depressing

conclusion, the edge feature finds their applications in removing

the false alarms caused by abrupt illumination change, since it

is more invariant to various illumination changes than color his-

togram. Kim et al. [33] and Heng et al. [34] independently de-

signed flashlight detectors based on the edge feature, in which

edge extraction was required only for the candidates of shot

boundaries and thus the computational cost was decreased.

Both the illumination and the structural layout are the impor-

tant aspects of visual content. For the invariance, we prefer to

the features invariant to illumination and structural layout, while

for the sensitivity, we prefer to the ones capturing the variation

of illumination and structural layout. It is difficult to develop

a single approach which is not only invariant to various distur-

bances but also sensitive enough to capture the details of visual

content. Integrating several complementary features to represent

the visual content is probably a promising way.

B. Methods of Constructing Continuity Signal

Here, we do not consider the representation of content and

the calculation of continuity together as what the previous sur-

veys do. We single out the calculation of continuity as a separate

problem. Furthermore, we classify the existing methods into two

categories according to whether they have incorporated the con-

textual information, i.e., whether or in (2). Gener-

ally, in most of the previous approaches, holds while in

several recent methods holds.

1) Pair-Wise Comparison Scheme With : The most

straightforward way to evaluate the continuity of and is

to directly compare their features

(5)
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Concretely, the method of constructing depends on what

kinds of content representation method adopted. In pixel-based

methods, is obtained by comparing the corresponding pixels

between and . With histogram methods, chi-square test

and intersection have been tried to calculate [15]. While in

edge-based methods, the matching ratio of edge maps of the

adjacent frames is used [27]. To obtain a motion independent

metric, the mapping can be constructed by block matching

[9], where is defined as the accumulation of the continuities

between the most suited block-pairs of and .

One major drawback of the pair-wise comparison scheme is

its sensitivity to noises. If a frame is distorted by noises, e.g.,

flashlight frame, the continuities between it and the two neigh-

boring frames are usually dramatically small. It is often mis-

taken for a shot boundary. There exist several techniques re-

fining the original continuity signal to suppress the disturbances

of various noises. Leszczuk et al. [35] and Zheng et al. [36]

proposed a so-called second-order difference method to con-

struct the discontinuity signal. Their experiments show that the

method can effectively reduce some disturbances of motion. In

[37], Jun et al. proposed to first smooth the original signal by

a median filter, and then subtract the smoothed one from the

original signal, finally obtain a clear measured signal. Actu-

ally, these techniques of refining the signal are some implicit

ways of using the contextual information of the nearby temporal

interval.

2) Contextual Information Scheme With : Hanjalic

pointed out that as much additional information as possible

should be embedded into the shot boundary detector to effec-

tively reduce the influence of the various disturbances [9]. For

example, not only should the variation between the adjacent

frames [i.e., in (2)] be examined but also the variations

within the temporal interval nearby [ in (2)] should be

investigated, i.e., contextual information. Only recently have

the methods explicitly using contextual information appeared

[13], [38], [39]. Cooper Summarized these ideas as a similarity

analysis framework to embed the contextual information [13].

First, a similarity matrix is generated by calculating the similar-

ities between every pair of frames in the video sequence. Next,

the frame-indexed score, i.e., the continuity signal, is computed

by correlating a small kernel function along the main diagonal

of the matrix. Designing an appropriate kernel function for

correlation is the critical issue within this method. Cooper

carried out a comparison of four kernel functions. However,

the experimental results were not well fit to the intuitional

assumption. In Section V, we will provide the physical inter-

pretation for each kernel via graph partition model. Meanwhile,

we will compare the approach proposed in Section IV with

the kernel correlating methods. Note that the methods with

embed the contextual information while constructing

the continuity signal, which is different from the pair-wise

comparison scheme which incorporates contextual

information by additional post-processing procedure.

C. Methods of Classification

In Section II, we have categorized the existing classification

methods into generative and discriminative methods. Here, to

emphasize the evolution track of SBD, we prefer another type of

taxonomy, namely rule-based methods and statistical machine

learning ones.

1) Rule-Based Classifiers: In rule-based classifiers, the clas-

sification function is usually defined as:

if

otherwise
(6)

where is a predefined threshold. In the above equation

holds for , which means only the amplitude of the conti-

nuity signal is considered. If the continuity value exceeds the

threshold , the classifier outputs 0 to indicate no transition oc-

curs between and , otherwise, the classifier yields 1 to de-

clare the occurrence of shot transition. In the early work, heuris-

tically chosen global thresholds were used. It is difficult to select

a threshold appropriate for various genres of videos. To ad-

dress this drawback, various local adaptive thresholds were pro-

posed [16], [40], [41]. The basic idea is to use a sliding window

going along the continuity signal and computing the threshold lo-

cally within the sliding window. The local adaptive scheme in-

corporates the contextual information by taking the local activity

of the content variations into account. The previous experiments

showed its superiority over the global thresholding scheme. The

related surveys with discussions on thresholding scheme can be

found in [8], [9]. It should be notified that, in rule-based methods,

the shapes of the classification hyperplane are actually manually

designed, which requires the developers to be familiar with the

characteristics of various genres of videos.

2) Statistical Machine Learning: There have been some re-

cent efforts treating SBD as a pattern recognition problem and

turning to the tools of machine learning. In Section II, the ma-

chine learning methods are divided into two categories, i.e.,

generative and discriminative classifiers. Generative classifier

meets the requirements of explaining the generation mecha-

nisms of shot transitions while discriminative classifier usually

seems to be a black box. Furthermore, generative classifier is

usually more convenient to incorporate additional information

(e.g., a prior information). For example, in [7], [9], and [18], the

shot duration was modeled and used to improve the detection

performance, while all of the SBD system based on discrimina-

tive classifiers only used the feature of content variation activity.

Nevertheless, generative methods usually highly depend on the

assumptions of prior information and the models of class condi-

tional distributions [19]. We have to make sure the correctness

of the model assumptions before using generative classifiers.

