
A Formal Theory for Modular ERDF Ontologies

Anastasia Analyti1, Grigoris Antoniou1,2, and
Carlos Viegas Damásio3

1 Institute of Computer Science, FORTH-ICS, Greece
2 Department of Computer Science, University of Crete, Greece

3 CENTRIA, Departamento de Informatica, Faculdade de Ciencias e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
{analyti, antoniou}@ics.forth.gr, cd@di.fct.unl.pt

Abstract. The success of the Semantic Web is impossible without any
form of modularity, encapsulation, and access control. In an earlier paper,
we extended RDF graphs with weak and strong negation, as well as
derivation rules. The ERDF #n-stable model semantics of the extended
RDF framework (ERDF) is defined, extending RDF(S) semantics. In this
paper, we propose a framework for modular ERDF ontologies, called
modular ERDF framework, which enables collaborative reasoning over
a set of ERDF ontologies, while support for hidden knowledge is also
provided. In particular, the modular ERDF stable model semantics of
modular ERDF ontologies is defined, extending the ERDF #n-stable
model semantics. Our proposed framework supports local semantics and
different points of view, local closed-world and open-world assumptions,
and scoped negation-as-failure. Several complexity results are provided.

1 Introduction

Ontologies and automated reasoning are the building blocks of the Semantic
Web initiative. Derivation rules can be included in an ontology to define derived
concepts based on base concepts. For example, rules allow to define the exten-
sion of a class or property based on a complex relation between the extensions
of the same or other classes and properties. On the other hand, the inclusion of
negative information both in the form of negation-as-failure and explicit nega-
tive information is also needed to enable various forms of reasoning. In [1], the
Semantic Web language RDFS [8, 6] is extended to accommodate the two nega-
tions of Partial Logic [7], namely weak negation ∼ (expressing negation-as-failure
or non-truth) and strong negation ¬ (expressing explicit negative information or
falsity), as well as derivation rules. The new language is called Extended RDF
(ERDF). Specifically, in [1], the stable model semantics of ERDF ontologies is
developed, based on Partial Logic, extending the model-theoretic semantics of
RDFS [6]. The concrete syntax of ERDF is presented in [14].

ERDF enables the combination of closed-world (non-monotonic) and open-
world (monotonic) reasoning, in the same framework, through the presence of
weak negation (in the body of the program rules) and the new metaclasses
erdf :TotalProperty and erdf :TotalClass, respectively. In particular, relating strong
and weak negation at the interpretation level, ERDF distinguishes two categories

of properties and classes [1]. Partial properties are properties p that may have
truth-value gaps, that is p(x, y) is possibly neither true nor false. Total prop-
erties are properties p that satisfy totalness, that is p(x, y) is either true or
false. Partial and total classes c are defined similarly, by replacing p(x, y) by
rdf :type(x, c). In [1], it is shown that on total properties and total classes, the
Open-World Assumption (OWA) applies.

ERDF also distinguishes properties and classes that are completely repre-
sented in a knowledge base with respect to an (optional) ERDF formula F ,
corresponding to the context where the completion takes place. Such a complete-
ness assumption for closing a partial property p by default may be expressed in
ERDF by means of the rule ¬p(?x, ?y)← F ∧ ∼p(?x, ?y) and for a partial class
c, by means of the rule ¬rdf :type(?x, c)← F ∧ ∼rdf :type(?x, c), where F is an
ERDF formula.

Intuitively, an ERDF ontology is the combination of (i) an ERDF graph G

containing (implicitly existentially quantified) positive and negative information,
and (ii) an ERDF program P containing derivation rules, with possibly all con-
nectives ∼, ¬, ⊃, ∧, ∨, ∀, ∃ in the body of a rule, and strong negation ¬ in the
head of a rule.

In [1], it is shown that stable model entailment conservatively extends RDFS
entailment from RDF graphs to ERDF ontologies. Unfortunately, satisfiability
and entailment under the ERDF stable model semantics are in general undecid-
able. This is due to the fact that the RDF vocabulary is infinite. Therefore, to
achieve decidability of reasoning in the general case, in [2], we propose a modi-
fied semantics, called ERDF #n-stable model semantics (for n ∈ IN), in which
from the RDF vocabulary, we remove the infinite set of terms {rdf : i | i > n}.
The new semantics also extends RDFS entailment from RDF graphs to ERDF
ontologies. Additionally, in [2], we provide an equivalence statement between
ERDF stable model entailment and ERDF #n-stable model entailment on an
ERDF ontology O, in the case that the bodies of the rules in O contain only the
connectives ¬ and ∧.

The success of the Semantic Web is impossible without any form of modular-
ity, encapsulation, and access control. In this paper, we propose a framework for
modular ERDF ontologies, called modular ERDF framework, in which a modular
ERDF ontology R is a set of r-ERDF ontologies. Intuitively, an r-ERDF ontol-
ogy O ∈ R is an ERDF ontology that can import or just reference knowledge
about a property or class x from other r-ERDF ontologies in R that define x and
are willing to export this knowledge to O. Thus, our modular ERDF framework
enables collaborative reasoning over a set of r-ERDF ontologies, while support
for hidden knowledge is also provided. Additionally, it supports local semantics
and different points of view, local closed-world and open-world assumptions, and
scoped negation-as-failure.

Specifically, in this paper, we define the modular (ERDF) stable models of
an r-ERDF ontology w.r.t. a modular ERDF ontology. Several properties of
the modular stable model semantics are provided, including that modular stable
model entailment extends #n-stable model entailment on ERDF ontologies, and

2

thus also, RDFS entailment on RDF graphs. We show that if R is a simple
modular ERDF ontology (i.e., the bodies of the rules of the r-ERDF ontologies in
R contain only the connectives ∼, ¬, ∧) then query answering under the modular
ERDF stable model semantics reduces to query answering under the answer set
semantics [5]. Moreover, we provide complexity results for the modular ERDF
stable model semantics on (i) simple modular ERDF ontologies, (ii) modular
ERDF ontologies without quantifiers, and (ii) general modular ERDF ontologies.

