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A formal theory is presented for the balanced evolution of a small-amplitude, small-scale wave field in
the presence of an axisymmetric vortex initially in gradient-wind balance and the accompanying changes
induced in the vortex by the azimuthally averaged wave fluxes. The theory is a multi-parameter, asymptotic
perturbation expansion for the conservative, rotating, f -plane, shallow-water equations. It extends previous
work on Rossby-wave dynamics in vortices and more generally provides a new perspective on wave/mean-
flow interaction in finite Rossby-number regimes. Some illustrative solutions are presented for a perturbed
vortex undergoing axisymmetrization.
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1 INTRODUCTION

Vortices commonly arise and often persist for lengthy intervals in the atmosphere

and ocean, especially in circumstances influenced by Earth’s rotation and stable density

stratification. A central component in the dynamical theory of vortices is the fact that

an axisymmetric azimuthal circulation in hydrostatic, gradient-wind momentum

balance with the radial and vertical pressure-gradient and density fields is an

exact, stationary solution of the conservative fluid-dynamical equations (McWilliams,

1989). Another element is the fact that perturbed vortices with smooth and

approximately monotonic radial vorticity profiles tend to relax back towards a

stationary state (i.e., axisymmetrize), with a decay of the asymmetric components

and accompanying changes in the radial and vertical profiles of the azimuthal vortical

flow. This relaxation process is an essential feature of the robustness (emergence,

persistence) of vortices. It can be advectively nonlinear for sufficiently large initial

perturbations, and it is ultimately dissipative as the asymmetric components
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irreversibly evolve towards very small scales. Nevertheless, useful insights into how

relaxation occurs should come from linearized, inviscid analyses of intermediate-time

evolution.

In this article we derive an asymptotic perturbation theory for the evolution of

a weak-amplitude, small-scale wave field in the presence of an axisymmetric vortex

and for the azimuthally averaged changes in the initial vortex profile caused by rectified

wave fluxes of mass, momentum, and potential vorticity. The theory generalizes a pre-

vious vortex Rossby-wave theory in Montgomery and Kallenbach (1997) – hereafter

MK97 – and Moller and Montgomery (1999) (see Appendix B). We derive it for the

simple dynamics of a rotating, shallow-water fluid layer on an f -plane (i.e., constant

Coriolis frequency), though we envision that it may later be extended to a

fully three-dimensional, rotating, stratified fluid. We make the assumption of inviscid,

adiabatic dynamics, since nonconservative influences are often either weak in

magnitude or occur only at late times in large-scale flows with large Reynolds

number. These assumptions can later be relaxed where physically required (e.g., internal

heating or surface drag). Finally, we assume that the evolution of both the waves and

the vortex satisfies the dynamical constraints of balance (i.e., the [total horizontal] velo-

city in the plane perpendicular to the [vertical] vortex axis is weakly divergent). Balance

constraints exclude fast wave motions of several types from the class of solutions:

acoustic, surface and internal gravitational, and inertial.1 These constraints are typi-

cally well satisfied by large-scale flows in the atmosphere and ocean either due to the

influences of Earth’s rotation and a stable density stratification with small or modest

values of Rossby and Froude numbers (e.g., the Balance Equations, BE; McWilliams

et al., 1998) or due to the rapid rotation of the vortex core (e.g., Asymmetric

Balance, AB; Shapiro and Montgomery, 1993). Quite a large variety of approximate,

balanced models have been previously proposed (McWilliams and Gent, 1980), but

experience comparing alternatives has shown that they often yield rather similar results

(e.g., Allen et al., 1990).

For the asymptotic theory of vortex dynamics, the desirable properties are the fol-

lowing:

. Validity in vortices with finite Rossby number.

. Validity in vortices whose horizontal scale can be either large or small compared to

the internal deformation radius.

. Validity for vortex wave fluctuations whose horizontal divergence is not necessarily

small compared to the vertical vorticity.

. Simple conservation laws for both the wave and vortex evolution equations.

. Governing equations for only a single dependent variable, rather than for a multi-

variate system, for both the wave and vortex evolutions.

The assumptions of the theory are that the lateral scale and amplitude of the vortex

perturbation are small compared to the vortex profile. Thus the theory is in the

category of quasi-linear waves (i.e., the only retained nonlinearity is for wave/

mean-flow interaction) in a slowly varying medium (the vortex). The scale-separation

1Unbalanced instabilities are also possible; see, e.g. Ford (1994) for a Rankine vortex or Molemaker et al.
(2001) for a Taylor-Couette flow. However, the growth rates for such instabilities are typically small for
moderate or small Rossby number, and they are not our present focus.
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and vortex-profile assumptions exclude two other linear, vortex-wave phenomena:

vortex shear instability (e.g., Flierl, 1988) and large-scale, quasi-mode perturbation

decay (Schecter et al., 2000; Balmforth et al., 2001). We make no attempt here

to define the regime boundaries among these phenomena. The scale separation assump-

tion also allows an escape from the singular spatial structure of the continuous spectrum

of neutral normal modes in a shear flow (Drazin and Howard, 1966).

The motivations for having such a theory are manifold. Among the phenomena that

may be addressed by applications of this theory are the following: horizontal vortex axi-

symmetrization (McCalpin, 1987; Melander et al., 1987; Sutyrin, 1989; MK97; Bassom

and Gilbert, 1998; Brunet and Montgomery, 2002); vortex spiral evolution (Lundgren,

1982; Moffat, 1986; Gilbert, 1988); vertical alignment (i.e., relaxation of perturbations

that tilt the vortex axis away from the vertical Sutyrin et al., 1998; Polvani and

Saravanan, 2000; Reasor and Montgomery, 2001; Schecter et al., 2002); evolutionary

parity selection of either anticyclonic vortices away from boundaries (Cushman-

Roisin and Tang, 1990; Polvani et al., 1994; Arai and Yamagata, 1994; Yavneh et

al., 1997; Stegner and Dritschel, 2000) or cyclonic vortices adjacent to solid horizontal

boundaries (Simmons and Hoskins, 1978; Snyder et al., 1991; Rotunno et al., 2000;

Hakim et al., 2002), both due to their greater robustness to perturbations at finite

Rossby number; conservative vortex dynamics in shearing or straining flows

(Marcus, 1990; Bassom and Gilbert, 1999); tropical cyclone development and potential

vorticity redistribution (Guinn and Schubert, 1993; Montgomery and Enagonio, 1998;

Schubert et al., 1999; Moller and Montgomery, 1999, 2000); and astrophysical accre-

tion and protoplanetary disks (Bracco et al., 1999; Mayer et al., 2002; Nauta, 1999).

It is not our present purpose to report particular solutions of the formal theory required

for these various applications. However, we do include an illustration of axisymmetri-

zation (Section 8).

The derived wave/mean-flow theory is accurate to second order in the wave

amplitude. The balanced-vortex evolution is a generalization of Eliassen’s (1951) classic

model. The vortex theory possesses a ‘‘nonacceleration’’ theorem for stationary

disturbances (Andrews and McIntyre, 1978; Andrews et al., 1987), although the

nature of vortex Rossby waves is such that the stationarity assumption is generally

not satisfied for freely evolving waves except for strictly neutral normal modes or at

long times for sheared waves when the geopotential wave amplitude decays to zero.

The equation for the vortex tangential velocity tendency exhibits two distinct eddy

forces: the first is related to the tendency of angular ‘‘pseudo-momentum density’’

(e.g., Held, 1985), and the second involves the contribution from the balanced waves

to the eddy fluxes of radial momentum. Thus, in this vortex-evolution theory the

‘‘pseudo-momentum rule’’ does not hold generally (cf., McIntyre, 1981).

