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The first-order predicate calculus with infinitely long expressions is being

developed by Berkeley school. We shall give a formal system for this calculus

and prove a ” Main Theorem ” which implies the completeness theorem in

Godel’s sense, and the cut-elimination theorem, Lowenheim-Skolem theorem

and Craig’s interpolation theorem.
Our formal system will be obtained from Gentzen’s calculus $LK^{1)}$ by ex-

tending the concepts ‘ formula ‘ and ‘ sequent ‘, and by moderating the restric-

tion on eigenvariables. This moderation of the restriction on eigenvariables

plays an important r\^ole in making our system complete. We shall first ex-
plain by way of introduction, our moderation of the restriction on eigenvari-

ables in case of $LK$.
One of the authors had a good chance to make a sojourn in Berkeley in

1960 where he could attend the seminar on this subject. He wishes to express

his thankfulness to Professors Tarski, Henkin and their colleagues, for their
kindness, and especially to Prof. Dana Scott for his stimulating discussions.

\S 1. A moderation on the restriction on eigenvariables in the ordinary

predicate calculus.

In the Gentzen calculus $LK$, the restriction on eigenvariables is stated as
follows:

The eigenvariable of an inference ‘ introduction of $\forall$ in succedent ‘ or ‘ in-

drroduction of $\exists$ in antecedent’ shall not occur in its conclusion.

Now we shall consider the new calculus obtained from $LK$ by replacing

the restriction on eigenvariables by the following one:
Every formal proof satisfies the following three conditions:
1) The principal formulae of inferences which have a same eigenvariable

are all one and the same formula.
2) For each free varable, a non-negative integer named the height can be

1) Cf. Gentzen [2]. English terminologies on $LK$ will be used, for most part,

according to the usage in Kleene’s text book [6].
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uniquely defined as follows:
The height of the free variable occurring in an inference as the eigen-

variable is $n+1$ , where $n$ is the greatest number of the heights of those free

variables which are contained in the principal formula. If a free variable
does not occur in any inference as the eigenvariable, the height of the free
variable is $0$ .

3) Each variable occuring in an inference as the eigenvariable shall not
occur in the endsequent.

This can be shown as follows. By Hilbert-Bernays’ second $\epsilon- theorem^{2)}$ , we
have only to prove that our endsequent is provable in the $\epsilon$-calculus obtained

from $LK$ by adding e-terms and ‘
$\epsilon$-axioms ‘ of the form

$\mathfrak{A}(t)\rightarrow \mathfrak{A}(\epsilon x?1(x))$ ,

where $t$ is an arbitary term and $ex\mathfrak{A}(x)$ is an arbitary $\epsilon$-term. To prove this,

we have only to substitute an appropriate $\epsilon$-term for each free variable occur-
ing as the eigenvariable of an inference throughout our formal proof and add

e-axioms adequately.

\S 2. System of the first-order predicate calculus with infinitely long ex-
pressions.

In what follows, we always assume the axiom of choice, and consider a
fixed strongly inaccessible number $\Omega_{0}$ .

1. Formulae in our calculus are formed from simpler ones by means of

the following operations:

1) the formation of the negation 7 $\mathfrak{A}$ of a formula $\mathfrak{A}$ ;

2) the formation of the disjunction V $[\{\mathfrak{A}_{\lambda}\}_{J<\alpha}]$ simply denoted by
)

$<v_{a}\mathfrak{A}_{\lambda}$ , of

a finite or transfinite well-ordered sequence of formulae $\{\mathfrak{A}_{\lambda}\}_{\lambda<a}(\alpha<\Omega_{0})$ ;

3) the existential quantification

$(\exists x_{0}x_{1}\cdots x_{\lambda}\cdots)?l(x_{0}, x_{1}, \cdots , x_{\lambda}, \cdots)$

of a formula $\mathfrak{A}(\subset l_{0}, a_{1}, \cdots , a_{\lambda}, \cdots)$ over a finite or transfinite well-ordered sequence

of distinct free variables $\{a_{\lambda}\}_{<\alpha},$ , and with respect to a sequence of distinct

bound variables $\{x_{\lambda}\}_{\lambda<\alpha}(\alpha<l2_{0})$ .
Prime formulae in our case consist of a predicate symbol followed by a

finite or transfinite well-ordered sequence of terms whose ordinal type is less

than $\Omega_{0}$ , where terms mean free variables, as long as no function symbols are
used.

Small German letters stand for well-ordered sequences of terms or of $dis\rightarrow$

tinct variables. For example, if { stands for a sequence of terms $t_{0},$ $t_{1}$ , $\cdot$ .. , and

2) Cf. Hilbert-Bernays [4].
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$\mathfrak{x}$ stands for a sequence of bound variables $x_{0},$ $x_{1},$
$\cdots$ , then $?1(t)$ means $\mathfrak{A}(t_{0}, t_{1}, \cdots)$

and $\exists \mathfrak{x}?I(\mathfrak{x})$ means $(\exists x_{0}x_{1}\cdots)\mathfrak{A}(x_{0}, x_{1}, \cdots)$ .
Sequents in our calculus are formal expressions of the form $\Gamma\rightarrow\Theta$ , where

each of $\Gamma$ and $\Theta$ is an arbitary well-ordered sequence of zero or more formulae

whose ordinal type is less than $\Omega_{0}$ .
2. POSTULATES FOR THE PREDICATE CALCULUS WITH INFINITELY LONG $EX^{4}$

PRESSIONS.