We would like to mention that the goal of our modular ERDF framework is on
interconnecting independently developed r-ERDF ontologies over the web and
not on querying a large ontology by decomposing it into smaller sub-ontologies.
The latter problem has been considered for answer set semantics in [10], but [10]
prohibits the existence of positive recursion among modules, a serious limitation
for the Semantic Web setting. In contrast, in our framework, considered r-ERDF
ontologies may be interconnected via cyclic references. For example, an r-ERDF
ontology O may be created any time after the independent creation of the r-
ERDF ontologies on which it depends (which later may be updated, possibly
referring to O).

The rest of the paper is organized as follows: In Section 2, we review ERDF
graphs, which we extend to r-ERDF formulas. Then, we define r-ERDF ontolo-
gies and valid modular ERDF ontologies. Section 3 defines the modular ERDF
interpretations of an r-ERDF ontology w.r.t. a modular ERDF ontology. Then,
it defines satisfiability of an r-ERDF formula by such a modular ERDF inter-
pretation and an r-ERDF ontology. In Section 4, we define the modular stable
semantics of an r-ERDF ontology w.r.t. a modular ERDF ontology, and provide
its properties. Further, we provide several complexity results for the modular
ERDF stable model semantics. Section 5 reviews related work and concludes
the paper.

2 Modular ERDF Ontologies

In this Section, we define r-ERDF formulas, valid r-ERDF ontologies, and valid
modular ERDF ontologies. Additionally, we provide a comprehensive example
of a modular ERDF ontology.

A (Web) vocabulary V is a set of URI references and/or literals (plain or
typed) [6]. We denote the set of all URI references by URI, the set of all plain
literals by PL, the set of all typed literals by T L, and the set of all literals by
LIT . We consider a set Var of variable symbols, such that the sets Var , URI,
LIT are pairwise disjoint. In our examples, variable symbols are prefixed by
“?”.

Below, we review the definition of an ERDF triple from [1]. Let V be a
vocabulary. A (normal) ERDF triple over V is an expression of the form p(s, o)
or ¬p(s, o), where s, o ∈ V ∪Var are called subject and object, respectively, and
p ∈ V ∩URI is called property.

Below we extend the definition of an ERDF formula, provided in [1], to
r-ERDF formulas. We consider the connectives {∼,¬,∧,∨,⊃,∃,∀}, where ¬,

3

∼, and ⊃ are called strong negation, weak negation, and material implication
respectively. Let V be a vocabulary and let Onam ⊆ URI be a set of r-ERDF
ontology names. We define L(V) to be the smallest set that contains the ERDF
triples over V and is closed with respect to the following conditions: if F,G ∈
L(V) then {∼F, F∧G, F∨G, F ⊃ G, ∃xF, ∀xF} ⊆ L(V), where x ∈ Var . A
(normal) ERDF formula over V is an element of L(V). A qualified ERDF formula
over V and Onam has the form F@oname, where F ∈ L(V) and oname ∈ Onam

(i.e., F will be evaluated at the r-ERDF ontology identified by oname).

Definition 1 (r-ERDF formula). Let V be a vocabulary and let Onam ⊆ URI.
We define L(V,Onam) to be the smallest set that (i) contains the ERDF formulas
over V and the qualified ERDF formulas over V and Onam, and (ii) is closed with
respect to the following conditions: if F,G ∈ L(V,Onam) then {∼F, F∧G, F∨G,

F ⊃ G, ∃xF, ∀xF} ⊆ L(V,Onam), where x ∈ Var . An r-ERDF formula F over
V and Onam is an element of L(V,Onam). We denote the set of variables appearing
in F by Var(F), and the set of free variables4 appearing in F by FVar(F). �

Next, we review the definition of an ERDF graph G and the skolemization
of G from [1]. An ERDF graph G over a vocabulary V is a set of ERDF triples
over V . We denote the variables appearing in G by Var(G), and the set of URI
references and literals appearing in G by VG. Intuitively, an ERDF graph G

represents an existentially quantified conjunction of ERDF triples. Specifically,
let G = {t1, ..., tm} be an ERDF graph, and let Var(G) = {x1, ..., xk}. Then,
G represents the ERDF formula formula(G) = ∃?x1, ...,∃?xk t1 ∧ ... ∧ tm.
Existentially quantified variables in ERDF graphs are handled by skolemization.
Let G be an ERDF graph. The skolemization function of G is an 1:1 mapping
skG : Var(G) → URI, where for each x ∈ Var(G), skG(x) is an artificial URI,
denoted by G:x. The skolemization of G, denoted by sk(G), is the ground ERDF
graph derived from G after replacing each x ∈ Var(G) by skG(x).

Below, we extend the definitions of ERDF rule and ERDF program, provided
in [1], to r-ERDF rule and r-ERDF program, respectively.

Definition 2 (r-ERDF rule, r-ERDF program). An r-ERDF rule r over
a vocabulary V and Onam ⊆ URI is an expression of the form: G ← F , where
F ∈ L(V,Onam)∪{true} (called condition) and G (called conclusion) is either an
ERDF triple over V or false. We assume that no bound variable in F appears
free in G. We denote the set of variables and the set of free variables of r by
Var(r) and FVar(r)5, respectively. Additionally, we write Cond(r) = F and
Concl(r) = G.
An r-ERDF program P over a vocabulary V and Onam ⊆ URI is a finite set of
r-ERDF rules over V and Onam. We denote the set of URI references and literals
appearing in P by VP . �

Below, we extend the definition of an ERDF ontology, provided in [1], to an
r-ERDF ontology.
4 Without loss of generality, we assume that a variable cannot have both free and

bound occurrences in F , and more than one bound occurrence.
5 FVar(r) = FVar(F) ∪ FVar(G).

4

Definition 3 (r-ERDF ontology). An r-ERDF ontology O over a vocabulary
V and Onam ⊆ URI is a triple O = 〈NamO, LO, IntO〉, where: (i) NamO ∈ Onam

is the name of O, (ii) LO = 〈GO, PO, 〉, is the logic of O, where GO is an ERDF
graph over V and PO is an r-ERDF program over V and Onam, and (iii) IntO =
〈Exppr

O ,Expcl
O , Imppr

O , Impcl
O 〉 is the interface of O, where: For t ∈ {pr, cl}, it

holds that:

– Expt
O is a set of pairs 〈x,Exp〉, where x ∈ V and Exp ⊆ Onam − {NamO} or

Exp = {∗}. It holds that if 〈x,Exp〉 and 〈x,Exp′〉 ∈ Expt
O then Exp = Exp′.