The plan of the article is as follows. Section 2 presents the basic equations and

their stationary vortex solutions. Section 3 introduces balanced approximations for

wave and vortex evolution. Section 4 is a nondimensionalization and identification

of the important parameters. Section 5 derives the slowly varying wave theory,

and Section 6 derives the quasi-linear vortex-evolution theory. Section 7 discusses

some special circumstances implicated in these theories, and Section 8 analyzes

some illustrative solutions for typical vortex Rossby waves. Section 9 is a summary

and discussion. Appendix A records several asymptotic limits of the theory, and

Appendix B describes the relation between the present theory and a previous one

(MK97).
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2 SHALLOW-WATER EQUATIONS AND THE MEAN VORTEX

The conservative, rotating shallow-water equations with a free top surface and flat

solid bottom surface in cylindrical coordinates ðr, �, tÞ are the following

Dûu

Dt
� v̂v2

r
� f v̂v ¼ � @�̂�

@r
,

Dv̂v

Dt
þ ûuv̂v

r
þ f ûu ¼ � 1

r

@�̂�

@�
,

D�̂�

Dt
þ gĥhJE ûu ¼ 0, ð1Þ

where ûu ¼ ðûu, v̂vÞ is the horizontal¼ (radial, azimuthal) velocity; �̂� is the dynamic

pressure; ĥh ¼ Ho þ g�1�̂� is the layer thickness (with Ho the mean thickness and g

the vertical gravitational acceleration); f is the constant Coriolis frequency; J ¼
ð@r, r�1@�Þ is the horizontal gradient operator; and D=Dt ¼ @t þ ûuEJ is the substantial

time derivative. The first two equations in (1) are horizontal momentum balances,

and the last one is mass conservation, or continuity. A linear differential combination

of (1) yields the equation for the advective conservation of potential vorticity,

Dq̂q

Dt
¼ 0, q̂q ¼ f þ �̂�

gĥh
, ð2Þ

where �̂� ¼ r�1@rðrv̂vÞ � r�1@�ûu is the vertical component of vorticity. The shallow-water
equations conserve the area integrals of energy and enstrophy densities,

Eswe ¼
1

2
ĥhðûu2 þ v̂v2Þ þ 1

g
�̂�2

� �

, Vswe ¼
1

2
ĥhq̂q2: ð3Þ

We denote a mean vortex solution to (1) by

ûu ¼ 0, v̂v ¼ vðrÞ, @r�̂� ¼ @r�ðrÞ ¼ f vþ v2

r
, ð4Þ

where the final relation is referred to as axisymmetric gradient-wind balance. This

solution is a dynamically stationary state that may or may not be stable to weak

perturbations. It has the following auxiliary variables:

h ¼ Ho þ
1

g
�, � ¼ v

r
, � ¼ 1

r
@rðrvÞ,

� � JEu ¼ 0, q ¼ f þ �

gh
, ð5Þ

278 J.C. McWILLIAMS et al.



which are, respectively, the mean layer thickness, angular velocity, vertical vorticity,

horizontal divergence, and potential vorticity.

To obtain equations for the evolution of deviations from the mean vortex, we

substitute

ûu ¼ uðr, �, tÞ, v̂v ¼ vðrÞ þ vðr, �, tÞ, �̂� ¼ �ðrÞ þ �ðr, �, tÞ ð6Þ

into (1). The result is

Du� �v ¼ �@r��Nu,

Dvþ 	u ¼ � 1
r
@���Nv,

D�þ gh�þ @r�u ¼ �N�, ð7Þ

where � ¼ r�1@rðruÞ þ r�1@�v is the horizontal divergence; D ¼ @t þ�@� is the substan-

tial derivative due to the mean vortex; � ¼ f þ 2� is the modified Coriolis frequency;
	 ¼ f þ � is the mean absolute vorticity; and the nonlinear terms are defined by

Nu ¼ u@ruþ
1

r
v@�u�

v2

r
,

Nv ¼ u@rvþ
1

r
v@�vþ

uv

r
,

N� ¼ 1

r
@rðru�Þ þ

1

r
@�ðv�Þ: ð8Þ

The associated potential-vorticity principle for (7) is

Dqþ @rðln qÞu ¼
1

r	

�

@�N
u � @rðrNvÞ

�

þ 1
gh

N�,

q ¼ 1

r	
@rðrvÞ � @�u½ 
 � 1

gh
�: ð9Þ

(Note the difference in units compared to q̂q in (2).) The fluctuation amplitudes may be

assigned quadratic energy and enstrophy norms, similar in form to (3), viz., the area

integrals of

Ef ¼
1

2
hðu2 þ v2Þ þ 1

g
�2

� �

, Vf ¼
1

2
hq2: ð10Þ

However, these quantities are not conserved due to exchanges with the mean vortex and

cubic nonlinearities.

We define a vortex as a balanced, axisymmetric azimuthal flow. Obviously, the mean

vortex, v in (4), has these attributes, but so also does the vortex change, hvi (with
angle brackets denoting an azimuthal average), that may develop from (7) to (8)

due to the presence of wave fluctuations. (We complementarily define a wave as a
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fluctuation with zero azimuthal mean.) We are interested in azimuthally averaged

fluctuation dynamics, both for the shallow-water equations,

@thui � �hvi ¼ �@rh�i � hNui,
@thvi þ 	hui ¼ �hNvi,

@th�i þ ghh�i þ @r�hui ¼ �hN�i, ð11Þ

where h�i ¼ r�1@rðrhuiÞ, and the associated potential-vorticity principle,

@thqi þ @rðln qÞhui ¼ �
1

r	
@rðrhNviÞ þ 1

gh
hN�i,

hqi ¼ 1
r	

@rðrhviÞ �
1

gh
h�i: ð12Þ

These simpler formulas, compared to those above, are a consequence of h@�Qi ¼ 0 for
any Q.

3 BALANCE MODELS

The mean vortex (4) is an exact solution to (1). It also satisfies balanced constraints (i.e.,

gradient-wind balance), with � ¼ 0 and no manifestation of fast-wave behavior.
However, both the wave equations (7)–(9) and the vortex-evolution equations (11)–

(12) admit balanced and unbalanced solutions in general. Since our focus is on balanced

evolution, we make approximations in this section that introduce balance constraints

separately for the waves and vortex.

One procedure for excluding unbalanced motions was proposed by Shapiro and

Montgomery (1993), viz., Asymmetric Balance (AB). For our purposes we view AB

as an iterative procedure in a small parameter (defined in Section 4), where u is succes-

sively approximated as a functional of � by substitutions in the right-hand side of the

rewritten momentum equations from (7),

u ¼ � 1
	

1

r
@��þDvþNv

� �

v ¼ 1
�

@r�þDuþNu
� �

, ð13Þ

followed by their substitution into either the continuity relation in (7) or the potential-

vorticity equation (9), which then yields a single (balanced) equation for �. So there are

varieties of AB models, depending upon the number of iterations and the substitution

path followed, as well as other balanced varieties, e.g., the Balance Equations.2

2As is commonly true for asymptotic analyses, an approximation at any given order in an expansion is in
principle nonunique with respect to differences at higher order. In all cases here the balanced approximations
are accurate through two orders in the appropriate expansion parameter. Furthermore, we provisionally
adopt the view that a more inclusive approximation is preferable, although this must be verified with solutions
in particular situations.
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3.1 Balanced Waves

For the linear wave theory (Section 5), we neglect the nonlinear terms in (13) and

perform a single iteration. The result is

u ¼ � 1
	r

@���
1

	�
Dð@r�Þ,

v ¼ 1
�
@r��

1

r	�
Dð@��Þ: ð14Þ

Following the path in Shapiro and Montgomery (1993), we substitute this into the

continuity relation in (7) with N ¼ 0 to yield

Dð ~rr2�� 
2�Þ � 1
r
G@�� ¼ 0 : ð15Þ

This is the linear evolution equation for the AB model, first derived in MK97.

The inverse square of a local deformation radius,


2ðrÞ ¼ �	

gh
, ð16Þ

enters in the vortex-stretching term in the potential vorticity;

GðrÞ ¼ �@rðln qÞ ð17Þ

is a normalized mean-vortex potential-vorticity gradient; and

~rr2 ¼ 
2

r
@r

r


2
@r

� �

þ ’2

r2
@2� ð18Þ

is a normalized Laplacian operator, which comprises the relative-vorticity term in the

potential vorticity, where

’2 ¼ ’2AB, c � 1: ð19Þ

The subscript denotes the formula for ’ in the AB model derived by substitution into

the continuity relation.

When the procedure outlined above is replaced by substituting (14) into the potential

vorticity equation in (9), instead of (7), then the outcome (at the same order in the

small parameter used to justify (14) as a first approximation) can still be expressed as

(15), but with

’2 ¼ ’2AB, p �
2 ��� � �		

�		
ð20Þ
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instead of (19). The form for ’AB, p is the more general one since it contains additional

terms that can be shown by the nondimensionalization in Section 4 to be of OðRÞ
compared to ’AB, c, where R is the Rossby number for the mean vortex, not assumed

small. Therefore, the AB theory for the waves is nonunique by the choice of the

derivation path, and the consequences of its variant forms will be explored in later

solutions. In contrast to a BE theory for the waves, however, AB yields a single

evolutionary equation for �, which simplifies the computational solution and its

interpretation.

The operand of D in (15),

qab ¼ ~rr2�� 
2�, ð21Þ

is an appropriate definition of potential vorticity for the linear AB model (as in Ren,

1999) because it appears in (15) and in the vortex-evolution model (25) below.