2.1. Axiom schema.
$\mathfrak{D}\rightarrow \mathfrak{D}$

2.2. Rules of inference.

2.21. Logical rules of inference:

2.211. Introduction of 7 in succedent:

$-\frac{\alpha’\Gamma\rightarrow\Theta}{\{7\mathfrak{A}_{\lambda}\}_{\lambda<\alpha}}$ ;$\Gamma\rightarrow\Theta\{\underline{\mathfrak{A}_{\lambda}\}}_{\lambda<}$

2.212. Introduction of 7 in antecedent:

$\frac{\Gamma\rightarrow\Theta,\{\mathfrak{A}_{\lambda}}{t7\mathfrak{A}_{\lambda}\}_{\kappa<a}}\Gamma^{\}}\frac{\lambda<\alpha}{\rightarrow\Theta}$ ;

2.213. Introduction of $\vee$ in succedent:

$\frac{\Gamma\rightarrow\Theta}{\Gamma\rightarrow\Theta’}\{\mathfrak{A}_{\vee}\{\lambda<^{\underline{\lambda}}\alpha\frac{\beta\}_{\lambda<\alpha}}{\mu \mathfrak{A}_{\lambda,\mu}}\frac{\mu<}{<\beta}\underline{\rho}\}_{\mu}^{\mu}$

;

2.214. Introduction of $\vee$ in antecedent:

$\{\mathfrak{A}_{\lambda_{\mu},\mu}\}_{u<\beta}’\Gamma\rightarrow\Theta for_{\lambda<}a1_{\mu}1_{\backslash }\{\lambda_{\mu^{\mu}}\{\bigvee_{\alpha}fI_{\lambda},\}^{\}_{\mu^{l^{\ell}}<^{<}}}\frac{\theta^{suchthat\lambda_{\mu}<\alpha_{\mu}(\mu<\beta)}}{\beta,\Gamma\rightarrow\Theta}$
;

2.215. Introduction of $\exists$ in succedent:

$\Gamma\rightarrow\Theta,$ $\{\mathfrak{A}_{\Lambda}(t_{\lambda})\}_{\lambda<a}$

$\overline{\Gamma\rightarrow\Theta,\{\exists \mathfrak{x}_{\lambda}\mathfrak{A}_{\lambda}(\mathfrak{x}_{\lambda}})\}_{\lambda<\alpha}-$

where l’s are sequences of arbitrary terms;

2.216. Introduction of $\exists$ in antecedent:

$\frac{\{\mathfrak{A}_{\lambda}(\mathfrak{a}_{\lambda})\}_{\lambda<\alpha},\Gamma\rightarrow\Theta}{\{\exists \mathfrak{x}_{\lambda}\mathfrak{A}_{\lambda}(\mathfrak{x}_{\lambda})\}_{\lambda<a},\Gamma\rightarrow\Theta}$

where $\mathfrak{a}’ s$ are sequences of distinct free variables. Each variable occurring in
$\mathfrak{a}’ s$ is called an eigenvariable of the inference. When an eigenvariable of that

inference occurs in $\mathfrak{a}_{\lambda},$
$\exists \mathfrak{x}_{\lambda}\mathfrak{A}_{\lambda}(\mathfrak{x}_{\lambda})$ is called the principal formula of the eigenvari-

able and $\mathfrak{A}_{\lambda}(\mathfrak{a}_{\lambda})$ is called the side formula of the principal formula. When $a_{\lambda}=$

$\{a_{\lambda,\mu}\}_{l^{l}<\beta_{\lambda}},$ $\mu$ is called the order of the eigenvariable $a_{\lambda,\mu}$ with respect to the

principal formula $\exists \mathfrak{x}_{\lambda}\S l_{\lambda}(\mathfrak{x}_{\lambda})$ .
2.22. Structural rule of inference:
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$\frac{\Gamma\rightarrow\Theta}{\Delta\rightarrow\Lambda}$

where any formula occurring in $\Gamma$ or $\Theta$ is contained in $\Delta$ or $\Lambda$ , respectively.

2.23. Cut:

$\underline{\Gamma\rightarrow\Theta}_{\Gamma}\frac{\mathfrak{D}\mathfrak{D},\Delta\rightarrow\Lambda}{\Delta\rightarrow\Theta,\Lambda}$ .

3. RESTRICTION ON EIGENVARIABLES.

Every formal proof satisfies the following three conditions:

3.1. lf a free variable occurs in two or more inferences as eigenvariables,

the principal formulae of these eigenvariables are all one and the same for-

mula, and the order of these eigenvariables with respect to each principal for-

mula does not depend on inferences.

3.2. For each free variable, an ordinal number named the height can be

uniquely defined as follows:

The height of the free variable occurring in an inference as an eigenvari-

able is $\nu+1$ , where $\nu$ is the supremum of the heights of those free variables

which are contained in the principal formula of that eigenvariable. If a free

variables does not occur in any inference as an eigenvariable, the height of

the free variable is $0$ .
3.3. Each variable occurring in an inference as an eigenvariable shall not

occur in the endsequent.

4. EXAMPLE OF A FORMAL PROOF (cf. Karp [5]). In the following, the

conjunction symbol $\wedge$ and the universal quantifer $\forall x$ are regarded as abbre-

viations of $7\vee 7$ and $7\exists x7$ , respectively.

$\frac{\underline{\frac{Fa_{n}a_{n+1}\rightarrow Fa_{n}a_{n+1}}{\{Fa_{m}a_{m+1}\}_{m<\omega}\rightarrow Fa_{n}a_{n+1}}(n<\omega)}}{\underline\{Fa_{m}a_{m+1}\}_{m<\omega}\rightarrow\bigwedge_{n<\omega}Fa_{n}a_{n+1}}$

$\{Fa_{m}a_{m+1}\}_{m<\omega}\rightarrow(\exists x_{0}x_{1}\cdots)\Lambda Fx_{n}x_{n+1}$

$\frac{n<\omega}{\{\supset\urcorner yFa_{m}y\}_{m<\omega}\rightarrow(\exists x_{0}x_{1}\cdots)\wedge Fx_{n}x_{n+1}}$

$\frac{\underline{n}<\underline{\omega}}{\forall x\exists yFxy\rightarrow(\exists x_{0}x_{1}\cdots)\bigwedge_{n<\omega}Fx_{n}x_{n+1}}$

\S 3. Main theorem, completeness theorem and cut-elimination theorem.

Our main theorem on the predicate calculus with infinitely long expres-
sions is regarded as a generalization of G\"odel’s completeness theorem (cf.

G\"odel [3]) and Gentzen’s cut-elimination theorem (cf. Gentzen [2]).