We define: Exportedt
O = {x | ∃ 〈x,Exp〉 ∈ Expt

O} and ExporttO(x) = Exp.
– Impt

O is a set of pairs 〈x, Imp〉, where x ∈ V , and Imp ⊆ Onam − {NamO} or
Imp = {∗}. It holds that if 〈x, Imp〉 and 〈x, Imp′〉 ∈ Impt

O then Imp = Imp′.
We define: Importedt

O = {x | ∃ 〈x, Imp〉 ∈ Impt
O} and ImporttO(x) = Imp.

Let O be an r-ERDF ontology. Intuitively, each pair 〈x,Exp〉 ∈ Exp
pr

O (resp.
〈x,Exp〉 ∈ Expcl

O) corresponds to an export declaration of O, where x is a
property (resp. class) exported by O and Exp is the list of r-ERDF ontologies
to which O is willing to export x. If O is willing to export x to any requesting
r-ERDF ontology then Exp = {∗}.

Similarly, each pair 〈x, Imp〉 ∈ Imp
pr

O (resp. 〈x, Imp〉 ∈ Impcl
O) corresponds to

an import declaration of O, where x is a property (resp. class) requested by O,
and Imp is the list of r-ERDF ontologies from which x is requested. If O requests
x from any providing r-ERDF ontology then Imp = {∗}. Obviously, we do not
allow duplicate export and import declarations for classes and properties in O.

Definition 4 (Modular ERDF ontology). A modular ERDF ontology (MEO)
R is a set of r-ERDF ontologies. �

Example 1. Consider the modular ERDF ontology R = {O1, O2, O3, O4, O5},
shown in Figure 16. Ontology O1, with NamO1

=<http://geography.int>,
provides geographical information, stating that the list of European countries is
positively closed (w.r.t. the list of countries). This local CWA is expressed by
the single rule in PO1

. Ontology O2, with NamO2
=<http://europa.eu>, de-

fines the list of European Union countries (which does not include Croatia) and
states that this list is open (w.r.t. the resources of O2)

7 by declaring the class
eu:CountryEU as total. This local OWA is expressed by the first ERDF triple in
GO2

. Ontology O3, with NamO3
=<http://www.pyramis.gr>, provides infor-

mation regarding the package tours of the greek travel agency Pyramis. Similarly,
ontology O4, with NamO4

=<http://www.travel plan.gr>, provides informa-
tion regarding the package tours of the greek travel agency Travel Plan.

Finally, ontology O5, with NamO5
=<http://www.anne travel pref.gr>,

presents the travel preferences of Anne. Specifically, Anne prefers either (i) a
trip to a non-European country by Pyramis that visits only one city, or (ii) a
trip to an EU country by Travel Plan that visits at least one city, or (iii) a trip
to a European but not EU country by Travel Plan that visits the capital of the

6 Following usual convention, we have replaced ∧ by “,” in the program rules.
7 Note that ontology O2 imports class geo:Country from ontology O1.

5

Ontology O1

〈http://geography.int〉

exports class geo:Country to ∗.
exports class geo:Europ Country to ∗.
exports property geo:capital to ∗.
GO1 =
rdfs:subclass(geo:Europ Country,

geo:Country).

rdf:type(geo:Egypt,geo:Country).

rdf:type(geo:Italy,geo:Europ Country).

rdf:type(geo:Croatia,geo:Europ Country).

geo:capital(geo:Cairo,geo:Egypt).

geo:capital(geo:Zagreb,geo:Croatia).

· · ·
PO1 =
¬ rdf:type(?x,geo:Europ Country) ←

rdf:type(?x,geo:Country),
∼ rdf:type(?x,geo:Europ Country).

Ontology O2

〈http://europa.eu〉

imports class geo:Country from

〈http://geography.int〉.
exports class eu:CountryEU to ∗.
GO2 =
rdf:type(eu:CountryEU, erdf:TotalClass).

rdf:type(geo:Italy,eu:CountryEU).

rdf:type(geo:Greece,eu:CountryEU).
· · ·

Ontology O3

〈http://www.pyramis.gr〉

exports property vac:travel to ∗.
exports property vac:visit to ∗.
GO3 =
vac:travel(pyr:package1,geo:Egypt).

vac:visit(pyr:package1,geo:Cairo).

vac:travel(pyr:package2,geo:Egypt).

vac:visit(pyr:package2,geo:Cairo).

vac:visit(pyr:package2,geo:Luxor).

Ontology O4

〈http://www.travel plan.gr〉

exports property vac:travel to ∗.
exports property vac:visit to ∗.
GO4 =
vac:travel(trav:package1,geo:Italy).

vac:visit(trav:package1,geo:Rome).

vac:travel(trav:package2,geo:Croatia).

vac:visit(trav:package2,geo:Zagreb).

vac:visit(trav:package2,geo:Trogir).

Ontology O5

〈http://www.anne travel pref .gr〉

imports class geo:Europ Country from 〈http://geography.int〉.
imports property geo:capital from 〈http://geography.int〉.
imports class eu:CountryEU from 〈http://europa.eu〉.
imports property vac:travel from ∗.
imports property vac:visit from ∗.
exports property ann:choose trav package to 〈http://www.peter travel pref .gr〉.
PO5 =
eq:id(?x,?x) ← true.

ann:choose trav package(?package,?country) ← ¬ rdf:type(?country,geo:Europ Country),

(vac:travel(?package,?country), vac:visit(?package,?city))@〈http://www.pyramis.gr〉,
∀ ?city′ vac:visit(?package,?city′)@〈http://www.pyramis.gr〉 ⊃ eq:id(?city,?city′).

ann:choose trav package(?package,?country) ← rdf:type(?country,geo:CountryEU),

(vac:travel(?package,?country), vac:visit(?package,?city),
vac:visit(?package,?city′))@〈http://www.travel plan.gr〉, ∼ eq:id(?city,?city′).

ann:choose trav package(?package,?country) ← rdf:type(?country,geo:Europ Country),

¬ rdf:type(?country,geo:CountryEU),
(vac:travel(?package,?country), vac:visit(?package,?city))@〈http://www.travel plan.gr〉,
geo:capital(?city,?country).