Alternatively, we can define the pseudo-potential vorticity,

qab� ¼
1

gh

1

r
@r

r

�
@r�

� �

þ ’2

�r2
@2��� q�

� �

, ð22Þ

that can be shown to satisfy a rewritten form of (15) [analogous to (9) with N ¼ 0],

Dðqab� Þ þ u@rq ¼ 0,

with u defined by (14), for either the continuity or potential-vorticity derivation

paths (MK97). Equation (15) can be recognized as the AB generalization of the

more familiar quasigeostrophic (QG) balance model that approximates � and 	 by f

and 
2 by 1=L2d (where Ld ¼
ffiffiffiffiffiffiffiffiffi

gHo

p
=f is the global deformation radius) in the zeroth

iterate in (13):

D
1

r
@r r@r�ð Þ þ 1

r2
@2���

1

L2d
�

� �

� 1
r

@r� �
1

fL2d
@r�

� �

@�� ¼ 0: ð23Þ

Here the operand of D, qqg ¼ r2�� ð1=L2d Þ�, is the QG potential vorticity.

3.2 Balanced Vortex Evolution

The AB vortex-evolution theory requires nonlinear contributions from the azimuthally

averaged wave fluxes, although for consistency with (14) we retain only the leading-

order nonlinear contributions in wave amplitude. With again only a single iteration

on (13), we obtain

hui ¼ � 1
	

1

�
@t@rh�i þ hNvi

� �

,

hvi ¼ 1
�
@rh�i þ hNuið Þ, ð24Þ
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where the nonlinear terms, hNi, are functionals of � that will be described more fully
for the case of sheared waves in Section 6. Substituting (24) into (12) yields


2

r
@r

r


2
@r@th�i

� �

� 
2@th�i ¼ 
2hN�i � �

r
@r rhNvi þ r

�
@thNui

� �

þ GhNvi

¼ 
2hN�i � 
2

r
@r

r

q
hNvi

� �

� �ð@thNuiÞ, ð25Þ

where

�ðQÞ ¼ �AB, pðQÞ �
�

r
@r

r

�
Q

� �

ð26Þ

is an operator with argument Q. Not surprisingly, given the nonuniqueness of (15),

this AB model for h�i is also nonunique. Following the alternative path of substituting
(24) into the continuity relation in (11), we again obtain (25), except with an alterna-

tively defined operator,

�ðQÞ ¼ �AB, cðQÞ � 0: ð27Þ

As with the AB wave theory (Section 3.1), the potential-vorticity AB vortex-evolution

theory is the more general one, with added terms in (25) of OðRÞ.
Unlike for the wave theory, however, it is possible to derive a single BE equation for

h�i. This is because h�i and h�i are differential functions only of hui and hvi, respectively.
So the balance approximation, h�i � h�i (usually justified by Ro and/or Fr ¼ V=

ffiffiffiffiffiffiffiffiffi

gHo

p

values being somewhat small), may be applied directly to the momentum equations in

(11) merely by dropping @thui in the first one. In the vortex-evolution context, this is a
less restrictive approximation than the usual one for BE. Instead of (24), the result is

hui ¼ � 1
	

@thvi þ hNvið Þ,

hvi ¼ 1
�
@rh�i þ hNuið Þ, ð28Þ

which when substituted into either (12) or the continuity relation in (11) again yields

(25) except with the alternative operator,

�ðQÞ ¼ �BEðQÞ �

2

r
@r

r


2
Q

� �

: ð29Þ

The BE theory for the vortex evolution (25) is therefore unique, unlike AB.

Furthermore, the BE form �BE is more general than the AB forms, containing all the

AB terms plus additional ones of OðRÞ.
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In the QG approximation described above, (25) takes a simpler and more familiar

form,

@t
1

r
@r r@rh�ið Þ � 1

L2d
h�i

� �

¼ 1
fr
@r
1

r
@r r

D

@r�@��
E� 


� �

, ð30Þ

where the vortex QG potential-vorticity tendency is due to the second-order derivative

of the geostrophic Reynolds stress from the waves.

3.3 Wave/Mean-flow Interaction

Equations (25) and (29), together with a specification of the nonlinear terms (Section 6),

comprise a closed system for vortex evolution. From these we can derive some further

relations for the implied wave/mean-flow interaction before focusing on the details of

the wave evolution.

An Eliassen-like equation for hui forced by the balanced wave fluctuations is derived
from (28) by eliminating @thvi and using the continuity equation in (11). The result is

@r
1

r
@r rg �hhhui
� �

� �

� �		 ���hui ¼ ���hNvi � @rhN�i þ @thNui: ð31Þ

Apart from the last term on the right-hand side, (31) is the shallow-water analogue

of Eliassen’s (1951) equation for the transverse (secondary) circulation driven by

‘‘heat’’ and ‘‘momentum’’ sources within the vortex. hN�i is analogous to the heat
source, and hNvi is analogous to the momentum source. The last term, @thNui, repre-
sents the contribution from the balanced waves to the eddy flux of radial momentum

as a departure from gradient-wind balance.

An explicit equation for the acceleration of the vortex can also be derived. First,

we condense (25) with (29) by recalling the definitions of Nv and N� in Section 2.

The result is


2

r
@r

r


2
@r@th�i

� �

� 
2@th�i ¼ �

2

r
@r g �hhrhuqi
� �

� �

2

r
@r

r


2
@thNui

� �

¼ 
2

r
@r �		@t

rhq2i
2@r �qq

� �

� @r
r


2
@thNui

� �� �

: ð32Þ

The last equality assumes that @r �qq is nonzero and uses (9) with N ¼ 0 to obtain the
eddy potential-vorticity radial flux at second order in wave amplitude. (The limiting

case of @r �qq ¼ 0 is discussed in Appendix A.2.) If we now combine (32) with the time
derivative of hvi in (24), we obtain a single equation for @thvi forced by the balanced
waves:

@r
1

r
@r

r

q
@thvi

� �� �

� ���@thvi ¼ @r
1

r
@r �		@t

rhq2i
2@r �qq

� �� �

� @thNui: ð33Þ
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As in (31) and (32), this equation, together with the boundary conditions @thvi ¼ 0 at
r ¼ 0 and r!1, defines a well–posed elliptic boundary value problem for @thvi
provided �qq ��� ¼ 
2 is everywhere positive. The wave forcing in (33) has a form similar

to the generalized Eliassen–Palm relations obtained in Andrews and McIntyre (1978).

The wave forcing has two distinct terms, one from the perturbation potential enstrophy

(a divergence of the Eliassen–Palm flux, defined below) and the second from the

departure from gradient-wind balance due to balanced waves. If the waves are steady

in time, both terms vanish; hence, given zero forcing with zero boundary conditions,

the ellipticity of the differential operator implies that @thvi ¼ 0. This is the ‘‘non-
acceleration’’ theorem for this theory. Because of the transient behavior of sheared

vortex Rossby waves (Section 8), only rarely will freely evolving wave disturbances

satisfy this condition, except possibly for strictly neutral waves or for sheared waves

at late time when the fluctuation geopotential amplitude decays to zero. Therefore,

only for the unlikely situation of N ¼ 0 is there a valid nonacceleration theorem in

this theory.

The first term on the right-hand side of (33) can be rendered more familiar by

considering two limits. The first limit is QG. The second term is OðRÞ relative to the
first (Section 4) and can be dropped, leaving

@r
1

r
@r r@thvgi
� �

� �

� 1

L2d
@thvgi ¼

1

f
@r
1

r
@r @t

rhðqqgÞ2i
2@r �qqqg

� �� �

, ð34Þ

where hvgi is the azimuthally averaged, geostrophic, tangential velocity, and qqg is the

quasigeostrophic potential vorticity defined following (23). It is evident that (34) is

the radial derivative of (30). Therefore, apart from a divergence-free vector field, the

term within the large parentheses on the right-hand side of (34) is the time derivative

of the angular pseudo-momentum (or wave activity) density for the linearized QG

shallow-water model (Andrews et al., 1987). The second limiting case is the nondi-

vergent limit (Ld , gH0!1). In this limit the second terms on the left-hand side and
right-hand side of (33) both vanish. Assuming @thvi vanishes at r ¼ 0 and r!1, the
limiting equation may be integrated to obtain

@trhvi ¼ @t
rh�2i
2@r ���

: ð35Þ

Again apart from a divergence-free vector field, the right-hand side term inside the

time derivative in (35) is the angular pseudo-momentum density for the barotropic

(nondivergent) model in curvilinear flow (Held and Phillips, 1987).

In the QG and nondivergent limits, the acceleration of the vortex is governed solely

by the first right-hand side term in (33). In these cases the change in angular momentum

due to the waves is proportional to the change in angular pseudo-momentum. This

property is called the ‘‘pseudo-momentum rule’’ (McIntyre, 1981; Grimshaw, 1984).