If the above requirements can not be satisfied, the discrimina-

tive classifier is preferred. Various discriminative approaches,

including K-means [42], KNN [13], and support vector ma-

chines (SVMs) [12], [43]–[45], have been employed to perform

SBD. With the statistical machine learning methods, the param-

eters of the models are chosen via cross validation processes and

the shapes of classification hyperplane are constructed automat-

ically during the training procedure. There are two key prob-

lems while utilizing machine learning methods. The first one is

how to construct the features for the classifiers. Cooper [13] and

Yuan et al. [12] used the continuity signals within the particular

temporal interval as the features for KNN and SVMs, respec-

tively. Similarly, Feng et al. [45] adopted the wavelet coefficient

vectors within a sliding window as the features of SVMs. The
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second key problem is how to obtain a well-chosen training set

with relatively balanced positive and negative examples, since

within each video sequence the number of negative examples

usually significantly exceeds that of positive examples. To ad-

dress the problem, Lienhart [20] used a dissolve synthesizer to

create an infinite amount of dissolve examples and produce the

nondissolve pattern set by means of so called bootstrap method.

Chua et al. [44] and Yuan et al. [12] adopted the active learning

strategy to handle the imbalance training data. Compared with

the thresholding schemes, the machine learning methods make

decisions via the recognition of the shot transition patterns in-

stead of the evaluation of the amplitude of content variations. It

is expected that full use of contextual information can be made

by machine learning methods.

D. Methods of Gradual Transition Detection

As mentioned in Section II, the detection of GTs is one of

the major challenges to the proposed formal framework. So far,

no techniques of GT detection have been able to achieve the

result comparable to that of CUT detection. Some of the existing

methods are designed to detect one specific editing effect, such

as FOI, wipe and dissolve, while others are developed to detect

several types of editing effects simultaneously. The relatively

comprehensive surveys can refer to [8] and [9]. In the following,

we present a brief overview of the existing methods for the sake

of completeness.

1) Fade Out/In: During the FOI, two adjacent shots are

spatially and temporally well separated by some monochrome

frames [20], whereas monochrome frames seldom appear

elsewhere. Lienhart proposed to first locate all monochrome

frames as the candidates of FOIs [22]. Thus, the key of the FOI

detection is the recognition of monochrome frames. For this

purpose, the mean and the standard deviation of pixel inten-

sities are commonly adopted to represent the visual content.

The effectiveness of monochrome frame detection has been

reported in [8], [36], and [40].

2) Wipe: For wipes, the adjacent shots are not temporally

separated but spatially well separated at any time [20]. An in-

teresting method for wipe detection is the so-called spatio-tem-

poral slice analysis [31]. For various styles of wipes, there are

corresponding patterns on the spatio-temporal slices. Based on

this observation, Ngo et al. transformed the detection of wipes to

the recognition of the specific patterns on spatio-temporal slices.

Other wipe detection methods such as [46] are also based on the

fact that two adjacent shots before and after wipes are spatially

well separated at any time.

3) Dissolve: In the process of dissolve, two adjacent shots

are temporally as well as spatially intermingled [20]. Hampapur

et al. [47] proposed an approach based on the production model

of dissolve, which highly depends on the definition of the chro-

matic scaling functions. Since the durations and mixing styles

of different dissolves vary abroad, it is difficult to define a single

scaling function suitable for all the dissolves. Furthermore, the

assumption that no motion exists during the dissolve proce-

dure is usually not satisfied. In the result, the actual perfor-

mance of the model-driven methods is not satisfactory. Another

popular dissolve detection method is based on the character-

istic of the change of intensities variance, i.e., the so-called

downwards-parabolic pattern, which was originally proposed

by Alattar [48]. In the result of thorough mixture of the two ad-

jacent shots, the variance of the pixel intensities will decrease

from the beginning of the dissolve and reach the minimum in the

middle of the transition. The detection of dissolve becomes the

recognition of the parabolic pattern on the variance curve. Sev-

eral improvements on this idea can be found in [31] and [40].

The relatively satisfactory results have been reported in [8].

4) General Approaches for Gradual Transitions: With

global color feature adopted, various types of GTs such as

wipes and dissolves exhibit similar characteristics over the

continuity signal curve. Therefore, it is possible to develop a

unified technique to detect several types of GTs simultaneously.

For example, the well-known twin-comparison technique, pro-

posed by Zhang et al. [49], is a general approach to detect

GTs. Nevertheless, it often truncates the long GTs because

of the mechanism of the global low threshold. In addition,

it has difficulties in reducing the disturbances of motion. To

overcome the shortcomings, Zheng et al. [36] proposed an

enhanced twin-comparison method, i.e., finite state automata

(FSA) method, in which motion-based adaptive threshold was

utilized. This method yielded the best performance of GT

detection on the benchmark of TRECVID 2004. Different from

CUTs, GTs span varying temporal duration, which makes it

difficult for a single fixed scale transition detector to detect all

the GTs. The success of the twin-comparison based methods

is somewhat due to the exploitation of the multiresolution

property of GTs, i.e., low threshold for high resolution and

high threshold for low resolution. Several other methods have

been proposed in the form of explicit temporal multiresolution

analysis. Lin et al. [50] and Chua et al. [44] exploited the

multiresolution edge phenomenon in the feature space and

designed a temporal multiresolution analysis (TMRA) based

algorithm which used Canny wavelets to perform temporal

video segmentation. The experimental results showed that the

method could locates CUTs and GTs in a unified framework.

However, as noted by the author, the Canny wavelet transform

is computationally intensive. Another multiresolution idea is to

adjust the sample rate of the video. For example, Lienhart [20]

employed a fixed scale transition detector to run on sequences

of different resolutions to detect dissolves. Similarly, Ngo [43]

reduced the problem of dissolve detection to a CUT detection

problem in a multiresolution representation. In Section IV,

we will introduce another GT detection method based on the

temporal multiresolution analysis of graph partition model [12].