MAIN THEOREM. Every sequent which is valid in any non-empty domain is

provable without cut.
As a corollary of the main theorem, we have the following
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COMPLETENESS THOREM Every sequent which is valid in any non-empty

domain is provable.

In the proof of the main theorem, we shall use an auxiliary $\epsilon$-calculus

with infinitely long expressions.

We shall call it simply ’
$\epsilon$-calculus ’. The calculus in \S 2 will be called

‘ e-less calculus ’

1. In our e-calculus, the e-terms defined as follows, are also treated as
terms. An e-term $(\epsilon \mathfrak{x})^{\lambda}?1(\mathfrak{x})$ is formed from a formula $?1(\mathfrak{a})$ with $\mathfrak{a}=\{a_{\lambda}\}_{\lambda<\alpha}$ and

an ordinal number $\lambda$ by the help of a sequence X of bound variables $(\lambda<\alpha<\Omega_{0})$ .
By $\epsilon \mathfrak{x}\mathfrak{A}(\mathfrak{x})$ we mean the sequence $\{(\epsilon\vee \mathfrak{r})^{\lambda}?1(\mathfrak{r}\vee)\}_{\lambda<\alpha}$ , which indicates informally, such

an $\mathfrak{x}$ as makes QI(x) true, if it exists. Otherewise $\mathcal{E}1\cup\cdot \mathfrak{A}(\mathfrak{x})$ means an arbitrary

sequence of individuals whose ordinal type is $\alpha$ .
We shall use, in the e-calculus, the postulates for the $\epsilon$-less calculus as

they are, except the introduction of $\exists$ in antecedent. As infereneces ‘ intro-

duction of $\exists$ in antecedent ‘ we use those of the following form only:

$\frac{\{?\ddagger_{\lambda}(\epsilon \mathfrak{x}_{\lambda}?l_{\lambda}(\mathfrak{r}_{\lambda}\vee))\}_{\lambda<a},\Gamma\rightarrow\Theta}{\{\exists \mathfrak{x}_{\lambda}?1_{\lambda}(\mathfrak{x}_{\lambda})\}_{\lambda<a},\Gamma\rightarrow\Theta}$

Accordingly, the concept of eigenvariable is not used in the $\epsilon$-calcnlus, so we
have no further use of the restriction on eigenvariables.

We have the following theorems on the $\epsilon$-calculus and the $\epsilon$-less calculus.

THEOREM 1. If a sequent is provable in the e-less calculus, then the sequent

is provable in the e-calculus.
This theorem is easily proved by substituting, in the $\epsilon$-less formal proof

of the concerned sequent, $\epsilon$-terms for all free variables occurring as eigenvari-

ables (cf. \S 1). By Theorem 1, we have the following result concernig the $\epsilon-$

less calculus:

THEOREM 2. Every sequent which is provable in the $\epsilon$-less calculus is valid

in every non-empty domain.
By this theorem, as a corollary of the main theorem, we have the following
$CuT$ -ELIMINATION THEOREM. If a sequent is provable in the $\epsilon$-less calclus,

then it is provable without cut in the same calculus.
The following Theorem 3 can be proved by substituting appropriate free

variables for all e-terms in formal proofs.

THEOREM 3. If an $\epsilon$-less sequent is provable without cut in the $\epsilon$-calculus,

then the sequent is provable without cut in the e-less calculus.
2. For the proof of our main theorem, it is sufficient, by Theorem 3, to

prove the following

3) D. Scott and A. Tarski had proved, in [9], the completeness theorem on a
system for the propositional calculus with infinitely long expressions.



362 S. MAEHARA and G. TAKEUTI

THEOREM 4. Every $\epsilon$-less sequent which is valid in any non-empty domain
and which is formed by formation rules in the e-calculus is provable without cut

in the $\epsilon$-calculus.

The rest of this section is devoted to the proof of Theorem 4.
This proof will be carried through in following the idea of Sch\"utte [8].

First of all, for each sequent $\mathfrak{S}$ in the $\epsilon$-calculus, we consider the minimal
genealogical-tree-formed figure $P(\mathfrak{S})$ consisting of sequents which satisfies the

following conditions $1$) $-5$):

1) The lowermost sequent is S.
2) When a sequent $\Delta\rightarrow\Lambda$ contains at least one formula whose outermost

logical symbol is 7, the immediate ancestor of $\Delta\rightarrow\Lambda$ is the sequent

$\{\mathfrak{B}_{t^{t}}\}_{1^{p<\beta}},$ $\Gamma\rightarrow\Theta,$ $\{\mathfrak{A}_{\lambda}\}_{\lambda<a},$ ,

where $\{7\mathfrak{A}_{\lambda}\}_{\lambda<\alpha}$ and $\{7\mathfrak{B}_{\mu}\}_{\mu<\beta}$ are the sequences of all formulae in $\Delta$ and in
$\Lambda$ , respectively, whose outermost logical symbol is 7, and $\Gamma$ and $\Theta$ are the

results obtained from $\Delta$ and from $\Lambda$ , respectively, by suppressing all the for-

mulae 7 $\mathfrak{A}$ and 7 B.
3) When a sequent $\Delta\rightarrow\Lambda$ contains no formula whose outermost logical

symbol is 7, and contains at least one formula whose outermost logical symbol

is V, all the immediate ancestors of $\Delta\rightarrow\Lambda$ are the sequents

$\{\mathfrak{A}_{\lambda_{\mu},\mu}\}_{\mu<\beta},$
$\Gamma\rightarrow\Theta,$ $\{\mathfrak{B}_{\rho,\sigma}\}_{\rho<\gamma_{\sigma}\sigma<\delta}$ $(\lambda_{\mu}<\alpha_{\mu})$ ,

where $\{\vee \mathfrak{A}_{\lambda,\mu}\}_{K\beta}\lambda<\alpha_{\mu}$
and $\{\bigvee_{r_{\sigma}}\mathfrak{B}_{\rho,\sigma}\}_{\sigma<\delta}\rho<$ are the sequences of all formulae in $\Delta$

and in $\Lambda$ , respectively, whose outermost logical symbol is $\vee$ , and $\Gamma$ and $\Theta$ are
the results obtained from $\Delta$ and from $\Lambda$ , respectively, by suppressing all the

formulae V $\mathfrak{A}$ and V B.
4) When a sequent $\Delta\rightarrow\Lambda$ contains no formula whose outermost logical

symbol is 7 or $\vee$ , and contains at least one formula whose outermost logical

symbol is $\exists$ , the immediate ancestor of $\Delta\rightarrow\Lambda$ is the sequent