As is evident from (33), the pseudo-momentum rule does not apply in general

for finite R and finite gH0. Moreover, the quantity inside the parentheses in the first

term on the right-hand side of (33) is only one of two terms in the angular pseudo-

momentum density. For the shallow-water equations the angular pseudo-momentum

density is defined such that its time derivative equals the flux divergence of azimuthally
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averaged eddy angular momentum. Specifically, in cylindrical coordinates (cf.,

Eq. (2.20) of Held, 1985),

@t �		2
rhq2i
2@r �qq
þ hrv�i

� �

¼ � 1
r
@r r�rhuvi
� �

, ð36Þ

which, in combination with (33), has a more general structure than @thvi � @thq2i �
@rhuvi. (On rearranging (36), the quantity inside the parentheses in the first term on
the right-hand side of (33) defines the space-time (pseudo) divergence of the Eliassen-

Palm flux.)

4 NONDIMENSIONALIZATION AND PARAMETERS

In order to clarify various approximations and asymptotic relations, we now transform

our variables and equations to nondimensional forms. The vortex environment is

characterized by g, f , and Ho, from which we define the global deformation radius,

Ld ¼
ffiffiffiffiffiffiffiffiffi

gHo

p
=f . The mean vortex itself is characterized by an azimuthal velocity

scale, V ; a length scale for the velocity profile, L; and another length scale, Lq, for

the mean-vortex potential-vorticity gradient, G, as it appears in (15). From these we

construct the following nondimensionalizing factors for mean-vortex quantities:

� � VfL, h � Ho, �, � � V

L
, 	, � � f , q � f

gHo

,

@rq �
V

gHoLLq

, 
 � L�1d , G � V

LLq

� V

L2
�: ð37Þ

With these we derive from (4) to (5) the following nondimensional relations:

@r�ðrÞ ¼ vþ R
v2

r
, h ¼ 1þ R

L

Ld

� �2

�, � ¼ v

r
,

� ¼ 1
r
@rðrvÞ, � ¼ 1þ 2R�, 	 ¼ 1þ R�, 
2 ¼ �	

h
,

q ¼ 	

h
, G ¼ �

q
@rq ¼

Lq

L

�

	
@r� �

L

Ld

� �2
�

h
@r�

" #

, ð38Þ

where

R ¼ V

fL
� Oð1Þ ð39Þ

is the Rossby number of the mean vortex and

� ¼ L

Lq

� Oð1Þ ð40Þ

is a measure of how steep the potential-vorticity gradient is for the mean vortex

compared to the velocity profile. In (38) and henceforth, all variables are
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nondimensional (n.b., we have not changed the symbols from Sections 2–3, where they

represent dimensional quantities).

The asymmetric, wave-like fluctuations about the mean vortex are characterized

by a velocity amplitude, V 0, oscillatory length scale, L0, and intrinsic frequency,
�0 (i.e., the rate associated with the operator D in (7)).3 The associated geopotential

amplitude is V 0fL0. These characteristic scales permit us to define several other
important parameters and to state the conditions for the formal validity of the theory:


 ¼ L0

L
� 1, ð41Þ

the small ratio between wave and vortex spatial scales (i.e., assuming ascale separation);

� ¼ L0

Ld

¼ 

L

Ld

� Oð1Þ, ð42Þ

the measure of the relative importance of free-surface deformations through the vortex

stretching term in q on the wave scale (n.b., � ¼ 0 implies rigid-surface, barotropic
dynamics)4; and

R0 ¼ V 0

fL0
¼ V 0

V

1



R� 1, ð43Þ

a wave Rossby number that is a measure of the relative importance of nonlinearity in

the wave dynamics.5,6

Two other pertinent parameters are

�0 ¼ �0

f
� 1, ð44Þ

a ratio of the intrinsic wave frequency and the Coriolis frequency, a measure of the

departure from geostrophic momentum balances in (7) when R0 � �07, and

� ¼ L02

LLq

¼ 
2� � Oð1Þ, ð45Þ

3This is not the resting-frame rate associated with mean azimuthal advection, L0=Vð¼ 1=T 0), that is gener-
ally larger than M�0 since balanced waves tend to have a significant Doppler shift in the azimuthal direction
(Eq. (60)).
4From (38) and (42), we have h ¼ 1þ Rð�=
Þ2�. This shows that the shallow-water physical consistency

condition, h > 0, implies a constraint on the parameters, Rð�=
Þ2 � Oð1Þ, for a cyclonic vortex with a mini-
mum depth at its center.
5This can be rewritten as V 0=V � 
=R� 1, given (39)–(41). This indicates the weakness of the waves com-

pared to the mean vortex.
6The smallness of R0 depends not only on the initial amplitude and the initial length scales, but also on the

subsequent evolution. Recent theoretical work suggests that linear barotropic dynamics for the interior region
of monopolar vortices on the f -plane should remain uniformly valid at long times (thereby furnishing an accu-
rate approximation to the vortex evolution via the rectified wave fluxes at small but finite amplitude) provided
the mean, radial potential-vorticity gradient is single-signed and has a sufficient magnitude relative to the
shear of the mean vortex (Brunet and Montgomery, 2002).
7This inequality is required for consistent linearization in (14). The square of R0=�0 serves as the AB

wave-field expansion parameter (see Section 3). More generally, the AB expansion can be justified for rapidly
rotating, cyclonic vortices even when R > Oð1Þ because 	 and � become large and thereby act to make the AB
iteration in Section 3 convergent (Shapiro and Montgomery, 1993).
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a wave-dispersion parameter proportional to the magnitude of the mean-vortex

potential-vorticity gradient.

4.1 Wave Dynamics

With these parameters we can write the nondimensional linear wave equation (15) for

�ðx0, t0Þ as

D
0ðqabÞ � �

r
G@ 0�� ¼ 0,

qab ¼ ~rr02�� �2
2�

D
0 ¼ @ 0t þ�@0�: ð46Þ

Here we use primes for coordinates and derivatives defined on the wave scales, L0 and
T 0 ¼ L0=V . When such a ‘‘fast’’ operator is applied to a quantity varying only on
the scale of the mean vortex, then it is reinterpreted as the appropriate ‘‘slow’’ deriva-

tive; e.g., @ 0r�ðrÞ ¼ 
@r�ðrÞ. A fast wave solution to (46) will also have slow coordinate
dependences within the region of the mean vortex because the coefficients do

(Section 5). Since the separate terms in D
0
have been made nondimensional by the

wave advection rate, 1=T 0 ¼ V=L0, rather than the intrinsic frequency, �0, we can rein-
terpret (46) to provide an estimate of the latter: �0T 0 ¼ �, or �0 ¼ R
�� 1 (cf., (44)).
The relation (46) is the governing relation for wave evolution. As may be anticipated

from the appearance of 
 in the definition of � in (45), � will often be small except

where � is large because q has a sharp shoulder.8 The implication of this in (46) is

that often the dominant wave tendency is to develop spiraling, nondispersive phase pat-

terns due to differential azimuthal swirling by �ðrÞ. Nevertheless, vortex Rossby waves
also are known to exhibit radial propagation and dispersion (MK97), which we shall

see only occurs if D
0ðqabÞ 6¼ 0; therefore, we formally treat � as Oð1Þ in our asymptotic

expansions.

We derive an AB wave-energy principle from (46) by multiplying it by ��=
2 and
integrating over all space. The result is

d

dt

Z Z

r dr d� Ew ¼
Z Z

r dr d�
1


2
@r� @ 0r�@

0
��, ð47Þ

where Ew is the wave-energy density,

Ew ¼
1

2
2
ð@ 0r�Þ2 þ

’2

r2
ð@ 0��Þ2 þ �2
2�2

� �

: ð48Þ

The interpretation of (47) is that wave energy can grow or decay through a

spatial correlation between the mean-vortex strain rate, r@r�, and a balanced

approximation to the horizontal Reynolds stress, �ðr
2Þ�1@ 0r�@ 0��. The wave-energy