IV. SBD SYSTEM BASED ON GRAPH PARTITION MODEL

In this section, we will introduce a unified SBD approach

based on graph partition model. The shorter versions of this work

have been separately published in [12], [51], and [52]. Here, we

do not intend to redescribe it but focus on demonstrating how

the criteria discussed in the above sections are carried out in an

effective framework. Since the previous work has shown that

color histogram is a suitable representation method of visual

content, here we directly adopt it to represent the content of each

frame. This section will focus on dealing with the remainder

three problems, i.e., the construction of continuity signal, the

classification of continuity values and the detection of GTs.
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Fig. 1. Left: A Graph with 14 nodes. Right: Visualization of the similarity matrix of the left graph. w is defined as the reciprocal of Euclidean distance of the
nodes i and j . The stronger the connectivity between i and j , the brighter the entry (i; j) is.

A. Graph Partition Model

In [51], we have proposed a graph partition model to per-

form temporal data segmentation. Video is a typical kind of

high dimensional temporal data, thus in [12] this model is used

to perform SBD. Before presenting the SBD framework, we

first introduce some prerequisite knowledge on graph partition

model, and then show how it is applied to fulfill temporal video

segmentation.

1) Segmentation by Graph Cuts: Given an undirected,

weighted graph with a set of nodes , a set of

edges . Assume , namely there are nodes in graph

. Let denote the weight of edge ,

which indicates the similarity between nodes and . The larger

the , the more similar between nodes and . To introduce

the graph partition model more clearly, we first define several

graph terminologies:

Definition 1: The similarity matrix is a symmetric

matrix, in which entry indicates the similarity of nodes

and .

Definition 2: The 1 which divides graph into subgraphs

and is defined as: .

Definition 3: The association of subgraph is defined as:

.

An example of graph and the related terminologies are illus-

trated in Fig. 1. As shown in the example, the reflects

the strength of the connectivity between the two subgraphs

and , while the and reveal the strength of

the connectivity within the subgraph and , respectively.

Given a data set, a graph can be constructed by treating each

sample as a node and linking an edge between each pair of

nodes. By defining the weight of edge as the similarity of sam-

ples, data segmentation can be formulated as a graph partition

problem. Various partition criteria can be defined. Initially,

minimum cut is proposed to be a partition objective function.

However, it usually leads to the skewed cut. Therefore, several

other objectives such as ratio cut [53], normalized cut [54] and

min-max cut [55] are proposed successively. From the point of

view of segmentation, min-max cut defined by (7), which tries

to minimize the association between the two subgraphs while

1To avoid confusion, we mean the abrupt shot transition by the capital word
“CUT,” and indicate the terminology of the graph theory by the lowercase word
“cut.”

Fig. 2. Full graph constructed from four successive frames. The solid lines rep-
resent the edges between the frames, and the dash lines indicate the positions of
the feasible cuts while the dot circle is a nonfeasible cut. For the full graph with
four nodes, there are ten possible cuts. However, to segment the video sequence
to some shots, there are only three of them reasonable.

maximize the association within each subgraph, gives the best

criterion

(7)

It is expected that the global minimum solution of

will yield the optimal partition. Unfortunately, the problem is

NP-complete because of its combinatory nature [55]. A popular

approach, namely spectral graph partition, has been proposed

to get an approximate optimal solution, which is based on the

spectral graph theory [54], [55]. Still it can not handle a huge

amount of data because of the intensive computation while per-

forming the matrix spectral decomposition.

2) Cuts With Temporal Constraints: When applied to the

problem of SBD, the graph partition model must satisfy some

temporal constraints. For example, the approach must guarantee

the temporal continuity of each shot. In other words, once two

un-adjacent frames are grouped into the same shot, any frame

between them must be clustered into the same one. Imposing

this temporal constraint on the model, a feasible partition can

only occur at one of the possible positions between any

two adjacent frames. Thus, as shown in Fig. 2, the size of fea-

sible set is reduced from exponential to . To get the op-

timal solution, we just need to compute the objective values of

the feasible cuts, and then select the one with minimum

objective via a linear search. Formally, we define as the

objective function of the th feasible cut

(8)
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Then the cut with minimal score is the optimal solution. By

imposing the constraints of temporal continuity, the time

complexity of the partition problem has been dramatically

decreased. The above procedure can only partition a graph into

two subgraphs. To segment data into more than two segments,

we can partition the subgraph recursively. Or alternatively,

when the score of a cut is sufficiently small, a boundary is

declared there.

3) Temporal Video Segmentation: Given a video sequence,

by treating each frame as a node and linking each other with an

edge, we can construct a weighted graph . In this way,

the SBD is formulated as a graph partition problem.

a) How to define ?: The weight of the edge be-

tween the th and the th frame should reflect the likelihood

that the two frames belong to the same shot. The more similar

the frames and are, the higher should be. On the other

hand, the larger the temporal distance between them, the lower

the probability that they belong to the same shot. In the extreme,

if a frame is too far from the other, it is impossible for them to be

in the same shot, that is, . Let be a bins color his-

togram of the th frame and adopt histogram intersection method

to measure the similarity, a reasonable definition of is

if

otherwise
(9)

where is a factor reflecting the similarity decaying with the

temporal interval increasing, and indicates the same meaning

with that of (2). We can find that the above definition of es-

sentially equals to imposing a gaussian filtering along the main

diagonal of the similarity matrix. With the restriction of , the

calculation of is restricted in a submatrix, which

we call active matrix. Therefore, the (8) can be simplified as

(10)

In the end, the construction method of the continuity signal is

depicted by the following equation:

(11)

Note that the value of is determined by the content

variation within a interval of range . Therefore, for a CUT

transition between and , the corresponding temporal

pattern over the curve of continuity signal is not an isolated

local minimum but a valley shape local minimum, in which the

scores from to gradually decrease to the minimum

and from to the score will gradually increases to the

normal values. As shown in Fig. 3, there is a sharp valley

corresponding to each CUT. The identification of CUTs can be

easily handled by the recognition of valleys.

b) The Algorithm: In summary, if the thresholding scheme

is adopted to detect CUTs, the video temporal segmentation al-

gorithm consists of the following steps.

Step 1) Given a video sequence, treat each frame as a node

and link each other by an edge, to construct a

weighted graph .