Fig. 1. A modular ERDF ontology

6

country. Note that O5 imports the properties vac:travel and vac:visit from
any providing r-ERDF ontology in R (that is, O3 and O4). Additionally, note
that r-ERDF ontology O5 exports property ann:choose trav package to an
r-ERDF ontology, named <http://www.peter travel pref.gr>, not in R. �

Let R be a modular ERDF ontology, let O ∈ R, and let x ∈ Exportedt
O, for

t ∈ {pr, cl}. We define:

ExporttO,R(x) =

�
{NamO′ | O′ ∈ R− {O}} if ExporttO(x) = {∗}
ExporttO(x) ∩ {NamO′ | O′ ∈ R} otherwise

Intuitively, ExportprO,R(x) (resp. ExportclO,R(x)) denotes the r-ERDF ontologies
in R to which O is willing to export property (resp. class) x.

Example 2. Consider the modular ERDF ontology R of Example 1. Then, it
holds that: ExportclO2,R(eu:CountryEU) = {O1, O3, O4, O5}, because ExportclO2

(eu:
CountryEU) = {∗}. Additionally, it holds that Export

pr

O5,R(ann:choose trav

package)={}. �

Let R be a modular ERDF ontology, let O ∈ R, and let x ∈ Importedt
O, for

t ∈ {pr, cl}. We define:

ImporttO,R(x) =

�
ExportingTot

R(x ,O) if ImporttO(x) = {∗}
ImporttO(x) ∩ ExportingTot

R(x ,O) otherwise,

where ExportingTot
R

(x ,O) = {NamO′ | O′ ∈ R, NamO ∈ ExporttO′,R(x)}.

Intuitively, ExportingTo
pr

R
(x ,O) (resp. ExportingTocl

R
(x ,O)) denotes the r-ERDF

ontologies in R that are willing to export property (resp. class) x to O. Addi-
tionally, ImportprO,R(x) (resp. ImportclO,R(x)) denotes the r-ERDF ontologies in
R from which O imports property (resp. class) x.

Example 3. For the modular ERDF ontologyR of Example 1, ExportingTo
pr

R
(vac:

travel, O5) = {O3, O4}. Additionally, ImportprO5,R(vac:travel) = {O3, O4}. �

In order for a modular rule base to be valid, it has to satisfy a number of
validity constraints.

Definition 5 (Valid modular ERDF ontology). A modular ERDF ontology
R is valid iff:

1. If O,O′ ∈ R and O 6= O′ then NamO 6= NamO′ .
2. If O ∈ R and x ∈ Importedt

O, for t ∈ {pr, cl}, then ImporttO(x) = {∗} or
ImporttO(x) ⊆ ExportingTot

R(x, O).
3. If O ∈ R and r ∈ PO such that a qualified ERDF formula F@NamO′ appears

in Cond(r) then: (i) O′ ∈ R, (ii) for each p(s, o), where p 6= rdf :type, appear-
ing in F , it holds that O ∈ Export

pr

O′,R(p), and (iii) for each rdf :type(x, c),

appearing in F , it holds that (a) O ∈ Export
pr

O′,R(rdf :type) or (b) c ∈ URI

and O ∈ ExportclO′,R(c). �

7

Let R be a valid modular ERDF ontology. Constraint (1) of Definition 5
expresses that different r-ERDF ontologies in R should have different names
in order to be uniquely identified. Let O ∈ R. Constraint (2) expresses that if
O requests a property or class x explicitly from an r-ERDF ontology O′ then
it should hold that O′ ∈ R and O′ is willing to export x to O. Assume now
that it exists r ∈ PO s.t. Cond(r) refers to an ERDF formula F of an r-ERDF
ontology O′. Constraint (3.i) expresses that it should hold O′ ∈ R. Constraint
(3.ii) expresses that if r refers to p(s, o) of O′, where p 6= rdf :type, then O′ should
be willing to export property p to O. Additionally, constraint (3.iii) expresses
that if O refers to rdf :type(x, c) of O′ then O′ should be willing to either (a)
export to O the property rdf :type, expressing that all classes of O′ are exported
to O, or (b) export to O just the class c (if c ∈ URI).

Example 4. Modular rule base R of Example 1 is valid. �

In this work, we consider valid modular ERDF ontologies, only. Additionally,
by R, we will denote a valid modular ERDF ontology.

3 Modular ERDF and Herbrand Interpretations

In this section, we define the modular ERDF interpretations of an r-ERDF
ontology w.r.t. a modular ERDF ontology. Additionally, we define satisfaction
of an r-ERDF formula by such a modular ERDF interpretation and an r-ERDF
ontology. Further, we define the modular Herbrand interpretations of an r-ERDF
ontology w.r.t. a modular ERDF ontology.

Below we review the definition of a partial interpretation of a vocabulary V

[1], which is an extension of the definition of a simple interpretation of V [6],
such that each property is associated not only with a truth extension but also
with a falsity extension, allowing for partial properties.

Definition 6 (Partial interpretation of a vocabulary). A partial interpre-
tation I of a vocabulary VI consists of:

– A non-empty set of resources ResI , called the domain or universe of I.
– A set of properties PropI .
– A vocabulary interpretation mapping IV : VI ∩URI→ ResI ∪ PropI .
– A property-truth extension mapping PTI : PropI → P(ResI × ResI).
– A property-falsity extension mapping PFI : PropI → P(ResI × ResI).
– A mapping ILI : VI ∩ T L → ResI .
– A set of literal values LVI ⊆ ResI , which contains V ∩ PL.

We define the mapping: I : VI → ResI ∪ PropI such that: (i) I(x) = IV(x),
∀x ∈ VI ∩ URI, (ii) I(x) = x, ∀ x ∈ VI ∩ PL, and (iii) I(x) = ILI(x),
∀ x ∈ VI ∩ T L. �

A partial interpretation I is coherent iff for all x ∈ PropI , PTI(x) ∩
PFI(x) = ∅.

Let O ∈ R. Below we define the dependencies of O w.r.t. R.