$\{\mathfrak{A}_{l}(\epsilon \mathfrak{r}_{\lambda}\mathfrak{A}_{\lambda}(\mathfrak{x}_{1}))\}_{\lambda<x},$ $\Gamma\rightarrow\Theta,$
$\{\mathfrak{B}_{\mu}(f_{\mu^{\rho_{\mu}}})\}_{\rho_{\mu}<\gamma_{\mu}},\mu<\theta$

’

where $\{\exists\vee\iota_{\lambda}\mathfrak{A}_{\lambda}(\mathfrak{x}_{\lambda})\}_{\lambda<\alpha}$ and $\{\exists \mathfrak{y}_{J}\mathfrak{B}_{\mu}(\mathfrak{y}_{u})\}_{\mu<\beta}i$ are the sequences of all formulae in $\Delta$

and in $\Lambda$ , respectively, whose outermost logical symbol is $\exists$ , and $\Gamma$ and $\Theta$ are
the results obtained from $\Delta$ and from $\Lambda$ , respectively, by suppressing all the

formulae $\exists \mathfrak{r}.\mathfrak{A}(\mathfrak{r}\rightarrow)$ and $\exists \mathfrak{y}\mathfrak{B}(\mathfrak{y})$ , and for each $\mu<\beta$ , the sequence $\{t_{\mu^{\rho}},\}_{\rho<r_{\mu}}$ consists
of all well-ordered sequences of terms whose ordinal type is identical with
that of $\mathfrak{y}_{\mu}$ , and each term of which is formed from the predicate symbols and
the free and bound variables occurring in $\mathfrak{S}$ by the help of the logical symbols.4)

5) When a sequent contains no formula having the outer-most logical

symbol, the sequent is an uppermost sequent.

4) Also the e-symbol is regarded as one of the logical symbols.



Predicate calculus with infinitely long expressions 363

A branch of $P(\mathfrak{S})$ consists of the sequents in linear sequence, passing

upward within the tree structure, beginning with the lowermost sequent $\mathfrak{S}$ ,

and terminating in an uppermost sequnet or extending infinitely.

2.1. Case 1: In every branch of $P(\mathfrak{S})$ , there exists at least one sequent

and there exists at least one formula occurring in both the antecedent and

the succedent of that sequent. By simple modifications, we obtain a formal

proof of $\mathfrak{S}$ which contains no cut. Then $\mathfrak{S}$ is provable without cut.

2.2. Case 2: There exists at least one branch of $P(\mathfrak{S})$ , and for every

sequent occurring in that branch, there exists no formula occurring in both

the antecedent and the succedent at the same time. In the rest of our proof

of Theorem 4, we consider only the formulae and the sequents in that branch.

Let $D$ be the domain consisting of all of the terms, each of which is

formed from those predicate symbols and free and bound variables which
occur in the lowermost sequent $\mathfrak{S}$ by the help of the logical symbols. If

there is not such a term at all, let $D$ be an arbitrary non-empty domain.
Then, for the proof of Theorem 4, it is sufficient to show the existence of

such an interpretation as makes all of our concerned sequents false with re-
spects to $D$ . This is obviously reduced to the proof of the following lemmata.

LEMMA 1. If a formula occurs in the antecedent of a sequent, then the for-
mula does not occur in the succedent of any sequent.

LEMMA 2. If a formula 7 QI occurs in the antecedent (or succedent) of a
sequent, then the formula $\mathfrak{A}$ occurs in the succedent (or antecedent) of a sequent.

LEMMA 3. If a formula $\lambda<a\vee \mathfrak{A}_{\lambda}$ occurs in the antecedent (or succedent) of a

sequent, then the formula $\mathfrak{A}_{\lambda}$ occurs in the antecedent (or succedent) of a sequent,

for some (or every) $\lambda<\alpha$ .
LEMMA 4. If a formula $\exists \mathfrak{x}\mathfrak{A}(\mathfrak{x})$ occurs in the antecedent of a sequent, then

the formula $\mathfrak{A}(\epsilon \mathfrak{x}\mathfrak{A}(\mathfrak{x}))$ occurs in the antecedent of a sequent.

LEMMA 5. If a formula $\exists \mathfrak{x}\mathfrak{A}(\mathfrak{x})$ occurs in the succedent of a sequent, then

the formula QI(t) occurs in the succedent of a sequent, for every sequence $t$ of
elements of $D$ whose ordinal type is identical with that of $\mathfrak{x}$

LEMMA 6. If a formula $\mathfrak{A}(t)$ occurs in the antecedent of a sequent, then the

formula
$\backslash $){ $(\epsilon \mathfrak{x}\mathfrak{A}(\mathfrak{x}))$ does not occur in the succedent of any sequent.

Lemmata 2-6 are easily proved from the structure of $P(\mathfrak{S})$ . To prove

Lemma 1, we shall define the concept of nesting number of formula as follows:
1) The nesting number of a prime formula is $0$ .
2) The nesting number of 7 $\mathfrak{A}$ is $\nu+1$ , where $\nu$ is the nesting number

of Ql.

3) The nesting number of $\lambda<a\vee \mathfrak{A}_{\lambda}$ is $\nu+1$ , where $\nu$ is the supremum of the

wtesting numbers of $\mathfrak{A}’ s$ .
4) The nesting number of $\exists \mathfrak{x}\mathfrak{A}(\mathfrak{x})$ is $\nu+1$ , where $\nu$ is the nesting number
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of Ql(a) where $\mathfrak{a}$ is a sequence of free variables whose ordinal type is identical

with that of $\mathfrak{x}$

PROOF OF LEMMA 1. If there were at least one formula occurring in the

antecedent of a sequent and in the succedent of another sequent, there should

be such a formula which has the minimum nesting number. This is contrary

to the structure of $P(\mathfrak{S}),$ $q$ . $e$ . $d$ .
The proof of the Theorem 4 and the main theorem is thus completed.