Step 2) Compute according to (9), obtaining a similarity

matrix .

Step 3) Calculate scores of the feasible cuts according

to (10).

Fig. 3. Segment of continuity signal calculated according to (10), in which
� = 150 and d = 5.

Step 4) Select feasible cuts whose scores are the local

minima of the corresponding neighborhoods within

a radius of .

Step 5) Declare the cuts whose scores are below a pre-de-

fined threshold as CUTs.

c) Analysis of the Algorithm: With the definition of active

matrix in size of , it is not necessary to involve all the en-

tries while computing each . With a video sequence of length

, the overall time complexity is with the overlap-

ping of two successive active matrices considered. Compared

with the spectral graph partition methods, it is much more effi-

cient.

Another prominent advantage of the approach is the invari-

ance. Instead of pair-wise comparison with , the graph

partition method performs boundary detection by considering

the feature variations in a local neighborhood, i.e., the contex-

tual information with . As shown in Fig. 4, there are three

flashlights occurring within the video sequence. In the pair-wise

comparison method with , the three corresponding sharp

valleys are usually classified as shot boundaries because of the

low amplitudes comparable to those of CUTs. In the result, a

lot of false alarms are caused. While in the proposed approach,

the strong connectivity between the frames before and those

after the flashlight makes it unlikely to separate the sequence

to two parts. There is no distinct undulation on the continuity

signal, and therefore no specific flashlight detector is needed.

Besides the disturbances of abrupt illumination change, the ap-

proach is also invariant to other abrupt noises. The experiment

in Section V will further confirm this observation.

B. Support Vector Machine Active Learning

Having obtained the curve of the continuity signal, the shot

boundaries can be identified by thresholding scheme as what

most of the existing methods do. However, the thresholding

method has several difficulties in achieving satisfactory results.

First, the chosen threshold usually highly depends on the genres

of videos. The intensities of some content variations caused by

noises have exceeded those of shot transitions. In the result, any

chosen global threshold can not distinguish the boundaries and

nonboundaries successfully. Second, a single threshold can not

make full use of the contextual information, such as whether

the signal variation is a sharp valley or a gentle concave. This

is significantly important to classify CUTs from GTs, or GTs

from scenes with motion. Third, even in the adaptive thresh-

olding scheme, some parameters are required to be heuristically
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Fig. 4. (a)Video sequence with three flashlights occurring. (b) Visualization of the corresponding similarity matrix, in which the dash rectangle indicates the range
of active matrix. (c) Continuity signal obtained by the comparison between the successive frames. (d) Continuity signal obtained according to (10).

determined, which still depend on the genres of videos. There-

fore, the thresholding scheme is essentially a procedure of man-

ually constructing the classification hyperplane, it requires the

developers to be familiar with the characteristic of videos. In

the following, we will introduce how to apply machine learning

methods to address the drawbacks of thresholding scheme. To

simplify the problem, we will focus on the CUT detection here,

the method of GT detection will be presented in the next sub-

section.

1) Feature Construction: With the continuity signal pro-

duced by graph partition model, each CUT boundary corre-

sponds to a local minimum on the curve. However, not every

local minimum is a CUT boundary. Some of the local minimum

are caused by GTs, and others result from the various distur-

bances. Only by evaluating the magnitudes of local minima can

not successfully distinguish boundaries and nonboundaries.

By observing the signal curves, we find that the valleys corre-

sponding to the boundaries, especially for CUTs, are usually

regular and somewhat symmetric, while valleys caused by

disturbances are not. That is, the boundaries and nonboundaries

can be better classified by recognizing the shapes of corre-

sponding valleys. Formally, the shape of the valley centering at

can be characterized by the feature vector

(12)

where usually equals the variable of (11), since a CUT

boundary between and affects the signal values at most

to before and at most to after .

2) Support Vector Machine: As for the selection of clas-

sifiers, SVMs is preferred, not only for its solid theoretical

foundations but also for its various empirical success [56].

SVMs is an approximate implementation of the Structural

Risk Minimization (SRM) induction principle. The main idea

behind SVMs is to separate classes with a surface with maximal

margin between them so as to minimize the risk of over-fitting.

Thus, SVMs is not only with simple geometric explanation but

also with an elegant formulation as a quadratic optimization

problem. Because of the convexity of the quadratic problem

with linear and box constraints, the global optimum solution

can be guaranteed. There are two attractive properties for the

optimum solution in dual representation. First, only the support

vectors appear in the solution. Second, the support vectors only

appear in the form of dot products, which makes the kernel

trick possible to handle the curse of dimensionality. The final

decision function output by SVMs is in the following form:

(13)

in which the symbols are of the same definitions with [56]: and

represent the input vector and support vector, respectively;

indicates the number of support vectors; the and are the

Lagrange multiplier and class label corresponding to , respec-

tively; is the kernel function. Concretely in our problem, the

mapping from the continuity value space to the decision space

is defined as

(14)

3) Active Learning Strategy: To train an SVMs model, we

have manually annotate a training set consisting of positive ex-
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Fig. 5. Left: Pattern of a CUT boundary on the similarity matrix. Middle: Pattern of a GT boundary on the similarity matrix.Right: View of the middle pattern at
a lower resolution.

amples and negative examples. In the annotation procedure, we

usually explicitly identify the positive examples while implic-

itly consider all the other intervals as negative examples. This

leads to an imbalanced training set consisting of limited posi-

tive examples and infinite negative examples. It is impossible

to directly train SVMs model on this raw training set. First, the

training time is unacceptable with the large training set. Second,

SVMs usually can not converge to a reasonable model with the

severely imbalanced training set. To speed up the training pro-

cedure of SVMs, Schohn et al. [57] proposed an active learning

method with SVMs. The basic idea is based on the sparseness

of the solution to SVMs model. As shown in (14), the decision

function is determined by the support vectors, and the other

training examples which are far from the hyperplane do not

have influence on the position and shape of the decision func-

tion. Therefore, Schohn proposed to select the examples lying

closest to the SVMs’ dividing hyperplane as training set. The ex-

periments show that the method offers better performance with

fewer training data.