8

Definition 7 (Dependencies of an r-ERDF ontology w.r.t. a MEO).
Let O ∈ R. The dependencies of O w.r.t. R, denoted by DR

O , is the minimum
set of r-ERDF ontologies s.t.: (i) O ∈ DR

O , (ii) if O′ ∈ DR
O and it exists x ∈

Importedt
O′ , for t ∈ {pr, cl}, s.t. NamO′′ ∈ ImporttO′,R(x) then O′′ ∈ DR

O , and

(iii) if O′ ∈ DR
O , r ∈ PO′ , and it exists a qualified ERDF formula F@NamO′′ in

Cond(r) then O′′ ∈ DR
O . �

Example 5. Consider the modular ERDF ontology R of Example 1. It holds:
DR

O1
= {O1}, DR

O2
= {O2, O1}, and DR

O5
= {O5, O1, O2, O3, O4}. �

The vocabulary of RDF, VRDF , is a set of URI references in the rdf : names-
pace [6], and the vocabulary of RDFS, VRDFS , is a set of URI references in the

rdfs: namespace [6]. Let n ∈ IN . We define V#n
RDF = VRDF −{rdf : i | i > n}. The

vocabulary of ERDF is defined as VERDF = {erdf :TotalClass, erdf :TotalProperty}.

Let O ∈ R. We define: (i) nO = 0, if (VGO
∪ VPO

) ∩ {rdf : i | i ≥ 1} = ∅, and
(ii) nO = max({i ∈ IN | rdf : i ∈ VGO

∪ VPO
}), otherwise. Further, we define:

nR = max({nO | O ∈ R}∪{1}). Intuitively, nR is the largest i (i ∈ IN) such that
rdf : i appears in an O ∈ R. In the case that no such an rdf : i exists then nR = 1.
Recall that the rdf : i properties are used in RDF(S) [6] to express members of
containers (i.e. bags, sequences, and alternatives), which are in practice finitely
limited.

Let O ∈ R, and let n ∈ IN . The n#-vocabulary of O is defined as: V
#n
O =

Vsk(GO) ∪ VPO
∪ Exportedpr

O ∪ Exportedcl
O ∪ Importedpr

O ∪ Importedcl
O ∪V

#n
RDF ∪

VRDFS ∪ VERDF . The vocabulary of O w.r.t. R is defined as: VO,R = ∪{V #nR

O′ |
O′ ∈ DR

O }. Intuitively, VO,R corresponds to the local domain of O w.r.t. R.

Let n ∈ IN . Below we define the modular ERDF interpretations of an r-
ERDF ontology w.r.t. a modular ERDF ontology. In this definition, we use
the definition of an ERDF #n-interpretation over a vocabulary V (see [2]), not
reviewed here due to space limitations. Intuitively, an ERDF #n-interpretation I

of a vocabulary V is a partial interpretation of VI = V ∪V#n
RDF ∪VRDFS∪VERDF

that assigns truth and falsity extensions to the classes8 and properties in VI ,
satisfying: (i) all semantic conditions of an RDFS interpretation [6] of V , except
these referring to {rdf : i | i > n} terms, as well as (ii) new semantic conditions,
particular to ERDF.

Definition 8 (Modular ERDF interpretation). Let O ∈ R. A modular
ERDF interpretation of O w.r.t. R is a set I = {IO′ | O′ ∈ DR

O }, where IO′ is an
ERDF #nR-interpretation of VO′,R and it holds:

1. If O′ ∈ DR

O , p ∈ Importedpr

O′,R
, and NamO′′ ∈ Importpr

O′,R
(p) then PTIO′ (IO′(p)) ⊇

PTIO′′ (IO′′(p)), and PFIO′ (IO′(p)) ⊇ PFIO′′ (IO′′(p)), and

8 The truth and falsity extension of a class c ∈ VI is indicated by CTI(I(c)) and
CFI(I(c)), respectively. It holds: (i) x ∈ CT I(y) iff 〈x, y〉 ∈ PT I(I(rdf :type)), and
(ii) x ∈ CF I(y) iff 〈x, y〉 ∈ PF I(I(rdf :type)).

9

2. If O′ ∈ DR

O , c ∈ Importedcl
O′,R, and NamO′′ ∈ ImportclO′,R(c) then CTIO′ (IO′(c)) ⊇

CTIO′′ (IO′′(c)), and CFIO′ (IO′(c)) ⊇ CFIO′′ (IO′′(c)). �

Below, we define satisfaction of an r-ERDF formula w.r.t. a modular ERDF
interpretation, an r-ERDF ontology, and a valuation. First, we provide an auxil-
iary definition. Let I be a partial interpretation of a vocabulary VI , let Res be a
set, and let v be a partial function v : Var → Res (called valuation). If x ∈ Var ,
we define [I + v](x) = v(x). If x ∈ VI , we define [I + v](x) = I(x).

Definition 9. (Satisfaction of an r-ERDF formula w.r.t. a modular
ERDF interpretation, an r-ERDF ontology, and a valuation) Let O ∈ R.
Let I = {IO′ | O′ ∈ DR

O } be a modular ERDF interpretation of O w.r.t. R. Ad-
ditionally, let F,G be r-ERDF formulas over {NamO′ | O′ ∈ DR

O }. For each
O′, O′′ ∈ DR

O and for each mapping v : Var(F)→ ResIO′
:

– If F = p(s, o) then 〈I, O′, v〉 |= F iff p ∈ VIO′ ∩ URI, s, o ∈ VIO′ ∪ Var , IO′(p) ∈
PropIO′ , and 〈[IO′ + v](s), [IO′ + v](o)〉 ∈ PT IO′ (IO′(p)).

– If F = ¬p(s, o) then 〈I, O′, v〉 |= F iff p ∈ VIO′ ∩ URI, s, o ∈ VIO′ ∪ Var , IO′(p) ∈
PropIO′ , and 〈[IO′ + v](s), [IO′ + v](o)〉 ∈ PF IO′ (IO′(p)).

– If F = ∼G then 〈I, O′, v〉 |= F iff VG ⊆ VIO′ and 〈I, O′, v〉 6|= G.
– If F = F1∧F2 then 〈I, O′, v〉 |= F iff 〈I, O′, v〉 |= F1 and 〈I, O′, v〉 |= F2.
– If F = F1∨F2 then 〈I, O′, v〉 |= F iff 〈I, O′, v〉 |= F1 or 〈I, O′, v〉 |= F2.
– If F = F1 ⊃ F2 then 〈I, O′, v〉 |= F iff 〈I, O′, v〉 |= ∼F1∨F2.
– If F = ∃x G then 〈I, O′, v〉 |= F iff there exists a mapping u : Var(G) → ResIO′

such that u(y) = v(y), ∀y ∈ Var(G)− {x}, and 〈I, O′, u〉 |= G.
– If F = ∀x G then 〈I, O′, v〉 |= F iff for all mappings u : Var(G) → ResIO′ such

that u(y) = v(y), ∀y ∈ Var(G)− {x}, it holds 〈I, O′, u〉 |= G.
– If F = G@NamO′′ then 〈I, O′, v〉 |= F iff 〈I, O′′, v〉 |= G. �

Let I be a modular ERDF interpretation of O w.r.t. R and let F be an
r-ERDF formula. We define: 〈I, O′〉 |= F iff for each mapping v : Var(F) →
ResIO′

, it holds that 〈I, O′, v〉 |= F . Additionally, let G be an ERDF graph. We
define: 〈I, O′〉 |= G iff 〈I, O′〉 |= formula(G). We assume that for every function
v : Var → ResIO′

, it holds that 〈I, O′, v〉 |= true and 〈I, O′, v〉 6|= false.
Below, we define the modular models of an r-ERDF ontology w.r.t. a modular

ERDF ontology.