3. Finally, we shall extend the L\"owenheim-Skolem thorem to the case of

the predicate calculus with infinitely long expressions. For the purpose, we
shall introduce the concepts ‘ order of a term’ and ‘ order of a formula ‘, defined

recursively as follows:
1) The order of a free variable is $0$ .
2) The order of a prime formula $Fl$ is $\max\{\alpha+1, \sup_{\lambda<a}\beta_{\lambda}\}$ , where $t=\{t_{\lambda}\}_{\lambda<\alpha}$

and $\beta_{\lambda}$ is the order of $t_{\lambda}$ .
3) The order of $7\mathfrak{A}$ is identical with the order of $\mathfrak{A}$ .
4) The order of $\lambda<\alpha\vee \mathfrak{A}_{\lambda}$ is $\max\{\alpha+1, \sup_{\lambda<\alpha}\beta_{\lambda}\}$ , where $\beta_{\lambda}$ is the order of $91_{\lambda}$ .

5) Both the orders of $\exists \mathfrak{x}^{\backslash }?I(r\sim)$ and of $(\epsilon\vee r)^{\lambda}\mathfrak{A}(\mathfrak{r}.)$ are $\max\{\alpha+1, \beta\}$ . where $\beta$ is

the order of $?I(\mathfrak{a})$ and $\mathfrak{x}=\{x_{\lambda}\}_{\lambda<a}$ .
Let $\mathfrak{F}$ be an $\epsilon$-less formula whose order is $\alpha$ and which is satisfied in some

non-empty domain, and $\mathfrak{S}$ be the sequent

$\mathfrak{F}\rightarrow$ .

$\mathfrak{S}$ is, of course, unprovable in the $\epsilon$-calculus. Let $\pi$ be the least ordinal

number5‘ which is strongly inaccessible with respect to $\alpha$ , in the following sense:
1) If $\lambda<\pi,$

$then\overline{\overline{2^{\lambda}}}<\pi,$ $where2^{\lambda}$ is the power set of the set consisting of all

ordinal numbers $<\lambda$ , and $\overline{\overline{2^{\lambda}}}$ is the least ordinal number whose cardinal num-
ber is equal to that of $2^{\lambda}$ .

2) If $\beta<\alpha$ and if $\alpha_{\lambda}<\pi$ for all $\lambda<\beta$ , then

$\sup_{\lambda<\beta}\alpha_{\lambda}<\pi$
.

Let $D$ be the domain consisting of all terms, whose order is less than or equal

to $\alpha$ , and each of which is formed from those predicate symbols and free or
bound variables which occur in $\mathfrak{F}$ If there is not such a term at all, let $D$

be the domain consisting of an element. Then $ D^{=}\leqq\pi$ .
Now, also in the case where the treatment of Case 2 in the proof of

Theorem 4 is applied to those $\mathfrak{S}$ and $D$ , the proof is safely carried through.

Then we have the following

EXTENDED L\"oWENHEIM-SKOLEM THEOREM. If an e-less formula $\mathfrak{F}$ has the

order $\alpha$ and is satisfied in some non-emptv\sim domain, then there exists a non-empty

5) For example, if $\alpha\leqq cv$ , then $\pi=\omega$ .
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domain $D$ such that $\mathfrak{F}$ is satisfied in $D$ and $ D\leqq=\pi$ , where $\pi$ is the least ordinal
number which is strongly inaccessible with respcct to $\alpha$ . (Clearly, $\pi$ is less than
any strongly inaccenssible number which is greater than $\alpha.$)

\S 4. Normal form theorem and interpolation theorem.

In this section, we shall prove Craig’s interpolation theorem as an applica-

tion of the cut-elimination theorem. First we prove the following

NORMAL FORM THEOREM. If a sequent G5 is provable in the e-less calculus,

then there exists an e-less formal proof satisfying the following conditions:
1) The endsequent is S.

2) It contains no cut.
3) When a free variable occurs in an inference as an eigenvariable, this free

variable will never occur as one of the eigenvariables in other side formula
throughout the formal proof.

PROOF. Let a sequent $\mathfrak{S}$ be provable in the \^e-less calculus and $P$ be an
$\epsilon$-less formal proof which contains no cut and whose endsequent is S. Let
$\Gamma\rightarrow\Theta$ be a sequent occurring in $P$ and $\Phi$ be a well-ordered sequence of all

formulae, each of which is the side formula of a principal formula of the form
$\exists \mathfrak{x}\mathfrak{A}(\mathfrak{x})$ occurring in the antecedent of a sequent that is below the sequent
$\Gamma\rightarrow\Theta$ . By substituting $\Gamma,$ $\Phi\rightarrow\Theta$ for any sequent $\Gamma\rightarrow\Theta$ throughout $P$, and

by the help of simple modifications, we have a formal proof satisfying the

above three conditions, $q$ . $e$ . $d$ .

By using the normal form theorem, we can prove the following

INTERPOLATION THEOREM‘ If a sequent $\mathfrak{A}\rightarrow \mathfrak{B}$ is provable in the e-less cal-

culus, then there exists a formula $\mathfrak{C}$ such that both the sequents $\mathfrak{A}\rightarrow \mathfrak{C}$ and $\mathfrak{C}\rightarrow \mathfrak{B}$

are provable in the $\epsilon$-less calculus, and those predicate symbols and free variables

which occur in $\mathfrak{C}$ are all contained in both $\mathfrak{A}$ and $\mathfrak{B}$, as long as $\mathfrak{A}$ and $\mathfrak{B}$ have

at least one predicate symbol in common. If the sequent $\mathfrak{A}\rightarrow \mathfrak{B}$ is provable, and

if $\mathfrak{A}$ and $\mathfrak{B}$ have no predicate symbol in common, then either the sequent $\mathfrak{A}\rightarrow or$

$\rightarrow \mathfrak{B}$ is provable.