Here we adopt a heuristic active learning strategy to handle

the imbalanced training set. According to the feature construc-

tion method, CUTs are distinguished from the others via the

shapes of valleys. We have observed that all the intervals corre-

sponding to the shot boundaries are in the shapes of valleys, but

not all of the valleys are caused by shot transitions. Therefore,

the intervals in valley-shape are assumed to lie closest to the di-

viding hyperplane and should be selected as training examples.

Formally, the requirement for the selected signal intervals is

(15)

where is a pre-defined threshold that guarantees the local

minimum is sufficiently small. All the intervals satisfying

(15) are collected. The real boundaries are labeled as positive

examples, and the others are labeled as negative examples. To

achieve the utmost performance, the threshold should be

selected carefully. The larger is, the more negative ex-

amples are in the training set. If is too large, the number

of negative examples will significantly exceed that of positive

ones. Inversely, if is too small, many of positive exam-

ples will be removed from the training set. A suitable method of

selecting is cross validation.

C. Temporal Multiresolution Analysis

In the previous sections, we have introduced how the graph

partition model and the SVMs can be applied to detect CUTs.

GTs exhibit distinct characteristics from CUTs. Several specific

techniques have to be designed to handle the challenges of GTs.

1) The Problem: For CUT, the transition occurs between two

adjacent frames belonging to the first shot and the second one,

respectively. Due to the characteristic of abrupt content varia-

tion, there is a clear correspondent “chessboard” pattern on the

similarity matrix, as shown in Fig. 5. Thus, with single values

of and , it is sufficient to detect all of CUTs. Different from

CUTs, GTs are more difficult to detect. On the one hand, GTs

may span a varying temporal length. It is difficult to cover all

the situations with single and . On the other hand, the content

variation between adjacent frames may be rather small, yielding

a blurry pattern on the similarity matrix, as shown in Fig. 5. In

the result, the content continuity signal does not vary signifi-

cantly enough to reflect the existence of shot transitions. The

above characteristics of GTs determine that we have to design

distinct active learning, feature construction and classification

methods from those of CUTs.

2) Temporal Multiple Resolution Analysis: As shown in

Fig. 5, although GT is not observable at a high resolution, it

can be easily detected at a lower resolution. This phenomenon

has been observed and exploited in the form of multiresolution

analysis in [20], [43], [44], [50]. The objective of multires-

olution analysis is two-fold. First, with the multiresolution

analysis, it is possible to detect GTs of various durations with

the feature vectors of fixed length, which will facilitate the

training of SVMs. Second, with the fusion of multiresolution

results, it is expected to boost the detection performance. Gen-

erally speaking, the multiresolution analysis can be performed

at every phase of the formal framework. For example, the most

straightforward way is to adjust the sampling rate of the video

sequence [20], [43]. Alternatively, it is can also be performed

by constructing the continuity signals in multiple scales [50].

Finally, multiresolution can also be carried out by constructing

feature vectors of multiple scales from a single continuity

signal. In the following, we will introduce two schemes corre-

sponding to the latter two levels.

a) Construction of multiresolution graph: In this method,

with the variation of the sampling rate of video sequences, mul-

tiple continuity signals at several resolutions are calculated. Let
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Fig. 6. Three matrices areW ,M , V , respectively, where d = 5 and � = 7. The operation “�” means the Hadamard multiplication. The white blocks in
M represent entries 1. The first two matrices are square ones of width 70, while the last one is square matrix of width 10.

be the sampling rate of frames, the score of the

th feasible partition at the th resolution is defined as follows:

(16)

The above equation shows that the algorithm samples every

frames in a larger range of

instead of involving all the frames in a neighborhood of

. With the varying, multiple temporal resolution

graphs can be constructed. Let denote defined in

(16), the shape of the valley centering at over the th resolution

signal can be characterized by the feature vector

(17)

Note that for different , the feature vector is with the same

length, i.e., . While implementing the above algorithm, we

define a square selective matrix of width , whose

entries can only equal 0 and 1, 0 indicating the the corresponding

frame is not sampled, 1 representing the frame sampled. Let

be the square submatrix of , centering at and with the width

. To calculate at the resolution , the algorithm

performs Hadamard multiplication of and , and results

in a new matrix , in which the zero entries correspond to the

nonsampled frames. Ignoring the 0 entries, can be restricted

to an equivalent but smaller square matrix of width .

The above process is depicted in Fig. 6. Via this operation, the

temporal multiresolution analysis problem is transformed to the

spatial multiresolution analysis on the similarity matrix.

b) Construction of multiresolution score: In the above ap-

proach, for each , a continuity signal is obtained. For each GT

candidate, there is a corresponding feature vector at the curve

of each resolution. However, the adjustment of sampling rate of

frame sequences is a double-edged sword. With the lower sam-

pling rate, the variations of continuity signal corresponding to

the gradual transitions are made prominent. In the result, the

GTs are easier to be observed. However, the variations caused

by motion are also enlarged and more difficult to distinguish

from GTs. Without effective ways to reduce the disturbances

of motion, the above multiresolution analysis approach will not

yield satisfactory results. An alternative is to keep the sampling

rate of frame sequences unchanged but vary the sampling rate

of the continuity signal to construct multiresolution feature vec-

tors. Here, let be the sampling rate of continuity signal, the

feature vector centering at of the th resolution is defined as

(18)

3) Fusion of Multiresolution Analysis: The effectiveness of

the information fusion has been demonstrated in various appli-

cations especially in content analysis of multimedia [58], [59].