Definition 10 (Modular ERDF model). Let O ∈ R. Let I = {IO′ | O′ ∈
DR

O } be a modular ERDF interpretation of O w.r.t. R and let O′ ∈ DR
O :

– We say that 〈I, O′〉 satisfies an r-ERDF rule r, denoted by 〈I, O′〉 |= r, iff it holds:
For all mappings v : Var(r) → ResIO′ , if 〈I, O′, v〉 |= Cond(r) then 〈I, O′, v〉 |=
Concl(r).

– We say that I is a modular (ERDF) model of O w.r.t. R, denoted by I |=R O, iff
for all O′ ∈ DR

O , 〈I, O′〉 |= GO′ and 〈I, O′〉 |= r, ∀ r ∈ PO′ . �

Let O ∈ R. We denote by ResHO,R the union of VO,R and the set of XML
values of the well-typed XML literals in VO,R minus the well-typed XML literals.
Below we define the modular Herbrand interpretations of O w.r.t. R, extending
the definition of a Herbrand interpretation of an ERDF ontology [1].

10

Definition 11 (Modular ERDF Herbrand interpretation). Let O ∈ R.
Let I = {IO′ | O′ ∈ DR

O } be a modular ERDF interpretation of O w.r.t. R. We
say that I is a modular (ERDF) Herbrand interpretation of O w.r.t. R iff for each
O′ ∈ DR

O :

– ResIO′ = ResHO′,R.
– IO′

V
(x) = x, for all x ∈ VO′,R ∩URI.

– ILIO′ (x) = x, if x is a typed literal in VO′,R other than a well-typed XML literal,
and ILIO′ (x) is the XML value of x, if x is a well-typed XML literal in VO′,R.

We denote the set of modular Herbrand interpretations of O w.r.t. R by IHO,R.
�

Let O ∈ R. Let I = {IO′ | O′ ∈ DR
O } be a modular Herbrand interpretation

of O w.r.t. R. We say that I is a modular (ERDF) Herbrand model of O w.r.t.
R iff for all O′ ∈ DR

O , (i) 〈I, O′〉 |= sk(GO′) and (ii) for all r ∈ PO′ , 〈I, O′〉 |= r.
We denote the set of modular Herbrand models of O w.r.t. R byMH

O,R.
It holds that: if M is a modular Herbrand model of O w.r.t. R then M is a

modular model of O w.r.t. R.

4 Modular Stable Models & Complexity Results

In this Section, we define the modular stable models of an r-ERDF ontology
w.r.t. a modular ERDF ontology, and provide some of their properties. Addi-
tionally, we provide several complexity results.

Let O ∈ R. We proceed by defining a partial ordering on the modular Her-
brand interpretations of O w.r.t. R.

Definition 12 (Modular Herbrand interpretation ordering). Let O ∈ R.
Let I, J ∈ IHO,R. We say that J extends I, denoted by I ≤ J (or J ≥ I) iff: For all

O′ ∈ DR
O , it holds that (i) PropIO′

⊆ PropJO′
, and for all p ∈ PropIO′

, it holds
PTIO′

(p) ⊆ PTJO′
(p) and PFIO′

(p) ⊆ PFJO′
(p). �

Let O ∈ R. The intuition behind Definition 12 is that by extending a modular
Herbrand interpretation of O w.r.t. R, we extend both the truth and falsity
extension for all properties of O′ ∈ DR

O , and thus (since rdf :type is a property),
for all classes.

Let I ⊆ IHO,R. We define minimal(I) = {I ∈ I | 6 ∃J ∈ I : J 6= I and J ≤ I}.

Let I, J ∈ IHO,R. We define [I, J]O,R = {I′ ∈ IHO,R, I ≤ I
′ ≤ J}.

Let V be a vocabulary and let r be an r-ERDF rule. We denote by [r]V the
set of rules that result from r if we replace each variable x ∈ FVar(r) by v(x),
for all mappings v : FVar(r) → V . Let P be an r-ERDF program. We define
[P]V =

⋃
r∈P [r]V .

In [2], we defined the #n-stable models of an ERDF ontology (for an n ∈ IN),
based on the coherent stable models of partial logic [7] (which, on ELPs, are
equivalent [7] to Answer Sets [5]). Here, we extend this definition to modular
stable models of an r-ERDF ontology w.r.t. a modular ERDF ontology.

11

Definition 13 (Modular ERDF stable model). Let O ∈ R, and let M ∈
IHO,R. We say that M is a modular (ERDF) stable model of O w.r.t. R iff there
is a chain of modular Herbrand interpretations of O w.r.t. R, I0 ≤ ... ≤ Ik such
that Ik−1 = Ik = M and:
1. I0 ∈ minimal({I ∈ IHO,R | ∀O

′ ∈ DR

O , 〈I, O′〉 |= sk(GO′)}).
2. For 0 < α ≤ k:

Iα ∈ minimal({I ∈ IHO,R | I ≥ Iα−1 and ∀O′ ∈ DR

O , it holds that:
if r ∈ [PO′]VO′,R

s.t. 〈J, O′〉 |= Cond(r), ∀J ∈ [Iα−1, M]O,R, then 〈I, O′〉 |=
Concl(r)}).