8There is a long practice of idealizing vortices with a sharp shoulder in vorticity or potential vorticity (e.g., a
Rankine vortex).
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density is a positive quadratic functional that is the sum of the kinetic energy – the

first two terms in (48) – and potential energy – the last term. The only new feature

of the AB wave-energy principle, different from its QG counterpart, is the weighting

factor, 1=
2ðrÞ, representing local variation of the deformation radius.
An AB wave-enstrophy principle can be derived similarly by multiplying (46) by

rqab=�G
2 and integrating over all space. The result is

d

dt

Z Z

r dr d�Vw ¼ 0, Vw ¼
1

2

r

�G
2
ðqabÞ2 � A�, ð49Þ

where Vw is a conserved quadratic functional of the wavefield, often referred to as
the wave activity, A�. This principle is equivalent to the conservation of angular
pseudo-momentum (Ren, 1999). A further integral relation combines Ew and Vw into
a pseudo-energy conservation law (Ren, 1999):

d

dt

Z Z

r dr d� Ew þ�Vw
� �

¼ 0: ð50Þ

4.2 Vortex Dynamics

We posit that the azimuthal averaging operation eliminates dependence on the fast

coordinates. Therefore, the mean-vortex coordinate scales, L and T ¼ L=V , are

appropriate ones for the vortex evolution dynamics.9 In addition, we define a velocity

scale for changes in the vortex, hVi, and its accompanying geopotential scale, hVifL.
We choose as nondimensionalizing factors,

hNui, hNvi � V 02

L
, hN�i � fV 02, ð51Þ

consistent with the QG relation (30). From (25) and (29), the resulting

nondimensional, BE, vortex-evolution equation is


2

r
@r

r


2
@r@th�i

� �

� �




� 
2


2@th�i

¼ �




� 
2


2hN�i � �

r
@r rhNvið Þ þ R�GhNvi � R�BE @thNuið Þ, ð52Þ

for the choice of the scaling amplitude relation

hVi
V
¼ V 0

V

� �2

� 1: ð53Þ

9As evident in (25), it is the vortex time derivative that is proportional to the averaged wave fluxes. While
the dimensional scale ratio, hVi=T , is well determined here, these separate choices for T and hVi are somewhat
arbitrary. Nevertheless, they do seem apt for the solutions in Section 8.
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The rationale for the scaling choices, (51) and (53), is that they make the dominant

terms in the barotropic QG balance (i.e., (30) with large Ld) have Oð1Þ parametric
coefficients in (52). We designate nondimensional, vortex-evolution energy and

enstrophy norms, based on (10), as the area integrals of

Ehvi ¼
1

2
hðhui2 þ hvi2Þ þ �




� 
2

h�i2
� �

, Vhvi ¼
1

2
hhqi2 ð54Þ

[with dimensional scales of HohVi2 and HoðhVi=fLÞ2, respectively], where

hqi ¼ 1
r	

@rðrhviÞ �
�




� 
21

h
h�i ð55Þ

(after factoring by hVi=fL). These norms are not conserved.
In summary, for small-scale, weak-amplitude, balanced wave fluctuations (i.e., 
� 1

and R0 � �0 � 1), the important nondimensional parameters in (46)–(52) are R,

the Rossby number of the mean vortex; � and �=
, the scales of the waves and vortex

compared to the deformation radius; �, a measure of the dispersiveness of the waves;

and �, a measure of the steepness of the mean-vortex potential-vorticity profile,

associated with both wave dispersion and a non-QG contribution to the averaged

wave-flux forcing.

5 SLOWLY VARYING LINEAR WAVE DYNAMICS

We seek solutions of (46) in the usual form for fast waves in the slowly varying medium

provided by the mean vortex:

�ðr0, �0, t0; r, �, tÞ ¼ Re Aðr, �, tÞei�ðr, �, tÞ=

� �

þOð
Þ, ð56Þ

where Re denotes the real part, 
� 1 is the scale separation parameter (41), A is

the wave amplitude function, and � is the wave phase function. The coordinate

dependences for A and � are slow ones on the mean-vortex scale, and the fast oscilla-

tory behavior in � occurs as a result of the 
 factor in the exponential function. Because

(46) is linear, any number of wave components (56) can be combined.

We insert A exp ði�=
Þ into (46) after changing the fast derivatives into slow ones
(e.g., J0 ¼ 
J) to operate on A and �. The balance at Oð1Þ is

�JJ�E �JJ�þ �2
2
� 


Dð�Þ þ �
G

r
@�� ¼ 0 ð57Þ

after factoring out iA exp ði�=
Þ, where �JJ ¼ ð@r, r�1’ @�Þ. The balance at Oð
Þ has terms
multiplying ei�=
 whose coefficients must collectively vanish to prevent forcing algebraic

growth in the fast coordinates for the higher-order corrections in (56), viz.,

D �JJ�E �JJ�þ �2
2
� 


A
h i

þ 2 �JJ�E �JJAþ A ~rr2�
� 


Dð�Þ þ �
G

r
@�A ¼ 0: ð58Þ
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The equations (57) and (58) govern the evolution of � and A, respectively. Since

both equations have wholly real coefficients, � and A may be taken to be purely real

functions, so that � ¼ A cosð�=
Þ þOð
Þ. There is no exponential growth or decay of
the waves on the fast scale (i.e., they are neutral waves in contrast to quasi-modes or

unstable modes).

In group-velocity theory (Lighthill, 1978), (57) is interpreted as the dispersion

relation. We define a local frequency, !ðr, �, tÞ, and wavenumber vector, kðr, �, tÞ ¼
ðk, n=rÞ, by

! ¼ �@t�, k ¼ @r�, n ¼ @��, ð59Þ

and rewrite (57) as the dispersion relation,

! ¼ �nþ �
Gn

rK2
�Wðk, n; rÞ, ð60Þ

where

K2 ¼ k2 þ ’n

r

� �2

þ�2
2

is the inverse square of a composite length scale for the waves. We immediately

recognize (60) as the local dispersion relation for sheared vortex Rossby waves

(MK97; Section 3b). (In the general case W may depend upon � and t as well, but

the mean-vortex problem does not have such dependences.) Since (59)–(60) are

uniformly valid in ðr, �, tÞ, we can differentiate them to obtain the phase-consistency
condition,

J!þ @tk ¼ 0,

and the ‘‘ray’’ equations for the evolution of ð!, kÞ along characteristics defined by the
group velocity, Cgðr, �, tÞ,

Dgð!Þ ¼ @tW ¼ 0,
DgðkÞ ¼ �@rW

¼ �n @r�þ �
1

K2
@r

G

r

� �

þ �
G

rK4
2n2

r3
’2 � n2

r2
@r½’2
 � �2@r


2

� �� �

DgðnÞ ¼ �@�W ¼ 0, ð61Þ

with

Dg ¼ @t þ Cg
EJ

Cg ¼ ð@kW , r@nWÞ

¼ �� 2G
rK4

kn, r �þ �
G

rK4
½k2 � ð’n=rÞ2 þ �2
2


� �� �

: ð62Þ
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In slowly varying wave theory, the wave-amplitude evolution equation (58) is inter-

preted as conservation of wave action, Ac (Bretherton and Garrett, 1968), or wave
activity, A� (Andrews et al., 1987). Wave action is defined as the ratio of the wave

energy density and the intrinsic frequency, !��n. By using E from (48), � from

(56), and the dispersion relation (60), then averaging over a fast oscillation period

(denoted by avg[ ]), we define

Ac ¼ avg½E

ð!��nÞ

¼ 1

4�

rK4


2Gn
A2: ð63Þ

After some rearrangement, (58) can be shown to take the form,

@tAcþ
1

r
@rðrCg, rAcÞ þ 1

r
@�ðCg, �AcÞ ¼ DgðlnAcÞ þ JECg ¼ 0: ð64Þ

This is the expected wave-action conservation principle along ray paths.10 For balanced

dynamics, wave activity, A�, is defined as the ratio of the wave-enstrophy density
and the mean-vortex potential-vorticity gradient. Guided by the wave-enstrophy

principle (49) and following the procedure for determining Ac above, we define

A� ¼ r

�
2G

1

2
avg½ðqabÞ2
 ¼ 1

4�

rK4


2G
A2: ð65Þ

Comparing with (63), we see that A� ¼ nAc.11 Since Dg½n
 ¼ 0 from (61), wave-activity
conservation follows directly from (64):

DgðlnA�Þ þ JECg ¼ 0: ð66Þ

Referring to (47)–(49), a useful norm for wave evolution is the energy norm,

EwðtÞ ¼
1

4

Z Z

r dr d�
K2


2
A2, ð67Þ

while the analogous enstrophy norm,

Vw ¼
1

4�

Z Z

r dr d�
rK4


2G
A2, ð68Þ

is conserved.