Generally, there are two fusion schemes, namely early fusion

and late fusion. It is difficult to prove one is superior to the other

with theoretical analysis. However, it is possible to evaluate and

compare them with experiments. For example, Snoek et al. com-

pared them in the semantic video analysis [59]. Similarly, here

we present the two fusion schemes and will evaluate them in

Section V. Based on the statistical analysis of several videos,

we find that almost all of GTs span the lengths from 3 to 100

frames. Therefore, with and , the feature

vector will spread long enough to cover most of GTs.

a) Early fusion strategy: In the early fusion, the feature

vectors characterizing the same candidate (with the same ) at

different resolutions (with different ) are concatenated and

form a single feature vector. Since only one kind of feature,

only one learning phase is required and a unique SVMs model

is obtained. Formally, the candidate centering at is described

by the following multiresolution representation:

(19)

b) Late fusion strategy: In contrast to the early fusion,

where features are combined into a multiresolution represen-

tation and a unique model is trained, late fusion learns a model

for each resolution. Then the outputs of the separate models are

combined into the final decision, which can be achieved by var-

ious ways. In this paper, the final decision is obtained by the “OR”

voting fusion of the outputs of the models at different resolutions.

That is to say, once one model considers a candidate as a GT,

the candidate will be declared as a true GT. Compared to the

early fusion, the late fusion requires more learning processes.

4) Active Learning for Gradual Transitions: The implemen-

tation of the active learning idea for GTs is not as simple as that

for CUTs as shown in (15). Here, the temporal intervals within

which all the score values are below are first located

(20)
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Fig. 7. From left to right: examples of patterns for cut, dissolve, and FOI on the similarity matrix.

in which is a pre-defined threshold with the similar role to

of (15). Then the local minimum of each selected interval

is determined

(21)

Finally, centering at local minimum , the multiresolution fea-

ture vectors are constructed according to (17) or (18). If the

classifiers consider the feature vectors centering at a GT, the

and will be declared as the start and the end frames

of this GT.

D. Overview of the Whole System

Until here, we have to clarify that the above framework can

not handle the detection of FOIs. During the process of FOIs,

the first shot fades out and turns into a sequence of monochrome

frames and then gradually the next shot fades in. As shown in

Fig. 7, the FOIs patterns on the similarity matrix are different

from those of CUTs and the other types of GTs. For CUTs and

dissolves, there are two segments with coherent color feature

before and after the shot transitions, while for FOIs there are

three segments with coherent color feature, i.e., besides the two

adjacent shots, an additional segment of monochrome frames

between them. In the result, there are usually two “valleys” cor-

responding to an FOI. If we adopt the same detection approaches

to those of CUTs and GTs, each FOI is usually classified as

two shot transitions. Therefore, before applying the graph parti-

tion framework, specific technique is required to detect FOIs. In

our implementation, an FOI detector based on the monochrome

frame recognition is adopted [52]. To demonstrate the roles of

each modules in the whole system, we will present a brief intro-

duction to the system architecture. As shown in Fig. 8, the SBD

is conducted by a hierarchical classification architecture. First of

all, an FOI detector is employed to recognize the FOIs. Second,

feature vectors for CUTs are constructed based on the graph par-

tition model, and then are used to train an SVMs model or to be

classified as CUTs and non-CUTs with the trained model. With

all the FOIs and CUTs detected, multiresolution feature vectors

are constructed to detect GTs. With the hierarchical classifica-

tion procedure, all types of shot boundaries can be detected.

V. EXPERIMENTS

In this section, we will carry out several comparison experi-

ments on the platform of TRECVID. The first four are designed

to evaluate the separate functional component of the proposed

framework. The criteria discussed in the previous sections are

Fig. 8. Flowchart of the proposed SBD system.

verified. The last experiment is used to evaluate the whole pro-

posed SBD system.

A. Experimental Setup

Both the annotated video collections and evaluation tool are

provided by TRECVID. For the convenience of experiments,

the video collections and evaluation criteria are slightly different

from the original settings of TRECVID.

1) Data Corpora: All the 2003, 2004 and 2005 TRECVID

test collections for SBD task are adopted. Totally, there are 31

videos in MPEG-1 format. For the details of each video, please

refer to the homepage of TRECVID [6]. The summary of the

collections of each year is listed in Table I. The original test

collections for each year are labeled as “D2003,” “D2004,” and

“D2005,” respectively. Since the detections of CUTs and GTs

interact, to reduce the factors that should be considered, some

of the experiments are carried out to fulfil CUTs detection only.

This helps to obtain accurate conclusions. For this purpose,

we create another video collections by re-editing all the GTs

to CUTs. Those collections are called “D2003_NO_GT,”

“D2004_NO_GT,” and “D2005_NO_GT,” respectively.

2) Evaluation Criteria: The output of the detection system

is in XML format, which will be evaluated by the tool provided

by TRECVID. Similar to other information retrieval task, the

performance is evaluated by recall and precision criteria, which

represent the fraction of relevant documents retrieved and the

fraction of retrieved documents that are relevant, respectively.
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TABLE I
SUMMARY OF THE TEST COLLECTION FOR SBD TASK IN TRECVID 2003–2005

Fig. 9. Evaluation of content representation methods. (a) Performance of CUTs detection using various features. (b) Performance of GTs detection using various
features.

For each approach, one or several parameters are varied and

evaluated to obtain a curve of precision versus recall. The per-

formances of different algorithms are compared via the preci-

sion versus recall curves. Sometimes, to rank performance of

different algorithms, measure, a harmonic average of recall

and precision is used. measure combining recall and preci-

sion with equal weight is in the following form:

(22)

B. Performance Comparison

Two types of experiments are carried out, namely module

evaluation and system evaluation. For module evaluation, the

specific module varies in different approaches while all the other

modules of the system retain the same implementation. In this

way, the differences between the compared systems are guaran-

teed to be caused by the difference of the evaluated module. For

system evaluation, the proposed system is compared to those of

the other participants of TRECVID 2005.

1) Visual Content Representation: As for the method of vi-

sual content representation, it has been thoroughly discussed

and evaluated in the previous work [15]. Here, we focus on the

evaluation of tradeoff between invariance and sensitivity. For

this purpose, global color histogram and block-based color his-

togram is compared. In the block-based histogram, each frame

is first divided into several blocks and the color histogram fea-

ture is extracted block by block. Totally, six kinds of feature are

extracted.