The set of modular stable models of O w.r.t. R is denoted byMst
O,R. �

Example 6. Consider the modular ERDF ontology R of Example 1. For every
M ∈Mst

O5,R, it holds 〈M, O1〉 |= ¬ rdf:type(geo:Egypt,geo:Europ Country).
This is due to the local CWA in PO1

. Now, since O5 imports class geo:Europ

Country from O1, for every M ∈ Mst
O5,R, it holds 〈M, O5〉 |= ¬ rdf:type(geo:

Egypt,geo:Europ Country). Therefore, due to the 2nd rule of PO5
, for ev-

ery M ∈ Mst
O5,R, 〈M, O5〉 |= ann:choose trav package(pyr:package1,geo:

Egypt).
Note the ERDF triple rdf:type(eu:CountryEU,erdf:TotalClass) in GO2

,
expressing a local OWA. Therefore, in some M ∈ Mst

O5,R, it holds 〈M, O2〉 |= ¬
rdf:type(geo:Croatia,eu:CountryEU), while in the rest M

′ ∈Mst
O5,R, it holds

〈M′, O2〉 |= rdf:type(geo:Croatia,eu:CountryEU). Now note that O5 imports
class eu:CountryEU from O2. Thus, in some M ∈ Mst

O5,R, it holds 〈M, O5〉 |= ¬
rdf:type(geo:Croatia,eu:CountryEU), while in the rest M

′ ∈Mst
O5,R, it holds

〈M′, O5〉 |= rdf:type(geo:Croatia,eu:CountryEU). Reasoning now by cases
and due to the 3rd and 4th rule of PO5

, for every M ∈Mst
O5,R, it holds 〈M, O5〉 |=

ann:choose trav package(trav:package2,geo:Croatia). �

The following proposition shows that any modular stable model of O w.r.t.
R is a modular Herbrand model of O w.r.t. R.

Proposition 1. Let O ∈ R. If M ∈Mst
O,R then M ∈MH

O,R.

On the other hand, if all properties of O′ ∈ DR
O are total, a modular Herbrand

model M of O w.r.t. R is a modular stable model of O w.r.t. R.

Proposition 2. Let O ∈ R. If rdfs:subclass(rdf :Property , erdf :TotalProperty) ∈
GO′ , for all O′ ∈ DR

O , then Mst
O,R =MH

O,R.

The following proposition relates the modular stable models of different r-
ERDF ontologies w.r.t. a modular ERDF ontology.

Proposition 3. Let O ∈ R and let O′ ∈ DR
O . Let M ∈ IHO,R and let M

′ =

{MO′′ ∈ M | O′′ ∈ DR
O′}. It holds that: If M ∈Mst

O,R then M
′ ∈Mst

O′,R. �

Let O ∈ R. We say that O is inconsistent under the modular stable model
semantics w.r.t. R iff Mst

O,R = {}.

Let O ∈ R, and let O′ ∈ DR
O . It follows directly from Proposition 3 that if

O′ is inconsistent under the modular stable model semantics w.r.t. R then O is
also inconsistent under the modular stable model semantics w.r.t. R. Obviously,
due to the definition of DR

O in Definition 7, all other r-ERDF ontologies in R
remain unaffected from the local inconsistency.

12

Definition 14 (Modular ERDF stable model entailment). Let O ∈ R.
Additionally, let F be an r-ERDF formula. We say that O entails F w.r.t. R
under the modular ERDF stable model semantics, denoted by O |=st

R
F iff for

all M ∈Mst
O,R, 〈M, O〉 |= F . �

The following proposition shows that modular stable model entailment ex-
tends #n-stable model entailment from ERDF ontologies to modular ERDF
ontologies.

Proposition 4. Let O = 〈G,P 〉 be an ERDF ontology and let F be an ERDF
formula. Additionally, let O′ be an r-ERDF ontology such that GO′ = G, PO′ =
P , and IntO′ = {}. It holds: O |=st#nR F iff O′ |=st

R
F , where R = {O′}.

The following corollary follows directly from the above proposition and Propo-
sition 3 in [2], and it shows that modular stable model entailment extends RDFS
entailment from RDF graphs to modular ERDF ontologies.

Corollary 1. Let G,G′ be RDF graphs such that VG ∩ VERDF = ∅, VG′ ∩
VERDF = ∅, and VG′ ∩ skG(Var(G)) = ∅. Let O be an r-ERDF ontology with
GO = G, PO = {}, and IntO = {}. If max({i ∈ IN | rdf : i ∈ VG′}) ≤ nR then:
G |=RDFS G′ iff O |=st

R
G′, where R = {O}.

Let O ∈ R and let F be an r-ERDF formula. The modular stable answers of
F w.r.t. O and R are defined as follows9:

AnsstO,R(F) =

8<: “yes” if FVar(F) = ∅ and O |=st
R F

“no” if FVar(F) = ∅ and O 6|=st
R F

{v : FVar(F)→ VO,R | O |=
st
R v(F)}, if FVar(F) 6= ∅

Example 7. Consider the modular ERDF ontology R of Example 1. Then:
AnsstO5,R(ann:choose trav package(?x, ?y)) = {〈?x =pyr:package1,?y = geo:Egypt〉,

〈?x = trav:package2,?y = geo:Croatia〉}. �

An r-ERDF formula is called simple, if it has the form: t1∧...∧tk∧∼tk+1∧...∧
∼tn ∧(∼t′1)@NamO1

∧...∧ (∼t′m)@NamOm
, where (i) each ti is a normal or

qualified ERDF triple (positive or negative), (ii) each t′i is a normal ERDF
triple (positive or negative), and (iii) each Oi is an r-ERDF ontology. An r-
ERDF program P is called simple if the body of each rule in P is simple, or
true. Let R be a modular ERDF ontology and let O ∈ R. O is called simple
w.r.t. R, if for each O′ ∈ DR

O , PO′ is simple.
Let O ∈ R s.t. O is simple w.r.t. R. We can show that the modular stable

answers of a simple r-ERDF formula F w.r.t. O and R can be computed through
Answer Set Programming [5] on an ELP ΠO,R.

Below, we state several complexity results of the modular ERDF stable model
semantics. We define size inst(O,R) =

∑
{size of (GO′∪[PO′]VO′,R

) | O′ ∈ DR
O }.

Proposition 5. Let O ∈ R, and let F be an r-ERDF formula. Additionally, let
v be (i) one of {“yes”, “no”}, if Var(F) = ∅, or (ii) a mapping v : Var(F) →
VO,R, if Var(F) 6= ∅.
9 v(F) is the formula F after replacing all the free variables x in F by v(x).