10Eqs. (58) and (64) are equivalent to a local wave-energy principle that has the same form as the integrands
in (47) after averaging over a fast oscillation period.
11cf. Eq. (4A.12) of Andrews et al. (1987).
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6 VORTEX EVOLUTION BY WAVE FLUXES

The wave field evolves according to (60)–(61) for �, or equivalently ð!, kÞ, and (64) or
(66) for A, both under the influence of the mean vortex, vðrÞ. Changes in the vortex,
@thvi, occur according to (52) for @th�i in combination with the time derivative of the
nondimensional form of the second relation in (28),

hvi ¼ 1
�
@rh�i þ RhNuið Þ: ð69Þ

The norms for this evolution are defined in (54). In addition, we can diagnose the vortex

radial velocity that occurs during the wave-induced adjustment by the nondimensional

form of the first relation in (28),

hui ¼ �R

	
@thvi þ hNvið Þ, ð70Þ

that vanishes whenever hNui and hNvi do [see Eq. (31)]. All that remains to complete
the specification of the vortex-evolution theory is to relate the hNi in (52) and
(69)–(70) to ð�,AÞ.
These relations are somewhat laborious to derive, although the procedure is a

straightforward one to describe. First, an azimuthal average and nondimensionaliza-

tion of (8) using (51) yields relations between hNi and ðu, v,�Þ:

hNui ¼ 1
2
@rðhu2iÞ �

1

r
hv2i þ 1




1

r
hv@0�ui,

hNvi ¼ 1
r
@rðrhuviÞ �

1



hv@0rui ¼

1


r
hu@0rðrvÞi,

hN�i ¼ 


r
@rðrhu�iÞ: ð71Þ

Next, we insert the wave solution form (56) for � into the nondimensional AB

velocity relations (14), keeping terms through Oð
Þ while treating ðR�=�ÞD as an

Oð1Þ operator:

u ¼ � 1
r	
Re iA@��þ 
@�Að Þei�ðr, �, tÞ=


� �

þ 

R�

�

1

	�
Re AD½�
@r�

� �

ei�ðr, �, tÞ=

� �

v ¼ 1
�
Re iA@r�þ 
@rAð Þei�ðr, �, tÞ=


� �

þ 

R�

�

1

r	�
Re AD½�
@��

� �

ei�ðr, �, tÞ=

� �

: ð72Þ

We next insert u, v, and � into (71). One consequence of taking the average of a

quadratic product is that only the coefficient of ei0�=
 survives, while those of e�i2�=


do not. After further substituting for the derivatives of � using (59)–(40) and retaining

only leading-order terms in 
 while treating �R as an Oð1Þ quantity – equivalent to
saying �0=
 is Oð1Þ and the first and last terms in (57) are comparable – we get the
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desired relations for the nonlinear terms that appear in (52) and (69)–(70):

hNui ¼ @r
1

4	2r2

D

n2A2
E

� �

� 1

2�
2
r

D

k2A2
E

þ 1

2	�r2

D

nAðn@rA� k@�AÞ � kA@�½nA

Eh i

� R�
G

2	�

k2

�
þ n2

	r2

� �

n2A2

r2K2

� �

,

hNvi ¼ � 1

2	r2

D

n@r
r

�
kA2

� �

E

þ 1

2	�r

D

k2A@�AÞ
E

þ R�
G

2	�

D k2

�
þ n2

	r2

� �

knA2

rK2

E

,

hN�i ¼ �
2R� 1
2r

@r
G

	�

D kn

K2
A2

E

� �

: ð73Þ

Note in particular that hN�i appears to be small here by Oð
2Þ; this implies that it may
often be negligible compared to the other right-hand side terms in forcing the vortex

evolution in (52) (but see Appendix A.4). Since these expressions and their assemblage

in (52) are quite complicated in their general dependences on the parameters

ðR, �, �=
,�, �Þ, we identify several simpler limiting cases in Appendix A.

7 SPECIAL SITUATIONS

Before considering a specific problem in vortex Rossby wave dynamics, we briefly

remark on several special situations implicated in the preceding sections.

Critical Radius A critical radius is defined as a place where ! ¼ n�ðrÞ; i.e., the intrin-
sic frequency is zero. For this relation to also satisfy the dispersion relation (60) requires

that Gn vanish at this place, which will not generally be true (but see below). This

implies that wave energy initially not located at a critical radius cannot propagate

following the group velocity to reach or cross a critical radius, since (61) requires

such propagation to preserve the values of ! and n.12

Vanishing G If G ¼ 0, then the waves are locally also at a critical radius and have
vanishing Cg, r persistently in time. Appendix A.2 has an analysis of where this

condition holds over a finite region.

Vanishing k If k ¼ 0 at a point, then (62) requires Cg, r ¼ 0 there. This implies that
wave energy is not moving either inward or outward at this particular place and

time. Furthermore, if the waves are azimuthally periodic (Appendix A.6), then by (64),

@tAc ¼ �Ac@r½Cg, r
:

Thus, Ac is locally growing or decaying exponentially with time, depending upon
whether Cg, r is locally divergent or convergent. However, note that k! 0 is formally

12The validity of a WKB theory may become questionable near a critical radius if the spatial scale of k, etc,
shrinks to violate the assumption 
� 1 or the ampltidue increases to violate the quasi-linear assumption. We
do not address these issues here.
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inconsistent with our assumption of a scale separation between the waves and the

vortex so implications from this theory should be viewed cautiously.

Large r At large radius, then we can assume that G! 0, essentially as a definition of

a mean vortex as having only a compact central region of nonuniform potential vorti-

city. Again, Appendix A.2 is relevant.

8 ILLUSTRATIVE SOLUTIONS

Here we demonstrate asymptotic convergence of our theory to the shallow-water

solutions for a case of an initially perturbed, balanced vortex that relaxes back to

an altered axisymmetric, steady state. We illustrate typical vortex Rossby-wave

behavior near the nondivergent, quasigeostrophic, azimuthally homogeneous limits

(cf., Appendices A.1, A.4, and A.6).

Consider a mean cyclonic vortex with a monotonic vorticity profile (� / e�r
3

; Fig. 1).

We choose a maximum velocity of V ¼ 1 m/s at a radius of maximum winds (rm) of
200 km so that the Rossby number is R ¼ 0.05. The ambient deformation radius is
chosen much larger, Ld ¼ 2200 km (H0 ¼ 5000m), so the flow is nearly barotropic.
For simplicity we choose initial perturbations that are azimuthally homogeneous,

such that �ðr, �, tÞ ¼ ~��ðr, tÞ þ no� and A ¼ Aðr, tÞ. This simplifies the wave action and
activity equations as well as the wave-mean equation through the nonlinear terms

(Appendix A.6). The nondimensional parameter choices for a basic case are no ¼ 1
and � ¼ 1, with 
 ¼ 0:25, which is large enough to allow for more than just

azimuthal propagation in the dispersion relation (60) but small enough that the

scale separation assumption is valid. We choose an initially uniform nondimensional

radial wavenumber kðrÞ ¼ 1:75 (i.e., a dimensional value of 3:5� 10�5m�1 when
multiplied by 1=
L) and a perturbation pseudo-potential vorticity amplitude,

jq�jðrÞ¼q�0 sin4f�½ðr=rmÞ�ð1=4Þ
g, 0�r�rm, with q�0 ð�V 0=gH0
LÞ¼1.24�10�11 s/m2
chosen so that V 0 is slightly less than one percent of the maximum mean velocity V

FIGURE 1 The mean vortex profiles for �vvðrÞ and ���ðrÞ.
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(Fig. 2),13 which is multiplied by an exponential phase function as in (56). The

geopotential �ðr,�Þ is obtained by inverting q� in (22). We use high-resolution, first-

order, upwind, finite-difference discretization schemes in both space and time

to solve for k and A in (60) and (91), and we use second-order, centered, spatial

finite-differences and first-order, forward-Euler time-steps to solve the wave/mean-

flow equation (52) for h�i. The boundary conditions are @t½k,A
¼0 at r¼0,rmax;
hvi¼0 at r¼0; and ð@rþ�
=
Þhvi¼0 at r¼rmax (i.e., a decaying exponential solution
for (52) with vanishing right-hand side), for large but finite rmax. We solve the

nondimensional equations then transform the solutions to dimensional quantities for

plotting purposes.

Figure 3 shows q� at different times. There are four azimuthal oscillations in q�ðr, �Þ
around the vortex since no=
 ¼ 1=0:25 ¼ 4. As time progresses, the spiral arms rotate
following the mean angular velocity � and begin to wrap up. We see a growth in the

radial wavenumber k (Fig. 4) since k � not d�=dr is the dominant effect from the

dispersion relation (60). This behavior is essentially similar to the long familiar progres-

sive tilting of phase lines in a parallel shear flow and associated wave/mean-flow

interaction (Orr, 1907; Yamagata,1976). Figure 5 shows plots of jq�jðr, tÞ and Aðr, tÞ
to expose the radial propagation and amplitude changes. The jq�j maximum is initially
at r ¼ 150 km and moves radially outward to a stagnation radius of  165 km
while its magnitude decreases somewhat. Since q� /

ffiffiffiffiffiffi

Ac
p

through (49) and the radial

propagation of @tAc is primarily due to Cg, r@rAc in (91), the stagnation radius is
determined by the temporal decay of the radial group velocity (Fig. 4). Note how the

radial group velocity decreases in magnitude and moves inward away from the location

of the jq�jðrÞ maximum, so that there is soon no further radial motion or decay in q�.

13We determined that the quasi-linear assumption of our theory is accurate for the fluctuation evolution at
this amplitude since full shallow-water solutions exhibit significant nonlinear effects only for initial amplitudes
about an order of magnitude larger.

FIGURE 2 Initial profile of the perturbation q� amplitude, normalized by its maximum value.
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Even with this radial propagation, however, the main effect on � is a consequence

of approximate action conservation, implying Ac � ðAK 2Þ2 � t0. Hence there is a

systematic decay of A in time (Fig. 5), since A � K�2 � k�2 � t�2. By t ¼ 10 days,
the A maximum has already decreased by a factor of about 6.