RGB48 in RGB space, 16 bins for

each channel

RGB4_48 2 2 blocks based RGB48

HSV36 in HSV space, un-uniform

quantization [60]

HSV4_36 2 2 blocks based HSV36

RGB16_48 4 4 blocks based RGB48

RGB64_48 8 8 blocks based RGB48

With the above content representation methods, the perfor-

mances of CUTs detection and GTs detection are evaluated,

respectively, as shown in Fig. 9. For CUTs detection, the

algorithm is evaluated on both the “D2003_NO_GT” and

“D2004_NO_GT” collections. The graph partition model is

used to construct continuity signal and thresholding scheme to

make decisions. In the implementation, a global threshold is

directly compared with the score curve and if the valley is below

the threshold, a CUT is declared. By varying the threshold, the

precision versus recall curve is obtained, as depicted in the (a)
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Fig. 10. Different kernels for SBD via kernel correlation (r = 5). (a) Scale
space analysis. (b) Diagonal cross similarity. (c) Cross similarity. (d) Full
analysis.

of Fig. 9. For GTs detection, four kinds of features are evalu-

ated. The experimental setting is the same to the “ ”

as explained in the following Section V-B-2. By adjusting

the ratio of misclassification penalties between positive and

negative examples, the recall versus precision curves can be

obtained as shown in (b) of Fig. 9. The result of CUTs detec-

tion indicates that the color space and quantization schemes

affect the performance little, while the block based features

outperform the global ones. That is because the global feature

is not distinctive enough to capture the transitions between the

same scene. When the number of blocks increases from 16 to

64, the performance does not show obvious improvement. The

result of GTs detection shows that when the feature varies from

coarse to fine, the performance first increases then decreases.

The RGB4_48 achieves the best performance. We investigate

the outputs of various features and find that with finer features

such as RGB16_48 and RGB64_48 the system is too sensitive

to the disturbances of motion. That is why the performance of

RGB64_48 is worse than that of RGB4_48. This experiment

has shown the importance of the tradeoff between invariance

and sensitivity. In the following experiments, the “RGB4_48”

feature is adopted.

2) Continuity Signal Construction: Besides graph parti-

tion model, five other related approaches are implemented

to perform CUTs detection and evaluated on both the

“D2003_NO_GT” and “D2004_NO_GT” collections. They

are the following.

Pair-wise Pair-wise comparison of the successive

frames.

Min-max cut The algorithm proposed in Section IV.

Scale space Kernel correlation [13] by Fig. 10(a).

Diagonal CS Kernel correlation [13] by Fig. 10(b).

Cross S Kernel correlation [13] by Fig. 10(c).

Full S Kernel correlation [13] by Fig. 10(d).

Fig. 11. Performance evaluation of the construction methods of continuity
signal.

Each of the above methods yields a curve of continuity

signal. For each curve, a global threshold is employed to

determine whether a CUT occurs. Varying the thresholds, the

corresponding precision versus recall curves are obtained, as

shown in the Fig. 11. The “Pair-wise” performs worst. It does

not incorporate the contextual information while constructing

the continuity signal. It can not successfully distinguish CUTs

from other disturbances like flashlights. All the other five

approaches via multipair comparison outperform the pair-wise

comparison method. The score of “Scale space” kernel cor-

relation actually is the mean of the frame differences in the

neighborhood of the current position. With this smoothing

effect, a lot of local minima on the curve are eliminated, and

thus the “Scale space” gets a better performance compared to

“Pair-wise” method. Both the “Diagonal CS” and the “Cross

S” kernels emphasize the dissimilarity between the different

shots. They evaluate the current score by incorporating multi-

pair comparisons of the frames before and after the position.

They performs almost the same, but the “Diagonal CS” is more

efficient since fewer comparisons are performed. The “Full S”

somewhat outperforms the proposed “Min-max cut” method

and both of them perform best. This is not surprising, since

they both consider the similarity between different shots and

within the the same shot. In the perspective of graph partition

model, the “Full S” is an alternative definition of min-max cut

objective

(23)

Note that our experimental result is inconsistent with that of

Cooper [13], in which the author claims that the “Full S” per-

forms worst. However, we believe that our results are more reli-

able. First, we evaluate them on a more delicate data set without

GTs. Second, we design a more straightforward experimental

setup, in which a simple histogram feature and thresholding

method are adopted, while Cooper has employed multiscale fea-

tures and KNN to classify CUTs and non-CUTs.
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Fig. 12. Evaluation of multiresolution analysis and fusion methods in four different experimental settings: (a) “mrg” construction of the feature vectors and early
fusion strategy. (b) “mrg” construction of the feature vectors and late fusion strategy. (c) “mrs” construction of the feature vectors and early fusion strategy. (d)
“mrs” construction of the feature vectors and late fusion strategy. For each setting, four approaches are compared, and the recall versus precision curve of the GT
detection of each approach is depicted.

3) Multiresolution Analysis: Here the experiments aim to

figure out whether the multiresolution analysis is effective

while detecting GTs, and further which setting of construc-

tion methods and fusion strategies is the most effective one.

LibSVM is adopted to train the -SVC model of the GTs

detection [61]. Radial basis function (RBF) kernel is used in

the SVMs model, and the best parameter settings are chosen

via cross-validation processes. The models are trained on the

“D2003” and the “D2004” collections, and then are tested on

the “D2005” collections. The two construction methods of

multiresolution feature vectors, i.e., Multi-Resolution Graph

(abbreviated as “mrg”) and Multi-Resolution Score (abbre-

viated as “mrs”) are implemented. For each construction

method, the two fusion strategies, namely early fusion and late

fusion, are evaluated. The name of each experimental setting

is represented as the combination of construction methods,

fusion methods and resolutions adopted. For example, with

“ ,” we mean that the “mrs” construction method,

late fusion and are adopted, but with “ ,”

we mean the “mrg” construction method, early fusion and

are adopted.