13

1. If O is a simple r-ERDF ontology w.r.t. R then: (i) the problem of establish-
ing whether O has a modular stable model w.r.t. R is NP-complete w.r.t.
size inst(O,R), and (ii) the problem of establishing whether v ∈ AnsstO,R(F)
is co-NP-complete w.r.t. size inst(O,R).

2. If for all O′ ∈ DR
O , no quantifies ∀, ∃ appear in PO′ then: (i) the problem of

establishing whether O has a modular stable model w.r.t.R is ΣP
2 = NPNP -

complete w.r.t. size inst(O,R), and (ii) the problem of establishing whether
v ∈ AnsstO,R(F) is ΠP

2 = co-NPNP -complete w.r.t. size inst(O,R).
3. In the general case, (i) the problem of establishing whether O has a modular

stable model w.r.t. R is PSPACE -complete w.r.t. size inst(O,R), and (ii)
the problem of establishing whether v ∈ AnsstO,R(F) is PSPACE -complete
w.r.t. size inst(O,R).

5 Conclusions & Related Work

In this paper, we extended ERDF ontologies [1], and thus RDF graphs to r-
ERDF ontologies. In particular, an r-ERDF ontology is an ERDF ontology that
(i) is associated with a set of export and import statements, and (ii) interacts
with other r-ERDF ontologies (through qualified ERDF formulas in the pro-
gram rules). Further, we defined a modular ERDF ontology as a set of r-ERDF
ontologies and defined its modular stable model semantics, model-theoretically,
based on partial logic [7]. We showed that modular stable model entailment
on modular ERDF ontologies extends #n-stable model entailment on ERDF
ontologies [2], and thus it also extends RDFS entailment on RDF graphs [6].
Future work concerns (i) the extension of the modular stable model semantics
such that meaning is assigned to inconsistent r-ERDF ontologies of a modular
ERDF ontology, and (ii) the implementation of the modular ERDF framework.

N3Logic [3] allows rules to be integrated with RDF. Indeed, part of the
RDFS semantics is represented by program rules. Yet, the supported form of
negation as failure, expressed through the built-in log:notincludes, is limited.
Additionally, N3Logic does not have a model-theoretic semantics that faithfully
extends RDFS semantics [6], does not support explicit negation and general
formulas in the body of the rules, and ignores visibility issues.

A modularity framework for RDF rule bases (without blank nodes) is pro-
posed in [11]. There, RDFS semantics are partially represented through a normal
logic program, associated with a special context/module cRDFS . The contextu-
ally closed AS and contextually closed WFS semantics of such a modular RDF
rule base R are defined, through the AS [5] and WFS [4] semantics of a normal
logic program RCC , generated from R, respectively. Yet, this framework does
not have a model-theoretic semantics that faithfully extends RDFS semantics
[6], does not support explicit negation and general formulas in the body of the
rules, and ignores visibility issues.

TRIPLE [12] is a rule language for the Semantic Web that supports mod-
ules (called, models there), qualified literals, and dynamic module transforma-
tion. Arbitrary formulas can be used in the body of a rule, handled through

14

the Lloyd-Topor transformations [9]. Part of the semantics of the RDF(S) vo-
cabulary is represented as pre-defined rules (and not as semantic conditions on
interpretations), which are grouped together in a module. The semantics of a
modular rule base is defined, based on the well-founded semantics (WFS) [4] of
an equivalent logic program. Yet, the model-theoretic semantics of TRIPLE [13]
does not faithfully extend RDFS semantics [6] and is not, in general, equiva-
lent to its transformational semantics. Additionally, TRIPLE does not support
explicit negation and ignores visibility issues.

References

1. A. Analyti, G. Antoniou, C. V. Damásio, and G. Wagner. Extended RDF as a
Semantic Foundation of Rule Markup Languages. Journal of Artificial Intelligence
Research (JAIR), 32:37–94, 2008.

2. A. Analyti, G. Antoniou, C. V. Damásio, and G. Wagner. On the Computabil-
ity and Complexity Issues of Extended RDF. In 10th Pacific Rim International
Conference on Artificial Intelligence (PRICAI-2008), pages 5–16, 2008.

3. T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, and J. Hendler. N3Logic: A
Logical Framework For the World Wide Web. TPLP, 8(3):249–269, 2008.

4. A. V. Gelder, K. A. Ross, and J. S. Schlipf. The Well-Founded Semantics for
General Logic Programs. Journal of the ACM, 38(3):620–650, 1991.

5. M. Gelfond and V. Lifschitz. Logic programs with Classical Negation. In 7th
International Conference on Logic Programming, pages 579–597, 1990.

6. P. Hayes. RDF Semantics. W3C Recommendation, 10 February 2004. Available
at http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.

7. H. Herre, J. Jaspars, and G. Wagner. Partial Logics with Two Kinds of Negation as
a Foundation of Knowledge-Based Reasoning. In D. M. Gabbay and H. Wansing,
editors, What Is Negation? Kluwer Academic Publishers, 1999.

8. G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts
and Abstract Syntax. W3C Recommendation, 10 February 2004. Available at
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

9. J. W. Lloyd and R. W. Topor. Making Prolog more Expressive. Journal of Logic
Programming, 1(3):225–240, 1984.

10. E. Oikarinen and T. Janhunen. Achieving compositionality of the stable model
semantics for smodels programs. TPLP, 8(5–6):717–761, 2008.

11. A. Polleres, C. Feier, and A. Harth. Rules with Contextually Scoped Negation. In
3rd European Semantic Web Conference (ESWC-2006), pages 332–347, 2006.

12. M. Sintek and S. Decker. TRIPLE - A Query, Inference, and Transformation
Language for the Semantic Web. In 1st International Semantic Web Conference
(ISWC-2002), pages 364–378. Springer-Verlag, 2002.

13. W. N. Stefan Decker, Michael Sintek. The Model-Theoretic Semantics of TRIPLE.
Technical Report, 2002.

14. G. Wagner, A. Giurca, I.-M. Diaconescu, G. Antoniou, A. Analyti, and C. Damasio.
Reasoning on the Web with Open and Closed Predicates. In 3rd International
Workshop on Applications of Logic Programming to the (Semantic) Web and Web
Services (ALPSWS 2008), in conjunction with ICLP’08, pages 71–84, 2008.

15