The latter half of the theorem can be proved from the first half as follows:

Let the sequent $\mathfrak{A}\rightarrow \mathfrak{B}$ be provable, and $\mathfrak{A}$ and $\mathfrak{B}$ have no predicate symbol

in common. Let $P$ be a predicate symbol contained in neither $\mathfrak{A}$ nor $\mathfrak{B}$, which

will be regarded as a prime formula. Then since $\mathfrak{A}\vee P\rightarrow \mathfrak{B}\vee P$ is provable,

there exists a formula $\mathfrak{C}$ such that both $\mathfrak{A}\vee P\rightarrow \mathfrak{C}$ and $\mathfrak{C}\rightarrow \mathfrak{B}\vee P$ are provable

and $\mathfrak{C}$ contains no predicate symbol except $P$. As $\mathfrak{C}$ contains no predicate

symbol except $P$, at least one of the sequents $7P\rightarrow \mathfrak{C}$ and $7P\rightarrow 7\mathfrak{C}$ is prov-

able. We shall consider separately the followiug two cases:

6) For the ordinary predicate calculus, this theorem had been proved in Craig [1].
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1) Case 1: $7P\rightarrow \mathfrak{C}$ is provable. In this case, $7P\rightarrow \mathfrak{B}\vee P$ is provable,

therefore 7 $\mathfrak{B}\rightarrow \mathfrak{B}\vee \mathfrak{B}$ is provable because $\mathfrak{B}$ does not contain $P$. So the sequent
$\rightarrow \mathfrak{B}$ is provable.

2) Case 2: $7P\rightarrow 7\mathfrak{C}$ is provable. In this case, $\mathfrak{A}\vee P\rightarrow P$ is provable,

therefore $\mathfrak{A}\vee 7\mathfrak{A}\rightarrow 7$ Qt is provable because $\backslash $)( does not contain $P$. So the
$sequent\rightarrow \mathfrak{A}$ is provable, $q$ . $e$ . $d$ .

To prove the first half of the theorem, we define the degree of a normal-

formed proof in the sense of the normal form theorem as follows:
1) The degree of each uppermost sequent is $0$ .
2) The degree of the conclusion of a logical rule of inference is $\nu+1$ ,

provided that the degree of the conclusion of an introduction of $\exists$ in antecedent

is $\nu+2$ , where $\nu$ is the degree of the premise or the supremum of all degrees

of the premises.

3) The degree of the conclusion of a structural rule of inference is iden-

tical with the degree of the premise.

4) The degree of a normal-formed proof is the degree of the endsequent.

Our proof is now reduced to the proof of the following

THEOREM 5. If a sequent $\Gamma_{1},$ $\Gamma_{2}\rightarrow\Theta_{1},$ $\Theta_{2}$ is provable in the e-less calculus,

and if the sequents $\Gamma_{1}\rightarrow\Theta_{1}$ and $\Gamma_{2}\rightarrow\Theta_{2}$ have at least one predicate symbol in
.common, then there exists a formula $\mathfrak{C}$ such that both the sequents

$\Gamma_{1}\rightarrow \mathfrak{C},$ $\Theta_{1}$ and $\Gamma_{2},$ $\mathfrak{C}\rightarrow\Theta_{2}$

are provable and those predicate symbols and free variables which occur in $\mathfrak{C}$ are
all contained in both $\Gamma_{1}\rightarrow\Theta_{1}$ and $\Gamma_{2}\rightarrow\Theta_{2}$ .

This theorem is proved by transfinite induction on the degree $\delta$ of the

normal-formed proof whose endsequent is $\Gamma_{1},$ $\Gamma_{2}\rightarrow\Theta_{1},$ $\Theta_{2}$ . We divide several

cases.
Case 1: $\delta=0$ . The theorem is obvious.

Case 2: $\delta>0$ and the lowermost logical rule of inference of the formal
proof containing no cut whose endsequent is $\Gamma_{1},$ $\Gamma_{2}\rightarrow\Theta_{1},$ $\Theta_{2}$ is

$\Delta\rightarrow\Lambda,$
$\{\mathfrak{A}_{\lambda}(t_{\lambda})\}_{\underline{\lambda}<\underline{\alpha}}$

$\overline{\Delta\rightarrow\Lambda}^{-}\{\overline{\exists \mathfrak{x}_{\lambda}}\mathfrak{A}_{\lambda}(\mathfrak{x}_{\lambda})\}_{\lambda<a}$

.

There exists a normal-formed proof whose degree is less than $\delta$ and whose
endsequent is $\Gamma_{1}\#,$ $\Gamma_{1},$ $\Gamma_{2}\#,$ $\Gamma_{2}\rightarrow\Theta_{1}^{*},$ $\Theta_{2^{*}}$ , where

1) $\Theta^{*}$ is the result obtained from $\Theta$ by substituting $?1(l)$ for every $\exists \mathfrak{x}\mathfrak{A}(\mathfrak{x}^{\backslash })$

throughout $\Theta$ , and

2) $\Gamma^{k}$ is the sequence of all formulae

$(7 \exists 0\mathfrak{B}(\mathfrak{h}))\vee \mathfrak{B}(\mathfrak{a})$ ,

where each $\exists \mathfrak{y}\mathfrak{B}(\mathfrak{y})$ is a principal formula of an introduction of $\exists$ in antecedent

and has a descendant in $\Gamma$ of the endsequent $\Gamma_{1},$ $\Gamma_{2}\rightarrow\Theta_{1},$ $\Theta_{2}$ , and $\mathfrak{B}(\mathfrak{a})$ is the
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side formula of that principal formula $\exists \mathfrak{y}\mathfrak{B}(\mathfrak{y})$ , and at least one eigenvariable

in $\mathfrak{a}$ is contained in $\{t_{\lambda}\}_{\lambda<\alpha}$ .
By the hypothesis of the transfinite induction on the degree, there exists

a formula $\mathfrak{C}^{\prime}(\mathfrak{b}, c_{1}, c_{2})$ , such that both $\Gamma_{1}\#,$ $\Gamma_{1}\rightarrow \mathfrak{C}^{\prime}(\mathfrak{b}, c_{1}, c_{2}),$ $\Theta_{1^{*}}$ and $\Gamma_{2}\#,$ $\Gamma_{2},$ $\mathfrak{C}^{\prime}(b, c_{1}, c_{2})$