FIGURE 3 Horizontal plots of normalized q� at increasing times (from the asymptotic theory). Contour
values are ð�0:1, � 0:4, � 0:7, � 1Þ, where solid lines are positive values and dashed ones negative.
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The wave/mean-flow interaction appears in hviðr, tÞ. The asymptotic-theory predic-
tion is shown as the solid line in Fig. 6 at a relatively late time (t ¼ 11:6 days, about
5 turnover times of the mean vortex, 2�rm=V). At even later times there is little

further change due to the continuing decay of A. An increase in mean velocity

occurs just to the inside of the initial q� maximum, and a decrease occurs outside.

More is gained by the mean than lost; i.e., the total energy and enstrophy of the

azimuthally averaged part of the flow (the vortex) increase steadily with time

until A becomes small. This is an expected behavior for waves whose phase lines

are progressively tilting due vortex shear. In the quasigeostrophic limit (R! 0),

�, 	, and 
2! 1, and in the barotropic limit (�! 0), (52) and (92) imply that

@thvi � ðno=2r2Þ@rðrkA2Þ. Since R ¼ 0:05, and �  
=10 here, this approximation is

apt. Because k and A have the shapes shown in Figs. 4 and 8 respectively, then

rkA2 has a positive convex shape in r, hence its radial derivative matches the

shape of hviðrÞ in Fig. 6. When added to the mean profile, vðrÞ, this shape implies
a shrinking of the size of the vortex and a sharpening of the profile at the edge

of the vorticity-containing core (cf., Fig. 1). In this example with its small R,

there is no significant asymmetry in the evolution of disturbed cyclones and

anticyclones.

In order to validate our theory, we make comparisons with the shallow-water,

asymmetric-balance model used in Moller and Montgomery (1999). For the present

problem with its small R we are quite confident that the asymmetric-balance

approximation is accurate, based on past experience of comparisons with Primitive-

Equation solutions (e.g., Schecter and Montgomery, 2002). To expose the asymptotic

convergence behavior, we calculate shallow-water solutions for different values of 
,

while holding fixed the vortex properties ðL,V ,R,LdÞ as well as the wave properties
[V 0, no, kð0, tÞ, �]. This experimental path does imply changes in (L0, �,�) (Section 4),
hence in the G term in both the dispersion relation (60) and the wave equation (46);

the net effect is that the wave behavior approaches purely azimuthal propagation

due to � for small 
. In the wave-mean flow equation (52), the hN�i term is significantly
smaller, but the hNui and hNvi terms in (73) are only slightly affected through � in K 2.

FIGURE 4 Profiles of radial wavenumber kðr, tÞ and radial group velocity Cg, rðr, tÞ from the asymptotic
theory at t ¼ 0 (solid), 2.6 (dashed), 4.6 (dash/dot), and 9.3 (dotted) days.
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We calculate a shallow-water solution with the same initial condition for q�ðr, �Þ as in
the asymptotic-theory solution, then numerically solve for �ðr, �Þ from (23).14
Figure 6 shows late-time hviðrÞ for the asymptotic theory (solid) and shallow-water

models (dashed) for 
 ¼ 0:25 and 0:5 respectively. For 
 ¼ 0:25, the two models
match very closely, and they do so even for the rather large value of 
 ¼ 0:5, where

14We could, of course, match initial � fields instead. In this alternative 
 sequence, the modest solution
differences at large 
 differ in detail, but the converged solution at small 
 is the same.

FIGURE 5 Hovmoller plots of normalized jq�jðr, tÞ and normalized Aðr, tÞ from the asymptotic theory.
In the upper panel, dashed contour values are ð0, 0:2, . . . , 0:8Þ and the solid contour values are
ð0:92, 0:94, 0:96, 0:98Þ. In the lower panel, the contour values are ð0:05, 0:2, 0:35, . . . , 0:95Þ.
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FIGURE 7 Profiles of normalized jq�jðrÞ at t ¼ 9:3 days for several 
 values. Solid lines are asymptotic-
theory results, and the dashed lines are from the shallow-water model.

FIGURE 6 Profiles of hvið10�4m/s), the wave/mean-flow interaction velocity, at t ¼ 11:6 days, for 
 ¼ 0:25
and 0:5. The solid lines are from the asymptotic theory, and the dashed ones are from the shallow-water
model.
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the wave fields visibly differ (Figs. 7 and 9). The asymptotic theory still gives a reason-

able approximation to the wave/mean-flow interaction since the dominant term in (52)

is hNvi for all 
, and hNvi is only weakly dependent on 
 (above). Figure 7 shows

jq�jðr, tÞ for both the asymptotic theory and the shallow-water model at t ¼ 9:3 days
(i.e., about 4rm=V), and Figs. 8 and 9 show Aðr, tÞ at t ¼ 0 and 9.3 days, respectively,
for 
 values ranging between 0.0625 and 0.5. Recall that the initial q� is the same for

both models (Fig. 2). For 
 ¼ 0:5 we see some discrepancy in the location of the q�
peak and its magnitude. The shallow-water model develops a small inner peak that

we suspect is indicative of aquasi-mode component in the initial conditions (Schecter

et al., 2000) that is absent in the asymptotic theory and occurs in a shallow-water

initialization due to the nonasymptotic inversion of (22). However, as 
 drops even

to 0.25, the solutions match very closely, becoming visually indistinguishable at


 ¼ 0:125 and 0.0625. The � solutions differ more substantially with 
 largely due to

the fact that we initialize with equal q� fields. The asymptotic theory drops higher

order terms in 
 when solving for the initial � from q� with (22), whereas the

shallow-water solution is exact. For example, the initial shallow-water � has a some-

what different peak magnitude and an extended reach in r on either side of the peak

FIGURE 8 Profiles of Aðr, 0Þ for the asymptotic theory (solid lines) and shallow-water model (dashed),
normalized by the maximum initial value of the asymptotic-theory’s A for each value of 
.
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for larger 
 values, but as 
 decreases the initial � profiles approach each other quite

accurately (Fig. 8). We see that as time increases the � fields in the two models con-

verge, with the exception of 
 ¼ 0:5. For 
 ¼ 0:5, the quasi-mode decays differently
than the main peak of � so the two models’ solutions are even more different.

In summary, the principal behaviors of these vortex Rossby waves are k growth;

� decay and modest radial propagation; q� radial propagation and only weak

decay; hviðrÞ shrinking and sharpening the vortex profile through wave-averaged
angular-momentum flux; and vortex strengthening in energy and enstrophy through

fluctuation decay. The asymptotic theory accurately captures the main features

of these shallow-water behaviors even for fairly large values of 
, especially the wave-

mean flow interaction that describes the outcome of the vortex-relaxation process.

9 SUMMARY AND DISCUSSION

In this article we present a formal asymptotic theory for the quasi-linear evolution

of weak, small-scale disturbances of ageostrophic, balanced vortices, using the rotating

shallow-water equations as a testing ground. Our goal is to create a theoretical

FIGURE 9 Profiles of AðrÞ at t ¼ 9:3 days for the asymptotic theory (solid lines) and shallow-water model
(dashed), normalized by the maximum initial value of the asymptotic-theory’s A for each value of 
.

302 J.C. McWILLIAMS et al.



framework for examining the many different parameter regimes in vortex strength

and shape, varieties of balanced dynamics (including generalizations of the usual

AB and BE models; Section 3), stratification and vortex size, and fluctuation shape.

The wave dynamics in the theory have group-velocity and action-conservation laws,

as in many previous instances of waves in a slowly varying medium. The wave/mean-

flow interaction has substantial similarity with, but does not fully match, the paradigm

of Andrews and McIntyre (1978) due to the non-Hamiltonian nature of our theory. The

momentum-balanced structure of the vortex evolution dynamics through Section 4 is

more general, with respect to the wave dynamics, than its particular form in Section

6 based on the scale-separation (WKB) assumption for the waves. We analyze solutions

near the quasigeostrophic, barotropic, and azimuthally homogeneous limits to illustrate

typical vortex Rossby-wave and vortex-relaxation behaviors and to demonstrate the

asymptotic convergence of the theory in the scale-separation parameter 
.

Many interesting issues remain to be further explored in future applications of this

theory, among which are the following: vortex-profile and fluctuation initial-condition

dependences, stratification effects, finite-Ro effects in both the balanced-wave and

vortex evolution, cyclone/anticyclone asymmetries, and critical-layer encounters by

the wave packets.
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APPENDIX A

Limiting Cases

Here we identify different vortex dynamical regimes associated with the magnitude of

the Rossby number, the horizontal scale of the vortex and waves compared to the

deformation radius, the scale separation between the vortex and waves, the strength

of the mean-vortex potential vorticity gradient, and the special case of azimuthally

homogeneous waves.