While training the SVMs model, by adjusting the ratio of mis-

classification penalties between positive and negative examples,

the recall versus precision of the output can be controlled. Con-

cretely, with lower penalty ratio, the precision is preferred to re-

call, otherwise, with higher penalty ratio, the recall is preferred

to precision. The comparison performances of the four exper-

imental settings are depicted in Figs. 12 and 13. As shown in

the Fig. 12, in each setting, the fusion of reso-

lutions outperforms the methods with single resolution, which

shows that the multiresolution analysis and fusion is effective to

boost the performance of GT detection. As the Fig. 13 shows,

the four settings of multiresolution analysis yield almost the

equal performances. On the one hand, with the same construc-

tion method, the late fusion method will yield recall-leaning re-

sult compared to the early fusion one. On the other hand, with

the same fusion method, the two construction methods yield al-

most the same areas under the recall versus precision curves.

Therefore, the construction methods do not cause distinct dif-

ferences. The fusion strategy can be used to handle the tradeoff

between recall and precision. If high recall is preferred, the late

fusion can be adopted, otherwise, the early fusion is preferred.
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Fig. 13. Evaluation of the four different experimental settings. For each setting,
the � 2 f1; 3; 5g resolutions are adopted, and the recall versus precision curve
of the GT detection of each approach is depicted.

4) SVMs Active Learning: The objective of the experiments

here is two-fold. First, the comparison between thresholding and

SVMs is carried out to find out whether the machine learning

method outperforms the ad hoc thresholding scheme. Second,

the comparison between nonactive learning and active learning

is performed to evaluate the effectiveness of active learning.

Therefore, three approaches are implemented and compared:

Threshold Global threshold for classification.

SVM_random in (15).

SVM_active in (15).

The continuity signal is constructed by graph partition model,

and the above three approaches are used to classify CUTs

and non-CUTs, respectively. The SVMs models are trained

on “D2003_NO_GT” and “D2004_NO_GT” collections.

They are tested on the “D2005_NO_GT” collections. For the

Threshold method, a global threshold is tuned to obtain the

recall versus precision curve, and for the two SVMs-based

methods, similar to the GT detection, the penalty ratio is tuned

to get the recall versus precision curve. As shown in Fig. 14,

both the SVMs-based approaches outperform the Threshold

method. And the SVM_active method achieve almost equal

performance to the SVM_random method. Furthermore, as

shown in the Table II, the SVM_active requires fewer training

examples than SVM_random. Therefore, on the one hand, the

training efficiency of the active learning method outperforms

the nonactive learning one. On the other hand, there are fewer

support vectors in the model for active learning, which will

speed up the classification efficiency.

5) System Evaluation: In 2005, the proposed system of

Section IV participated in the evaluation of SBD of TRECVID

2005. Trained on the “D2003” and the “D2004” collections,

and tested on the “D2005” collections, via adjusting the penalty

ratio of SVMs, ten runs were submitted. Besides our system, 20

Fig. 14. Performance evaluation of SVMs active learning.

TABLE II
COMPARISON OF THE EFFICIENCIES BETWEEN NONACTIVE LEARNING AND

ACTIVE LEARNING WITH SVMs

other systems all over the world participated in the evaluation.

There were totally 165 runs submitted. The details of the other

approaches and the evaluation results can be found in the online

proceeding of the Workshop of TRECVID 2005 [6]. The top 30

results of the evaluation are summarized in Table III. Ranked

by measure, all the ten runs whose “SysID” are with the

prefix “thu” are in the top 30 runs in detecting all the transitions.

According to the other evaluation criteria, our system is also

among the best.

VI. CONCLUSIONS AND FURTHER DISCUSSIONS

We have conducted a formal study of SBD problem in this

paper. A general formal framework is proposed. Several major

challenges to the framework are also identified. Furthermore,

according to the formal framework, a comprehensive review of

existing techniques is presented. The representative approaches

are categorized and compared according to their roles in the

formal framework. Optimal criteria for each module of the

framework are also discussed, which will probably provide

practical guide for developing novel methods. As an example,

we present a unified SBD system based on graph partition

model. Finally, we carry out extensive experiments on the

platform of TRECVID. The experiments not only verify the op-

timal criteria identified above, but also show that the proposed

system is among the best in the evaluation of TRECVID 2005.

In the above, SBD has been formulated in the pattern recogni-

tion perspective. The connection between SBD and some other

pattern classification problems has been naturally established.

Thus, they can benefit from each other. Here, we will present

a rough discussion on what SBD can learn from similar prob-

lems of the related fields. The three mappings identified by the
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TABLE III
SBD RESULTS AT TRECVID 2005. TOP 30 (OUT OF 165) RUNS AT EACH OF THE FOUR EVALUATION MEASURES ARE LISTED IN DECREASING F MEASURE

ORDER. THE “SysID” OF THE TEN RUNS OF OUR SYSTEM IS WITH THE PREFIX “thu,” AND THE “SysID” OF THE OTHER RUNS ARE MARKED WITH NIST MARKER

CONVENTIONS. THE RUNS WITH THE ID OF “thu” ARE HIGHLIGHTED WITH GRAY CELL BACKGROUND

formal framework are in fact the core research problems of pat-

tern recognition, which have undergone relatively mature evo-

lution. First, for example, the methods of visual content rep-

resentation and similarity measure have been thoroughly in-

vestigated in the field of content-based image retrieval (CBIR)

[62], yet only few of them have been tried and evaluated in

the problem of SBD. Second, via the construction of continuity

signal, video sequence is transformed from a three dimension

signal to a one dimension signal. The shot transitions are identi-

fied by the recognition of the shape of the one dimension signal.

Similar problems exist in the related fields, such as temporal

data segmentation [63], signal segmentation [64], and image

segmentation [65]. Take image segmentation for example, it has

attracted intensive research in the field of computer vision. Var-

ious approaches, such as JSEG [66], Mean Shift [67], and graph

partition model [53], [54], [68], have been proposed. The princi-

ples underlying these techniques can be transformed to serve the

purpose of SBD. In fact, the method introduced in Section IV

is originally inspired by the graph-based image segmentation

method of normalized cut [54]. Finally, the statistical machine

learning approaches have been popular and shown some superi-

ority in other pattern recognition problems. However, in the field

of SBD, the efforts to replace thresholding by machine learning

have begun only recently. More importantly, machine learning

perhaps will provide powerful tools of information fusion for

multimodalities SBD techniques. The importation of these ideas

may be novel drives to the advance of SBD.
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