$\rightarrow\Theta_{2^{*}}$ are provable and those predicate symbols and free variables which occur
in $\mathfrak{C}^{\prime}(\mathfrak{b}, c_{1}, c_{2})$ are all contained in both $\Gamma_{1}\#,$ $\Gamma_{1}\rightarrow\Theta_{1^{*}}$ and $\Gamma_{2}\#,$ $\Gamma_{2}\rightarrow\Theta_{2^{*}}$ , where $fr$

is the sequence of those free variables which are contained in neither $\mathfrak{a}’ s$ nor
$\Gamma_{1},$ $\Gamma_{2}\rightarrow\Theta_{1},$ $\Theta_{2}$ , and $c_{1}$ (or $c_{2}$) is the sequence of those free variables which

occur in one of the $\mathfrak{a}’ s$ and which are contained in both $\Gamma_{1}\#$ and $\Theta_{2}^{*}$ (or in
both $\Gamma_{2^{\theta}}$ and $\Theta_{1^{*}}$). Then both the sequent

$\Gamma_{1}^{\#},$ $\Gamma_{1}\rightarrow\exists q_{1}7\exists\square 1_{2}7\mathfrak{C}^{\prime}(\mathfrak{b}, q_{1}, q_{2}),$ $\Theta_{1}$

and $\tau_{2}\#,$ $\Gamma_{2},$ $\exists q_{1}7\exists q_{2}7\mathfrak{C}^{\prime}(\mathfrak{b}, q_{1}, q_{2})\rightarrow\Theta_{2}$

are provable, and then, since every sequent

$\rightarrow\exists \mathfrak{z}[(7\exists \mathfrak{y}\mathfrak{B}(\mathfrak{y}))\vee \mathfrak{B}(\mathfrak{z})]$

is provable, both the sequents

$\Gamma_{1}\rightarrow\exists q_{1}7\exists q_{2}7\mathfrak{C}^{\prime}(b, q_{1}, q_{2}),$ $\Theta_{1}$

and $\Gamma_{2},$ $\exists q_{1}7\exists q_{2}7\mathfrak{C}^{\prime}(\mathfrak{b}, q_{1}, q_{2})\rightarrow\Theta_{2}$

are provable. Hence, required formula $\mathfrak{C}$ is, for example,

$\exists \mathfrak{p}\exists q_{1}7\exists q_{2}7\mathfrak{C}^{\prime}(\mathfrak{p}, q_{1}, q_{2})$

Case 3: $\delta>0$ and the lowermost logical rule of inference of the formal
proof is

$\frac{\{\mathfrak{A}_{\lambda}(\mathfrak{a}_{\lambda})\}_{\lambda<\alpha},\Delta\rightarrow\Lambda}{\{\exists \mathfrak{x}_{\lambda}\mathfrak{A}_{\lambda}(\mathfrak{x}_{\lambda})\}_{\lambda<a},\Delta\rightarrow\Lambda}$ .

There exists a formal proof containing no cut whose degree is less than $\delta$ and

whose endsequent is $\Gamma_{1^{*}},$ $\Gamma_{2^{*}}\rightarrow\Theta_{1},$ $\Theta_{2}$ where each $\Gamma^{*}$ is the result obtained

from $\Gamma$ by substituting $\mathfrak{A}(\mathfrak{a})$ for every principal formula $\exists \mathfrak{x}\mathfrak{A}(\mathfrak{x})$ throughout $\Gamma$.
By the hypothesis of the transfinite induction of the degree, there exists a
formula C’ such that both the sequents

$\Gamma_{1^{*}}\rightarrow \mathfrak{C}^{\prime},$ $\Theta_{1}$ and $\Gamma_{2^{*}},$ $\mathfrak{C}^{\prime}\rightarrow\Theta_{2}$

are provable and those predicate symbols and free variables which occur in $\mathfrak{C}^{\prime}$

are all contained in both $\Gamma_{1^{*}}\rightarrow\Theta_{1}$ and $\Gamma_{2^{*}}\rightarrow\Theta_{2}$ . Here we can assume, without

loss of generality, that $\Gamma_{1}$ and $\Gamma_{2}$ have no formula in common. Then required
$\Phi$ is $\mathfrak{C}^{\prime}$ itself.

Other cases. The treatment is similar to the above, $q$ . $e$ . $d$ .
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\S 5. Karp’s completeness theorem.

In [5] Karp announced a completeness theorem for the first-order predicate

calculus with infinitely long expressions; she proposed thereby a system with
the usual form of restriction on eigenvariables. In this section, we shall give

a formal system which is essentially identical with Karp’s calculus, and shall
prove that the new system is equivalent to the calculus formulated in \S 2.
This equivalence proof will be carried through by the same idea as in Mae-

hara [7].

In what follows, we shall use notations of the form $\forall \mathfrak{x}\mathfrak{A}(\mathfrak{x})$ as an abbrevia-

tion of 7 $\exists \mathfrak{x}79I(\mathfrak{x})$ .
In the new calculus, we use the postulates for the original calculus ex-

plained in \S 2, as they are, except the introduction of $\exists$ in antecedent, and

$\forall\exists$ -rule: $\frac{\{\mathfrak{A}_{A}(1_{\lambda},\mathfrak{a}_{\lambda})\}_{\lambda<\alpha},\Gamma\rightarrow\Theta}{\{\forall \mathfrak{x}_{\lambda}\exists \mathfrak{y}_{\lambda}\mathfrak{A}_{\lambda}(\mathfrak{x}_{\lambda},\mathfrak{y}_{\lambda})\}_{\lambda<\alpha},\Gamma\rightarrow\Theta}$ ,

where, all the free variables contained in $\mathfrak{a}’ s$ shall not occur in the conclusion.