A.1 Quasigeostrophy

The QG limit formally neglects all contributions proportional to R, R0, and �0 in
the wave-evolution equation (46), the vortex-evolution equation (52), and the balance

relations for velocity (72) used to evaluate the nonlinear wave-flux forcing [i.e., this

is equivalent to also setting � to zero in (73)]. As a consequence all the relations for

the mean vortex become linear, and there is a parity symmetry between the dynamics

of cyclonic and anticyclonic vortices such that the transformation

ð �vv, . . . ; ½!, k, n
; ½r, �, t
; h�i, hvi, hNvi, . . .Þ

 !ð� �vv, . . . ; ½�!, � k, n
; ½r, � �, t
;�h�i, � hvi, � hNvi, . . .Þ ð74Þ

remains a valid solution. Otherwise the evolutionary equations for the waves and vortex

are only modestly reduced in their contributing terms, although the r dependences

of the coefficients are much simplified. Some of the nondimensional, mean-vortex

relations in (38) do have the following simpler forms:

h ¼ � ¼ 	 ¼ 
2 ¼ q ¼ 1,

@r�ðrÞ ¼ v, G ¼ Lq

L
@r� �

�




� 
2

@r�

� �

: ð75Þ
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The nondimensional QG wave equation (cf., (23)) is

D
0 1

r
@ 0r r@ 0r�
� �

þ 1
r2
@02� �� �2�

� �

� �
G

r
@ 0�� ¼ 0: ð76Þ

In addition, for the vortex-evolution equation (34), all but one of the forcing terms are

absent [assuming �2� is not large; see (42) and (45)]:

1

r
@r r@r@th�i½ 
 � �




� 
2

@th�i ¼ �
1

r
@r rhNvi½ 
, ð77Þ

where hvi ¼ @rh�i and

hNvi ¼ � 1

2r2

D

n@r rkA
2

� �

E

þ 1
2r

D

k2A@�A
E

: ð78Þ

In the QG limit, Nu and N� are not needed.

An oddity of this limit, from the perspective of the more general theory, is that terms

of OðR�Þ are neglected, which might not be appropriate if � is large, so that � is not
small, even as R,R0,�0 ! 0. This oddity arises because the purely QG wave fluxes

ascend in their contributing order after averaging so that nominally higher order

terms in ðu, vÞ may actually contribute to the averaged fluxes at comparable order.
Including these latter contributions, the generalized QG expressions for the vortex

evolution are the following:

1

r
@r r@r@th�i½ 
 � �




� 
2

@th�i ¼ �
1

r
@r rhNvi½ 
 þ R�GhNvi,

hNvi ¼ � 1

2r2

D

n@r rkA
2

� �

E

þ 1
2r

D

k2A@�A
E

þ R�
G

2

D

k2 þ n2

r2

� �

knA2

rK2

E

: ð79Þ

This wave-flux forcing breaks the parity symmetry in (74) above for ðhvi, hNvi, . . .Þ, so
the evolutions of cyclones and anticyclones differ with finite R�.

A.2 Vortices with Weak Potential Vorticity Gradient

If we discard all terms proportional to � or �, then G effects are absent. The wave

dynamics becomes nondispersive with only azimuthal propagation:

! ¼ �n �Wðk, n; rÞ, Dg! ¼ 0,
Dgk ¼ �n@r�, Dgn ¼ �@�W ¼ 0,
Cg ¼ 0, r�

� �

: ð80Þ

This implies a linear proportionality, k / t, following azimuthal ray paths. The

amplitude evolution (58) has the simple form,

Dg½K 2A
 ¼ 0, ð81Þ
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indicating that the amplitude changes inversely with the total wavenumber squared,

/ k2. Finally, the associated vortex-evolution equations are


2

r
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r


2
@r@th�i

� �

� �
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2


2@th�i

¼ �
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� �

E
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2	�r

D

k2A@�A
E

,

hN�i ¼ 0: ð82Þ

A.3 Ageostrophic Vortices with Strong Potential-vorticity Gradient

When Lq � L (i.e., �" 1 from (40)) and R � 1, then the vortex-evolution dynamics
simplifies greatly. The amplitude of the vortex change is larger than in (53):

hVi
V
¼ R�

V 0

V

� �2

, ð83Þ

and the rescaled vortex-evolution equation (52) becomes
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r
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r


2
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2@th�i ¼
G
2

2	�
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knA2

rK2

E

: ð84Þ

A.4 Small-scale Barotropic Vortices

In Sections 4–6, the strict barotropic limit occurs for �� 
 (i.e., L� Ld). The mean-

vortex quantities are

h ¼ 1, q ¼ 	, 
2 ¼ �	, G ¼ 1
�

�

	
@r�; ð85Þ
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the composite wavenumber for the waves is simplified to K2 ¼ k2 þ n2=r2; and the

vortex-evolution equations (52) and (69) become


2

r
@r

r


2
@r@th�i

� �

¼ � �

r
@r rhNvið Þ � R

�	

r
@r

r

�	
@thNui

� �

þ R�GhNvi,

hvi ¼ 1
�
@rh�i þ RhNui½ 
: ð86Þ

When � ¼ 
 (i.e., L ¼ Ld), there is no simplification in the mean-vortex quantities

compared to the general case, but the wave dynamics has the barotropic composite

wavenumber, and the vortex-evolution equation (52) is simplified by the neglect of

hN�i forcing (because of the factor 
2 in (73)).

A.5 Large-scale Baroclinic Vortices

When � � 1 (i.e., Ld � L0 � L), the vortex stretching dominates over relative

vorticity in q:

h ¼ 1þ R
�




� 
2

�, G ¼ � 1
�

�

h

�




� 
2

@r�: ð87Þ

The wave dynamics now involves the general form of the composite wavenumber. In the

vortex-evolution equation, the relative vorticity effects are negligible on the left-hand

side of (52):

@th�i ¼ �
2
1


2
hN�i

� �

þ 
2
1

�2
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2r
@r rhNvi½ 
 þ R

r
@r

r


2
@thNui
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2
GhNvi

� �

: ð88Þ

The vortex tendency, @th�i, is smaller by a factor of 
2, indicating that an appropriate
rescaling of (53) would be

hVi
V
¼ 
2

V 0

V

� �2

, ð89Þ

which would allow us to drop the leading 
2 factors in the right-hand side of (88).

Furthermore, the hN�i wave-flux forcing now competes with the other wave-flux

forcing terms. When �" 1, hN�i dominates the forcing in (88).

A.6 Azimuthally Homogeneous Waves

When the vortex waves are strictly periodic on their oscillation scale, then nðr, �, tÞ ¼ no,

a constant. We can write

�ðr, �, tÞ ¼ ~��ðr, tÞ þ no� and A ¼ Aðr, tÞ, ð90Þ
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and all of the other wave quantities ð!, k,AcÞ depend only on ðr, tÞ, not �, yielding a
dynamical system with a reduced order of dimensionality.

The dispersion relation and ray equations, (60)–(62), and the definitions of wave action

and activity, (63)–(65), retain the same forms, but the action and activity conservation

equations simplify by dropping @� terms; e.g., (64) becomes

@tAcþ
1

r
@rðrCg, rAcÞ ¼ 0: ð91Þ

Similarly, the vortex-evolution equation, (52), is unchanged, but the wave-flux

forcing terms in (73) are somewhat simpler:
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K2
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� �

: ð92Þ

We have dropped the angle brackets on the right-hand side since there is no longer

a dependence on �.

APPENDIX B

Relation to a Previous Vortex Rossby Wave Theory

The wave propagation characteristics illustrated in linear initial-value solutions –

similar to those in Section 8 for sheared waves – were interpreted in MK97 with a

local WKB theory that neglected certain spatial dependences in the evolution of

the wave phase and amplitude. While locally valid in ðr, tÞ for the vortex Rossby
wave kinematics, this theory does not account accurately for finite radial displacements

of the wave field, nor account at all for the vortex evolution. The present theory is more

general in these aspects.

For the wave phase, the primary difference between the present theory and MK97 is

in the azimuthal group velocity. Following Tung (1983), the time-dependent radial

wavenumber kðtÞ in the local dispersion relation was regarded in MK97 as a function
of the initial radial wavenumber kð0Þ and azimuthal wavenumber n. Here, kðtÞ and n

are treated as independent variables.

For the wave amplitude, the present theory and MK97 differ even more. In MK97

the wave amplitude for azimuthal wavenumber n was governed by the time invariance

of perturbation potential-vorticity amplitude (i.e., the passive scalar limit). Strictly

speaking, this is only valid for sheared waves in the limit of vanishing � (as in (81)),

or the limit of long times for � � Oð1Þ when the influence of the mean potential-
vorticity gradient is overcome by the straining from the mean vortex. When

� � Oð1Þ, potential-vorticity gradient effects in (63)–(64) are important at short-to-
intermediate times.
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