For each variable contained in $\mathfrak{a}’ s$ or $t’ s$ , an ordinal number named the height

can be uniquely defined as follows:
The height of a free variable in $\mathfrak{a}_{\lambda}$ is $\nu+1$ , where $\nu$ is the supremum of

the heights of all free variables in $t_{\lambda}$ . If a free variable is not contained in

any $\mathfrak{a}$ , the height of the free variable is $0$ .
As the introduction of $\exists$ in antecedent we use the $\forall\exists$ -rule with empty se-

quences of universal quantifiers standing at the front.

The above-mentioned new calculus will be called ’
$\forall\exists$ -calculus ’, and the

original calculus explained in \S 2 ‘ e-less calculus ’ as before.

THEOREM 1. If a sequent is provable in the $\epsilon$-less calculus, then it is prov-
able in the $\forall\exists$ -calculus.

COROLLARY 1. Every $\epsilon$-less sequent which is valid in any non-empty domain

is provable in the $\forall\exists$ -calculus (Completeness theorem for the $\forall\exists$ -calculus).

COROLLARY 2. Every $\epsilon$-less sequent which is provable in the e-lcalczehts is
provable in the $\forall\exists$ -calculus (The second e-theorem for the $\forall\exists$ -calculus).

PROOF OF THEOREM 1. Let a sequent $\Gamma\rightarrow\Theta$ be provable in the $\epsilon$-less

calculus, and $P$ be a formal proof in the sense of the $\epsilon$-less calculus, whose
endsequent is $\Gamma\rightarrow\Theta$ . Let a sequence

$\{\exists \mathfrak{x}_{\lambda}?I_{A}(t_{\lambda}, \mathfrak{x}_{\lambda})\}_{\lambda<a}$

consist of all principal formulae of the inferences ’ the introduction of $\exists$ in

antecedent ’ which are contained in $P$, and $t_{\lambda}$ be the sequence of all terms

occurring in $\exists \mathfrak{x}_{4}\mathfrak{A}_{\lambda}(t_{\lambda}, \mathfrak{x}_{\lambda})(\lambda<\alpha)$ . Then the sequent
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$\{(7\exists \mathfrak{x}_{i^{\backslash }})1_{\lambda}(\downarrow_{\lambda}, \mathfrak{x}_{\lambda}))\vee \mathfrak{A}_{\lambda}(t_{\lambda}, \mathfrak{a}_{\lambda})\}_{\lambda<a},$ $\Gamma\rightarrow\Theta$

is provable without $\forall\exists$ -rule in the $\forall\exists$ -calculus, where $\mathfrak{a}’ s$ are the sequences of
the eigenvariables corresponding to those principal formula.

Accordingly, the sequent

$\{\forall \mathfrak{y}_{\lambda}\exists \mathfrak{z}_{\lambda}[(7\mathfrak{x}_{\lambda}\mathfrak{A}_{\lambda}(\mathfrak{y}_{\lambda}, Xa)) V \mathfrak{A}_{\lambda}(\mathfrak{y}_{\lambda}, \mathfrak{z}_{\lambda})]\}_{\lambda<a},$ $\Gamma\rightarrow\Theta$

is provable in the $\forall\exists$ -calculus, by the help of the $\forall\exists$ -rule. On the other hand,

the sequents
$\rightarrow\forall \mathfrak{y}_{\lambda}\exists_{\grave{\delta}\lambda}[(7\exists \mathfrak{x}_{\lambda}\mathfrak{A}_{\lambda}(\mathfrak{y}_{\lambda}, \mathfrak{x}_{\lambda}))v\mathfrak{A}_{\lambda}(0\text{{\it \‘{A}}}, 3_{\lambda})]$ $(\lambda<\alpha)$

are all provable in the $\forall\exists$ -calculus. Hence the sequent $\Gamma\rightarrow\Theta$ is provable in
the $\forall\exists$ -calculus, $q$ . $e$ . $d$ .

THEOREM 2. If a sequent is provable in the $\forall\exists$ -calculus, then it is provable

in the $\epsilon$-less calculus.

PROOF. Let a formal proof in the sense of the $\forall\exists$ -calculus be given. Re-

place each inference of the form

$\frac{\{\mathfrak{A}_{\lambda}(t_{\lambda},\mathfrak{a}_{\lambda})\}_{i<\sim},\Gamma\rightarrow\Theta}{\{\forall \mathfrak{x}_{\lambda}\exists \mathfrak{y}_{\lambda}\mathfrak{A}_{\lambda}(\mathfrak{x}_{\lambda},\mathfrak{y}_{\lambda})\}_{\lambda<a},\Gamma\rightarrow\Theta}$

by the following figure:

$\underline{\frac{\{\mathfrak{A}_{\lambda}(1_{\lambda},\mathfrak{a}_{\lambda})\}_{\lambda<a},\Gamma\rightarrow\Theta}{\{\exists \mathfrak{y}_{\lambda}\mathfrak{A}_{\lambda}(1_{\lambda},\mathfrak{h}_{\lambda})\}_{\lambda<\alpha},\Gamma\rightarrow\Theta}}$

$\underline{\Gamma\rightarrow\Theta,\{7\exists \mathfrak{h}_{\lambda}\mathfrak{A}_{\lambda}(t_{\lambda},\mathfrak{h}_{\lambda})\}_{\lambda<a}}$

$\Gamma\rightarrow\Theta,$
$\{\exists \mathfrak{x}_{\lambda}7\exists \mathfrak{y}_{\lambda}\mathfrak{A}_{\lambda}(\mathfrak{x}_{\lambda}, \mathfrak{y}_{\lambda})\}_{\lambda<\underline{\alpha}}$

$\{\forall \mathfrak{x}_{\lambda}\exists \mathfrak{y}_{\lambda}?1_{\lambda}(\mathfrak{x}_{\lambda}, \mathfrak{y}_{l})\}_{\lambda<a},$ $\Gamma\rightarrow\Theta$

Then we have a formal proof in the sense of the $\epsilon$-less calculus, which has

the same endsequent, $q$ . $e$ . $d$ .
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